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Abstract

Transplantation of stem cells to regenerate and repair damaged organs 
offers promising scope for treating various debilitating diseases and is a 
feasible alternative to organ transplantation, owing to the ability of stem cells 
to repopulate the engrafted site by differentiation or trans-differentiation. 
However, before stem cell-based therapies could be transferred to clinic many 
challenges such as controlling the self-renewal, differentiation efficiency, and 
integration of engrafted stem cells or differentiated cells to the host milieu need 
to be optimized. In this review, we summarize strategies that have been used in 
stem cell-based regenerative medicine and in particular, feasibility of stem cell 
therapies in restoring damaged tissue and organs. 
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Clinical research has progressed to a great extent towards 
preventing, diagnosing and managing debilitating diseases. Culture 
of human stem cells, including embryonic stem (ES) cells, embryonic 
germ (EG) cells, induced pluripotent stem cells (iPSCs) and adult stem 
cells provide unique opportunities for studying and understanding 
molecular basis and pathophysiology of heart diseases, liver failures, 
diabetes, cancer and diseases of the nervous system. It was widely 
believed that tissue-specific stem cells are the prime candidates that 
differentiate into mature cells of the respective tissue. Present status 
of great advancement in stem cell technology, the information we 
have is that ES cells have greater capability of producing required 
tissue provided the same cue is given to them. Derivation of ES cells 
from early human embryos, and embryonic germ cells and fetal stem 
cells from aborted fetuses, raise ethical, legal, religious, issues [6]. The 
recent breakthrough in the field of iPSCs have opened up a new era in 
the field of stem cell based tissue regeneration, wherein patient-specific 
stem cells can be generated from mature cells that can regenerate 
the tissue or organ of interest. Immune rejection posing a major 
threat to the success of stem cell transplantation, particularly for the 
embryonic stem cells-derived phenotypes in allogenic recipients due 
to histoincompatibility [7,8], recent attempts to generate immune-
protected ESC-derived allografts [9] garner some hopes for future. 
Due to the unique immunomodulatory property of suppressing T 
cell alloreactivity [10], autologous adult stem cell transplantation 
[11] as well as allogenic mesenchymal stem cell therapy [12] has 
been successful in clinical trials. Therapeutic potential of iPSCs was 
questionable due to previous findings reporting immunogenicity of 
iPSCs-derived teratoma in syngeneic hosts [13]. However, recent 
reports suggest that syngeneic ‘‘self’’-iPSCs and their derivatives are 
immunotolerant in the host [14,15] supporting their safer clinical use 
in cellular therapy. Despite significant progress in the stem cell-based 
research, the potential uses of stem cells for regenerating human 
tissue and perhaps organs are the subjects of ongoing public debate.

Various clinical studies have confirmed that adult tissue-specific 
stem cells exhibits plasticity and differentiate or trans-differentiate to 
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Introduction
Tissue regeneration from stem cells is an old concept way back to 

1961 by McCulloch and Till when they demonstrated different lineage 
of blood cells from a common origin of a stem cell [1]. Regenerative 
capabilities of vertebrates at certain tissue regions have limitations, 
either they do not regenerate after adult form or regeneration rate is 
very poor [2]. The more maturation of a cell type happens, the lesser 
regenerative capability ensues. The best example is myocardial cell 
repair after myocardial injury from infarction. Whatever extent of 
damage is produced, 5% recovery of the tissue loss can be expected 
[3,4]. Greek mythology based liver recovery of Prometheus though 
stands a scientific basis of replenishment of certain tissue in the body 
after injury, it is evident that the invertebrates and non-mammalian 
vertebrates develop this kind of replenishment very fast at every 
sectors of the body, if limbs are cut they grow their limb. For example, 
Planarians and non-mammalian vertebrates such as salamanders and 
teleost fish exhibit an extraordinary ability to regenerate lost body 
parts much more effectively than mammals [5].
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cells of various lineages. As a result, we could envisage experiments 
converting a single undifferentiated cell or a fertilized egg, into the 
different cells comprising the organs and tissue of the human body. 
To think rationally, human being, an advance mammalian species 
does not have simple mechanism of organ development. Many 
organs such as heart, liver, kidneys etc. have complex developmental 
biology. However, it is plausible that organs or tissue with singular or 
similar cell types can be addressed by stem cells during their loss. In 
this review, we discuss the feasible strategies using various categories 
of stem cells combined with biomaterials scaffolds for regeneration of 
various tissue and organs.

