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Abstract

Platelets have long been recognized as vital molecules in the process of 
hemostasis yet have further been shown to be resourceful structures for blood 
vessel formation, inflammatory responses, innate immunity and especially wound 
healing. In this context, the applicability of platelet concentrates as adjuvants 
to the tissue repair process is evident, especially Platelet-Rich Fibrin (PRF) 
associated. Despite controversies, studies emphasize a satisfactory action of 
PRF in wound healing processes, as well as a facilitating bone repair agent. 
Research is encouraging for the use of platelet concentrates as a supplement 
for tumor immune therapies and antibacterial tools. However, the multiplicity of 
existing preparation protocols based on time and velocity variations still present 
a difficulty in establishing specific clinical protocols. Thus, the purpose of this 
mini-review note was to provide an overview of platelet properties, as well as the 
advances of PRF matrices as tissue repair facilitating agents.
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Introduction
Blood platelets have long been recognized as noteworthy mediators 

of hemostasis guided by the release of bioactive molecules stored in 
specific organelles. This regulated exocytosis pathway is maintained 
by a complex membranous system responsible for the interplay 
between the cytoplasm and the surrounding microenvironment [1]. 
Over the years, a concept of extensive versatility has been assigned to 
platelets, apart from hemostatic activities, as indispensable structures 
for numerous physiological responses including angiogenesis [2], 
inflammation [3], innate immunity [4] and wound healing [1].

Platelets are anucleate cell fragments of 1 to 4µm in diameter 
released from Megakaryocytes (MKs), located in the bone marrow, 
through a multiple stage biological mechanism at a 100 billion/
day rate [6]. Circulating blood platelets exhibit a discoid structural 
configuration with an internal tubular system connected to the platelet 
surface, which is responsible for regulating secretory mechanisms. 
Their complex architecture maintained by an exclusive extent of 
receptors [7] makes platelets highly reactive and assures the efficiency 
of hemostatic functions in response to vascular ruptures, which 
combine adhesion of circulating platelets, activation, and aggregation 
phases [1,8]. More than 300 biologically active substances released 
from platelets are involved in the tissue repair process [9].

Platelet activation has been characterized as being guided by 
secretion from three different sections: dense granules, α-granules and 
lysosomes. The latter consist of a diversified enzyme deposit, whereas 
dense granules primarily contain small molecules related to platelet 
aggregation and α-granules store proteins responsible for adhesion 
and repairing factors [10]. The presence of a sophisticated internal 
membranous system, composed of specific features, maintains the 
regulation of the excretory apparatus. The Open Canalicular System 
(OCS), characterized as an extensive intracellular anastomosing 
network of fenestrated channels [11], is essential for the proper 
functioning of platelet activities, such as the uptake and release 

of substances stored in platelets to the cell exterior. Furthermore, 
the OCS works as a membrane reserve resource, available for 
replacement during platelet activation morphological changes, as 
well as a storage site for platelet membrane receptors [12]. On the 
other hand, the Dense Tubular System (DTS), a smooth endoplasmic 
reticulum membrane structure replete of amorphous material, plays 
a crucial role in platelet activation. It is a site for prostaglandin and 
thromboxane synthesis [13], storage of calcium and adenylate cyclase 
(cAMPase) mobilized in metabolic processes [14], as well as platelet 
protein disulfide isomerase, which regulates the procoagulant activity 
of tissue factor, thus controlling the initial phase of coagulation [15].

In vascular injury situations with endothelial discontinuity, 
platelet activation is mediated by receptor interactions, which results 
in morphological adjustments. Activation of multiple signaling 
pathways results in the release of the diversified granule contents. 
During this process, platelets exhibit a contracted structure via actin/
myosin interaction mediated by an increased intracellular calcium ion 
concentration. A notable event in this context consists of the GPIIb/
IIIa receptor exposure which leads to plasmatic fibrinogen binding, 
thus resulting in further changes to platelet structural conformation 
[16]. Accordingly, the platelets emit pseudopods and change from 
the original discoid structure to completely spread increasing the 
surface area, and stimulating the aggregation of other platelets [17]. 
Concurrently, a fibrin mesh is organized around the developed clot, 
acting as an encapsulation mechanism which provides additional 
stability [9].

