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Abstract

Thyroid hormones play key roles in the central nervous system. Indeed, 
thyroid dysfunctions, either in the form of hypothyroidism or hyperthyroidism, 
have been recognized as risk factors for the progression of irreversible dementia, 
suggested by the epidemiological findings, being hypothyroidism is a condition 
that becomes more prevalent with age. The aging of the population is leading 
to the appearance of neurodegenerative diseases such as Alzheimer’s disease. 
Alzheimer’s disease is a multifactorial neurodegenerative disease which occurs 
relatively later in life (onset > 65 years of age, 95% of cases.). It involves a 
combination of aggregated proteins, chronic neuroinflammation and neuronal 
cell loss. Several studies have identified an association between dysregulation 
of thyroid hormones and Alzheimer’s disease dementia.

The aim of this review is to determine the involvement of thyroid hormones 
in the different hallkmarks that characterize Alzheimer’s disease.

Keywords: Thyroid hormone; Hypothyroidism; Alzheimer disease; Amyloid 
plaques

Introduction
The most widely identified association between endocrine and 

cognitive functions involves Thyroid Hormones (THs) [1]. Although 
the increase in longevity in western populations is our main 
achievement, it is a challenge for socioeconomic sustainability and a 
burden for health care systems since we are facing age-related diseases, 
as is the case of Alzheimer’s disease [2]. In this sense, TH dysregulation 
in advanced age is associated with risk for dementia [3-6]. Indeed, 
hypothyroidism is a condition that becomes more prevalent with age. 
Patients with untreated hypothyroidism have consistently reported 
symptoms of severe cognitive impairments. In patients suffering 
hypothyroidism, thyroid hormone supplementation offers the 
prospect to alleviate the cognitive consequences of hypothyroidism. 
However, the link between cellular modifications associated with 
hypothyroidism and neurodegeneration remains to be elucidated 
[7]. Thereby, T3 supplementation can alleviate hippocampal-
dependent memory impairments displayed by hypothyroid rats 
and normalize key markers of thyroid status in the hippocampus, of 
neuroinflammation, Aβ production, and of cell-signaling pathways 
known to be involved in synaptic plasticity and memory function [7]. 
On the other hand, the literature indicates a complicated relationship 
between TH and dementia risk so hyperthyroidism is usually more 
strongly associated with cognitive decline, although some reports 
indicate that hypothyroidism also is a risk factor for dementia [8-12].

Therefore, AD appears to lie on an intricate crosstalk between 
age-related metabolic, hormonal and specific genetic changes that 
challenge its traditional view [13].

THs have been implicated in practically all clinical features of AD. 

Special Article - Thyroid Gland

Implication of Thyroid Hormones in the Development of 
the Pathological Characteristics of Alzheimer’s Disease; A 
Mini Review
Carrera-González MP* and Cantón Habas V
Department of Nursing, Reina Sofía University Hospital, 
Spain

*Corresponding author: Carrera Gonzalez MP, 
Department of Nursing, Faculty of Medicine and Nursing, 
Institute of Biomedical Research of Córdoba (IMIBIC) 
IMIBIC Building, Reina Sofía University Hospital, Av. 
Menéndez Pidal, 7, 14004 Córdoba, Spain 

Received: June 10, 2019; Accepted: July 04, 2019; 
Published: July 11, 2019

However, the mechanism underlying such involvement is unknown. 
In this review, we intend to describe the aforementioned relationship.

Alzheimer disease
Alzheimer’s Disease (AD) is the leading cause of dementia [14], 

affecting ~35 million people worldwide [15], ~2/3 of them are women 
[16]. Clinically, AD is a progressive neurodegenerative disease that 
typically begins with a subtle decline in the ability to encode new 
memories, then progressing towards a more profound cognitive, 
behavioural/personality and adaptive deterioration [17,18]. In this 
sense, there is evidence that TH regulates two of the main pathogenetic 
processes in AD, namely, tau protein phosphorylation [19] and the 
altered metabolism of amyloid precursor protein [20].

Classic hallmark characteristics of AD pathology include Aβ 
plaques and oligomers, tau neurofibrillary tangles and progressive 
cholinergic neuron degeneration [21]. Also, proliferation and 
activation of microglia in the brain, concentrated around amyloid 
plaques, is a prominent feature of AD [22]. 

Amyloid Precursor Protein (app) processing and thyroid 
hormones 

Extracellular senile plaques arises from the amyloidogenic 
proteolytic processing of Amyloid Precursor Protein (APP), 
sequentially catalysed by the aspartic protease β-site APP Cleaving 
Enzyme-1 (β-secretase or BACE1) and then by the γ-secretase 
complex [17,23,24]. Several studies have indicated that THs regulate 
the gene expression of APP [25,26]. Belandia et al. [27] reported that 
T3 negatively regulates APP gene expression in a rat neuroblastoma 
cell line. The results of various studies suggest that decrease in TH 
receptor levels occur in Alzheimer hippocampus cells. Moreover, the 
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effects of estradiol or retinoic acid on APP expression and metabolism 
suggested that members of the nuclear superfamily of receptors and 
their ligands might play the main role in AD [27]. In this context, it 
has been suggested that low CNS TH levels may predispose to AD 
via increasing APP expression and consequently, Aβ peptide and β‐
amyloid levels [1]. Indeed, preclinical studies have repeatedly found 
an association between thyroid hormones and brain Aβ deposition in 
mice [28-30] and in human brain-derived neuroblastoma cells [30].