Stem cell based regeneration of various tissue and organs
The stem cells with varying origin such embryonic and adult 

tissue as well as iPSCs with varying differentiation efficiency have been 
induced towards specific lineage with the hope of regenerating tissue 
and organs of interest, by using scaffolds of natural and synthetic 
origin [16,17]. Major applications of stem cells in regeneration of 
various functionally important tissues have been depicted in Figure 
1 and illustrated in details as follows. 

Cardiac Regeneration 
The human heart is considered as post-mitotic organ and has 

limited capacity for regeneration [18]. Stem cell therapy (SCT) to 
injured heart can improve the tissue regeneration and contractile 
ability of infarcted heart [19]. For treatment of cardiomyoplasty, 
hematopoietic stem cells expressing CD34 and/or CD133 have shown 
significant regenerative capacity in the infarcted dead myocardium of 

rats [20]. However, the multipotency of adult human stem cells similar 
to that of murine counterparts for cardiac regeneration still undefined 
in vivo. Moreover, therapeutic applications of aforementioned 
cells for cardiomyoplasty have been inconsistent, since it is yet to 
define the participation of single bone marrow stem cells in cardiac 
regeneration process [21,22]. C- Kit positive cells from bone marrow 
efficiently differentiate into myocytes and can be excellent source 
for transplantations [23]. Endothelial progenitor cells, which are 
functionally and phenotypically different from mature endothelial 
cells derived from cord blood, peripheral blood or bone marrow 
can also be efficient cells for remodeling the heart [24]. In an initial 
clinical trial study involving autologous stem cell transplantation 
in treating patients with severe myocardial dysfunction has shown 
promising results [25]. This study involved injection of autologous 
peripheral blood-derived endothelial precursor cells in 11 patients 
and autologous bone marrow mononuclear cells in 29 patients. 
A marginal improvement in myocardial function was noted at 3 
months (mean increase in ejection fraction), although it plateaued 
at 6 months. With this result, there is growing optimism that stem 
cell therapy may delay heart transplantation. Mesenchymal stem cells 
(MSC), multipotent adult progenitors (MAPC), marrow-isolated 
adult multilineage inducible (MIAMI) cells derived from bone 
marrow, adipose derived mesenchymal stem cells (ADSC) are also 
considered to be excellent therapeutic cells for cardiomyoplasty [26-
31]. Some of the cardiac resident stem cells (CSCs), which are positive 
for c-kit, Sca-1, Isl1 and which have ability to form cardiosphere 
appear to be the ideal cell sources for myocardium regeneration in 

Figure 1: A schematic representing interaction between stem cells and biomaterials scaffold for functional regeneration of various tissue and organs. The 
overlapping zone between three central circles represents similar potency and gene expression profiles of three kinds of stem cells.
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both humans and murines [20-22]. Researchers had identified that 
skeletal progenitor cells for cardiomyocytes (SPOC) and skeletal 
myoblast cells derived from muscle can also regenerate the heart 
[31,32]. 