The regenerative ability of platelets has been increasingly 
explored, due to the wide range of mediators in the tissue repair 
process that are correlated to these molecules. The platelets release 
a wide range of biomolecules, including growth factors, such as 
Fibroblast Growth Factor-b (FGFb) and Platelet-Derived Growth 
Factor (PDGF), chemokines, cytokines, proteins and enzymes. 
These molecules establish a distinct microenvironment conducive 
to the development of angiogenic properties, cell recruitment, 



Thromb Haemost Res 3(4): id1033 (2019)  - Page - 02

Paula Dechichi Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

proliferation and differentiation activities, as well as acting upon 
anti-microbial responses [5]. Furthermore, platelets play a significant 
role in maintaining the balance between cell death and survival, 
either through secretion of apoptosis mediators or antiapoptotic 
mechanisms [18].

Accordingly, the concept of platelet concentrates as potential tissue 
repair facilitator resources has emerged in modern tissue engineering 
as an extensive growth factor and cytokine source, especially related 
to Platelet-Rich (PRF) [19]. Scientific evidence demonstrates the 
extensive applicability of PRF aggregates. In vitro studies have shown 
the functionality of PRF as bioscaffolds and growth factor reservoir 
[20-23], as well as the ability to stimulate human periosteal [24] and 
osteoblast cell activity [25,26]. Furthermore, PRF has also been shown 
to in vitro stimulate bone marrow mononuclear cells [27] tendon cell 
[28] meniscocytes [29], chondrocytes [30], and heighten gingival 
mesenchymal stem cell differentiation capacity [31].

Studies on animals have shown the relevance of platelet 
concentrates for fracture healing [32], bone defects [33] and the 
osseointegration process over implant interfaces [34], as well as for 
wound healing in diabetic mice [35]. Regarding clinical studies, the 
PRF matrices provided favorable results for soft tissue repair [36], 
assistance in bone ridge preservation as a socket filling material 
[37] and in the closing process of bone exposures associated with 
osteonecrosis [38]. PRF has also been successfully employed in 
the repair of periodontal intrabony defects [39,40], and may even 
contribute to postoperative pain control after mandibular third 
molar extraction [41]. The use of PRF matrices in implant dentistry 
techniques also exhibits clinically acceptable results, as it has been 
shown to facilitate osseointegration [34,42] as well as increase the 
width of keratinized mucosa around implants [43].

The biological principle of PRF is to obtain a fibrin clot composed 
of a platelet and cell-rich network, acting as a conductive, inductive, 
and histogenic autograft. For this purpose, centrifugation protocols 
separate the formed blood elements into layers according to their 
different densities [44]. Over the years, preparation protocols based 
on distinct time periods and Relative Centrifugation Force (RCF) 
variations, as well as the introduction of the Low Speed Centrifugation 
Concept (LSCC), have opened the possibility of producing advanced 
matrices with an enhanced amount of leukocytes, platelets, growth 
factors and injectable PRF [45,46]. In this context, there exists a 
remarkable diversity of centrifugation protocols and, consequently, 
an elevated number of different PRF matrices, which produce a 
number of difficulties when defining specific clinical protocols for 
exact procedures. However, prospects are encouraging, in view of 
the application of platelet concentrates as a supplement for immune 
therapies [47] and even as a long-term antibacterial tool, even though 
further investigation is required [48].

In conclusion, blood platelets and platelet aggregates constitute 
resourceful structures with hemostatic, angiogenic, inflammatory 
and chemotactic properties that result in vast applicability for tissue 
repair therapies. Significant advances are observed regarding tumor 
and antibacterial therapies, although detailed research is necessary.
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