In the last years different authors found that Aβ impairs hormone-
mediated signalling, mitochondrial (energy) metabolism and calcium 
homeostasis, leading to oxidative/endoplasmic reticulum stresses, 
microglia activation/inflammation and endotelial dysfunction, 
culminating in synaptic/neuronal loss and cognitive deficits 
[31]. In this sense, there is evidence that TH regulates the altered 
metabolism of APP [20]. In addition, hypothyroidism interferes in 
the maintenance of normal energy (glucose)‐consuming processes 
needed for essential brain functions such as neurotransmission and 
memory [32], harming cognition.

Recent evidence suggests that microglia form a protective barrier 
around amyloid deposits, compacting amyloid fibrils into a tightly 
packed and potentially less toxic form, preventing the accretion of 
new Aβ onto existing plaques, and reducing axonal dystrophy in the 
nearby neuropil [33]. On the other hand, there is also evidence that 
activated microglia can be harmful to neurons [22]. Proliferation and 
activation of microglia in the brain, concentrated around amyloid 
plaques, is a prominent feature of Alzheimer’s Disease (AD). There 
is mounting evidence that microglia protect against the incidence of 
AD, as impaired microglial activities and altered microglial responses 
to β-amyloid are associated with increased AD risk [22]. However, we 
have not found detailed studies of the possible involvement of thyroid 
hormones in the process of activating microglia in AD, although its 
relevance in relation to amyloid plaques is definitive [1].

Tau protein phosphorylation and thyroid hormones 
AD is determined pathologically by alterations in the brain 

including the formation of intracellular neurofibrillary tangles of 
hyperphosphorylated Tau [1]. Tau is an essential protein from 
the family of Microtubule-Associated Proteins (MAPs) that 
physiologically interacts with tubulin [34] to maintain axonal 
diameter [35] and microtubule stability [29,34,36-38], thus 
maintaining neuronal structure and axonal transport of synaptic 
vesicles [39]. However, P-Tau tends to aggregate within neuronal 
perikaryal, interfering with microtubule network, promoting 
oxidative stress, mitocondrial dysfunction, neurodegeneration and 
death [24,39]. Strikingly, Aβ may also induce P-Tau, exacerbating 
neurodegeneration/ neuronal loss and brain atrophy in AD [24,31].

In this context, THs could affect the transcription of APP gene as 
well as the phosphorylation of Tau [27,28,30,40,41]. Indeed, THs may 
also interact with the amount and phosphorylation of Tau [41,42], 
however, the mechanism involved is still unknown.

Cholinergic disfuction and thyroid hormones 
The cortical cholinergic dysfunction begins in midlife and is 

closely followed by increases in deposition of cortical Aβ levels [43-
45]. In neocortex and hippocampus of AD brain, a harm of cholinergic 
fibers and terminals, declines in cholinergic receptors and signal 

transduction, and significant decreases in choline acetyltransferase 
and increase in acetylcholinesterase enzyme activities have been 
reported [46,47].

The thyroid function has a central role in both neurodevelopment 
process and neurodegenerative processes. So it has been proposed that 
the thyroid dysfunction enhances the risk of AD by a direct harmful 
effect of thyroxine discharge on cholinergic neurons; however, 
whether the neuropathological mechanism of altered thyrotropin 
levels happens before or after the beginning of AD is unclear [48]. 

Bavarsad et al. [1] suggests a relationship between hypothyroidism 
and AD; reduced thyroxin level is associated with the preservation 
of cholinergic neurons [48], concentrations of lower T3 in the 
brain increase the expression of APP [30], and the TH receptor 
competitively increases the level of the seladin‐1 gene which prevents 
the accumulation of β‐amyloid plaques and cell death [49]. 

Therefore, thyroid dysfunctions, either in the form of 
hypothyroidism or hyperthyroidism, have been recognized as risk 
factors for the progression of irreversible dementia as suggested by 
the epidemiological findings [50,51]. In this sense, several reports 
suggest that subclinical abnormalities in thyroid function may play 
a role in AD [52-54]. 

Recent studies developed by Quinlan et al. [55], showed that 
serum FT3 levels were inversely associated with the risk of progression 
to AD, with a more than doubled risk of subsequent AD in the lowest 
FT3 quartile compared to the highest quartile. However there was no 
association between serum FT3 and all-cause dementia or vascular 
dementia, and serum levels of TSH and FT4 did not associate with 
the risk of conversion to dementia of any type. In this sense, authors 
suggest that supplementation with THs could be of use in patients 
with prodromal AD.

Conclusion
In view of the collected studies we can conclude that the alteration 

of thyroid hormones is involved in the development of Alzheimer’s 
disease. In fact, they seem to be implicated in the processes underlying 
the appearance of hallmarks of Alzheimer’s disease. However, based 
on current lack of knowledge of the specific pathophysiological 
mechanisms of Alzheimer’s disease, as well as the involvement of 
thyroid hormones in the related cerebral metabolic pathways, a 
greater number of studies are needed in our view to delve into each 
one of these points.
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