It is important to use a mechanism that would allow cell homing 
to the site of injured myocardium. The homing can happen in a 
scaffold which is biocompatible and congenial for cell proliferation 
and function. It could be thermo-responsive gels or synthetic/natural 
biodegradable polymer or peptide in nanoscale or biopolymer 
as such. Recently, advent of myocardial patch consisting of a 
strong scaffold with stem cell impregnation has entered the arena 
of myocardial repair [33]. The possibility of dead myocardium 
harvested as homograft within 24 hours of death can be transformed 
into biological myocardial assist device as proved by Guhathakurta 
et al. [34]. This could be achieved with adult progenitor stem cells 
injected into the scaffold and subjecting the scaffold to dynamic 
forces equivalent to electrical and mechanical forces experienced 
by normal myocardium in physiological conditions. The scaffold 
receives the cells and then cell-cell talk and cell-ECM (extracellular 
matrix) talk take the construction of tissue further. This procedure 
holds good for every tissue but the polymer or gel may be different. 
Cardiovascular regeneration involves heart valve regeneration by 
stem cells in an acellular scaffold [35,36] as well as vascular tissue 
formation by tubular scaffold [natural or synthetic] seeded with 
stem cells. Endothelial progenitor cell seeding on a tubular scaffold 
is another way of developing blood vessels [37,38]. Moreover, cardiac 
tissue-conditioned prepared from ischemic tissue is reported to 
induce cardiac differentiation of human mesenchymal stem cells, 
expressing markers of precursor cardiomyocytes [39]. Biological 
pacemaker generation from stem cells by transfecting with HCN2 
gene is in progress and successful experiments were made in canine 
models [40]. In summary, regenerating the entire heart may not be a 
possibility but part by part repair may be a feasible option in future.

Hepatic Regeneration
The hepatocytes, in particular oval cells, have the potential 

to undergo several rounds of division to replace the liver mass 
after injury or cirrhosis. For treating end-stage liver failures, liver 
transplantation is the most effective treatment, but it is limited by 
donor availability, rejection risk, and high cost involved. Direct 
hepatocyte transplantation has been used as a therapeutic alternative 
to whole liver transplantation [41,42], but their long term survival 
during transplantation still raises some concern. Stem cell therapy 
is an attractive modality in this regard, as it has the potential to 
regenerate damaged liver in diseases like hepatitis, non-alcoholic 
fatty liver disease, cirrhosis, liver cancer, Wilson’s disease, Primary 
sclerosing cholangitis, primary biliary cirrhosis, autoimmune disease 
of small bile ducts, Budd-Chiari syndrome, Gilbert’s syndrome, 
glycogen storage disease [43,44]. The hepatic stem cells, present both 
within and outside the liver can differentiate into mature hepatocytes 
after their transplantation into the liver [45]. Reports suggest that 
bone marrow derived -mesenchymal stem cells could effectively 
rescue experimental liver failure and contribute to liver regeneration 
and hence it can offer a potentially alternative therapy to organ 
transplantation for treatment of liver diseases [46]. Recently, human 
bone marrow mesenchymal stem cells have been trans-differentiated 
towards functional hepatocytes using sera from cardiac-failure 

associated ischemic/congestive liver, which is clinically relevant [47]. 
Also, CD34 positive cord blood stem cells have been reported to treat 
liver diseases, which can be another effective option for liver failure 
treatment [48]. 

 Currently, there is usage of various extracellular matrix scaffolds 
including polymeric nanofibrous scaffolds that supports hepatic trans-
differentiation of mesenchymal stem cells [49] with a combinatorial 
strategy that employs both physical and humoral cues in guiding stem 
cells towards functional hepatospheres. Moreover, low frequency 
magnetic field exposure ameliorates enhanced differentiation of 
human mesenchymal stem cells on a biomagnetic scaffold fabricated 
from blood clot-polymer mixture [50]. Such a scaffold containing 
stem cell-derived hepatocyte can be used as a graft in the injured 
liver for enhanced hepatic regeneration in vivo. However, a battery 
of tests such as biocompatibility, cytotoxicity, biodegradability, 
hepatotoxicity etc. needs to be performed before proceeding to 
such clinical initiatives. Nevertheless, such a novel hepatic tissue 
engineering approach has tremendous scope for treating various end-
stage liver diseases. 

Regeneration of Neural Tissue
Stem cells located in adult central nervous system, have a poor 

capacity to generate new neurons after injury or degeneration. 
Although the stem cell therapy offers tremendous scope in treating 
nervous system disorders, issues relating to proliferation and 
differentiation of stem cells into functional tissue of interest needs 
to be evaluated [51]. It is reported that spinal cord repair using 
stem cells has adverse side effects in a rat model [52]. Therefore, an 
optimized and safe protocol for guided differentiation of transplanted 
stem cells needs to be assessed before proceeding for stem cell-based 
therapy in neural disease treatment. There have been encouraging 
reports of deficit reduction and axonal regrowth by stem cells and 
scaffolds implantation [53]. It was shown that the extent of functional 
recovery and neural networking was elevated by transplantation of 
stem cells on polymeric scaffolds than the transplantation of stem cell 
alone in a spinal cord injury model [54]. In a proof- of -concept style, 
various synthetic extracellular mimics have been tried in neural tissue 
engineering. In one report, glial scar formation was inhibited by using 
self-assembling nanopeptides, simultaneously promoting axonal 
elongation after spinal cord injury [55]. In another study, RADA-
16 nanopeptides have also promoted reconstruction of acutely 
injured brain [56]. The use of exclusively designed bioactive matrix 
made from nanopeptides [e.g. IKVAV, RADA-16] could provide 
important clues to develop a clinically relevant technique that might 
advance recovery from nerve injury. However, various parameters 
such as optimal fiber diameter, inter-fiber distance as well as suitable 
biomechanical properties of nanoscale scaffolds need to be fine tuned, 
which are of paramount importance in neural tissue engineering. A 
recent breakthrough in the field of neural tissue engineering reports 
construction of a bioengineered functional 3D brain-like cortical 
tissue by using silk-based scaffold, ECM derivatives and primary 
cortical neurons, offering great hopes for future clinical applications 
[57]. 

Skin Regeneration
Although, autologous grafts are used successfully to treat skin 
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disorders, the major disadvantage of grafts is the need for a large 
amount of donor skin. Synthetic and biosynthetic matrices containing 
adult allogenic skin cells and bovine collagen are alternatively proposed 
without a guarantee of the necessary safety, especially in terms of graft 
rejection [58]. Cell therapy and cell-culture techniques have been used 
to reconstruct the damaged epidermis. Adult human keratinocytes 
and epidermal stem cells can be expanded and may be subsequently 
transplanted as a biological dressing in burn injuries, chronic 
wounds, and various skin diseases [59]. Successful transplantations 
of autologous cultured melanocytes have been done on patients 
with severe skin disorders. Long-term efficacy of transplantations 
has also been well established. Several studies have documented the 
efficacy of different cellular methods such as pigment production, 
long-term results, and their relative efficacy in difficult areas [60]. 
Many studies that used autologous cultured melanocytes-epidermal 
grafts have also documented impressive results. These results have 
led to the commercial availability of cell therapy based products. 

Isolation and expansion of hair follicles derived- melanocyte stem 
cells offers promising scope ahead in cosmetic industries. For long 
term engraftment of the regenerated skin, parameters like source, 
quality and adequate culture conditions of epidermal stem cells are 
of prime focus. In addition, it is likely that tissue-engineered skin 
construct will comprise the priming epidermal stem cells to kick-start 
generation of epidermal component and further supplementation of 
melanocytic stem cells to it to make it more functional [61]. For the 
dermal construct, it is likely that endothelial, mesenchymal, neural 
and/or other primitive stem cells may help with generation of dermal 
components including a new vasculature. Such a construct should 
mimic the natural skin functionality in terms of barrier formation, 
pigmentary defense against UV irradiation, thermoregulation, as well 
as mechanical and aesthetic functions.

Muscle Regeneration
Skeletal muscles possess a complex array of multi-nucleated 

muscle fibers, satellite cells and precursors capable of generating 
new muscle fibers. Under normal physiological conditions, skeletal 
muscle takes up self- repair mechanism by replenishing itself with 
new muscle fibers in place of damaged ones. Although, satellite cells 
are potential candidates for muscular regeneration, they are in low 
numbers, difficult to maintain in vitro and undergo rapid senescence 
[62]. Hence, the other cellular counterparts such as muscle resident 
side population cells (SP cells) [63,64], mesenchymal stem cells 
derived from various tissue [65-68], haematopoietic stem cells 
[69,70], stromal cells derived from synovial membrane [71], CD34 
positive endothelial cells and mesangioblast derived stem cells [72] 
are considered potential candidates to repair and regenerate muscle 
by various animal experimental studies. 

Endocrine Restoration
Endocrine glands are a group of specialized cells which possesses 

the ability to secrete their products, called hormones, directly into 
the systemic circulation and exerting their effects on the efficient 
functioning of the body. The key endocrine glands of the body 
include the pancreas, pituitary glands, ovaries, testes, thyroid and 
parathyroid glands and adrenal glands. The secretions of these glands, 
viz. the hormones govern many vital functions of the human body as 
corroborated by the number of diseases manifested in the event of 

reduced and hyper function of these glands. Hormone replacement 
has been the therapeutic intervention of choice, but has its own caveats 
including increased risk for breast cancer, cardiovascular disease, 
cancer, in addition to decrease in responsiveness to the administered 
dose of hormones after a long term treatment. Optimization of the 
correct dose of the hormone to be administered is also a bottle neck 
in this treatment strategy. In the case of decreased endocrine function 
due to an autoimmune disorder as in the case of Addison’s disease 
or hypothyroidism, hormone replacement therapy does not prove 
effective even at very high doses. 

With the increasing usage of stem cells as a therapeutic 
intervention to treat various disorders, the role of the same in 
treating patients with decreased endocrine gland function is rapidly 
emerging as a successful trend. The modern lifestyle changes have 
brought forth a variety of reproductive system dysfunctions including 
early menopause, male and female infertility. Stem cell therapy 
has shown to increase the levels of estrogen, progesterone, follicle 
stimulating hormone, leutinizing hormone, prolactin, cortisol, 
thyroid hormones, thyroid stimulating hormones which has a direct/
indirect effect on the efficient functioning of the reproductive system 
[73]. There have been reports of adverse effects following SCT in 
the treatment of various hormonal deficiencies including cases of 
development of hyperthyroidism/ autoimmune hypothyroidism 
post-stem cell therapy [74,75] thereby cautioning practicing doctors 
to have a thorough case evaluation before deciding on the adoption 
of SCT to treat these disorders. Lifelong levo-thyroxin is required 
for patients with hypothyroidism. The other option is thyroid tissue 
autotransplantation. There are many studies to prove that adult stem 
cells reside in thyroid gland but these cells do not express terminal 
thyroid differentiation markers such as thyroglobulin and calcitonin. 
However, there is no evidence till date that these cells are capable 
of thyroglobulin synthesis [76]. Animal experimental studies with 
embryonic stem cells engrafted into adult rodent pituitary gland could 
survive for 4 weeks and express Pit-1, GH (growth hormone), FSH 
(follicle stimulating hormone), LH (leutinizing hormone), ACTH 
(adrenocorticotropic hormone), and TSH (thyroid stimulating 
hormone). However, more experimental confirmations need to be 
ascertained before initiating targeted cellular therapies [77]. The 
dysfunctional organ may be loaded with stem cells and may be used 
as receptor scaffold under immunosuppression in autoimmune 
diseases.

Diabetes mellitus is a metabolic disease caused by absent or 
insufficient insulin production from pancreatic beta cells. It is also 
associated with serious other complications, such as cardiovascular 
disorders, kidney disease, and blindness [78]. Cellular therapy with 
insulin producing cells from donor islets of Langerhans is an ideal 
treatment to this disease. Due to lack of donor organs and lifelong 
immune-suppression therapy other options such as differentiating 
stem cells to B cells are explored [79]. There are many types of 
cells reported for beta cell replacement such as adult stem cells 
isolated from pancreas [80] , liver [81,82], neural progenitors 
[83], bone marrow, Isl-1 induced expression of mesenchymal 
stem cells [84], side population cells present in Islet of Langerhans 
expressing ABCG2 [85] and in vitro modified human peripheral 
blood monocytes [86]. Transplantation of islet cells has been an 
alternative for long-term insulin administration and has met with 



J Stem Cell Res Transplant 1(2): id1007 (2014)  - Page - 05

Guhathakurta S Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

moderate success in spite of challenges including immune rejection 
etc. Multipotent stem cells, capable of differentiating into any lineage 
based on the microenvironment, have been used to replace the lost or 
diseased pancreatic beta cells. Both adult and embryonic stem cells 
when provided with the right environmental cues have proven to be 
potential sources of beta cells and have been characterized in detail. 
Phosphoinositide 3-kinase inhibitors when added to the culture 
media promoted differentiation of embryonic stem cells [ESC] into 
functional β- cells [87]. These cells produce insulin and secrete the 
same in response to glucose, with the typical intracellular calcium 
fluctuations seen in beta cells. Such ESC derived insulin-producing 
cells display the cell surface markers characteristic of beta cells and 
when implanted into mice, reversed diabetic conditions thereby 
providing a beacon of light in treatment strategies for diabetics. 
Current research focuses on reliable and efficient methods of 
differentiating these cells into specific lineages. 

Eye Regeneration
Stem cell treatment is a successful option for patients with limbal 

stem cell deficiency (LSCD) which is resulting from severe ocular 
surface disease with chemical or thermal injury, Stevens-Johnson 
syndrome (SJS) and ocular cicatricial pemphigoid [88]. Although 
corneal transplant is the known conventional treatment, the 
availability of the graft is the major problem. Some researchers use 
ocular reconstruction with amniotic membrane and limbal stem cells 
are effective to some extent [89]. Limbal stem cells can be obtained as 
an autograft from the fellow eye in unilateral cases and as an allograft 
from related donor or cadaveric donors for the bilateral cases. 
Although there are many scaffolds and carriers such as autogenous 
conjunctiva, mucous membrane grafts, collagen lattices, synthetic 
implants the most widely accepted universal substratum for limbal 
stem cell niche is human amniotic membrane [90].

Bone and Cartilage Regeneration
Although the bone tissue contributes to its self turn-over, it 

does not possess enough capability to recuperate heavy bone loss 
due to physical trauma or in case of metabolic disorders such as 
osteoporosis. Stem cells from mesenchymal origin have been reported 
to contribute to osteogenesis [91] and trials are ongoing for treatment 
of osteoporosis [92]. Stem cell-based bone tissue engineering on 
various scaffolds has been proven successful with a possibility of 
clinical translation in future. In bone degenerative diseases such as 
osteoarthritis (OA), stem cells isolated from patients have reduced 
proliferative capacity and reduced ability to differentiate [93]. Various 
stem cell experiments using mesenchymal stem cells in caprine OA 
model had proven the reduction in OA progression in the cell-treated 
joints [94,95]. Shah and colleagues recently proved that growth factor 
delivery from a polyelectrolyte multilayer could promote bone tissue 
regeneration and repair in a critical-size rat calvaria model [96]. 
For cartilage regeneration, autologous chondrocyte transplantation 
(ACT) for knee injury patients has successful outcomes [97]. Also, 
various next generation biomaterials have been used as carriers for 
articular chondrocytes in cartilage tissue engineering, which offer 
great hopes for clinical applications [98]. 

Kidney Regeneration
Rare availability of kidney donors as well as the rejection risk 

related to kidney transplantation during renal failure has led the 
researchers as well as clinicians to explore feasible alternatives. Renal 
stem cells have been reported to be possible candidates for therapeutic 
application during acute and chronic renal failure [99,100]. The 
bone marrow stem cells have also been shown to participate in 
regeneration of the proximal tubule; however, the mechanisms 
remain controversial. Bone marrow MSCs have been differentiated in 
vitro into a renal epithelial lineage in a coculture model with injured 
renal cells, which raises hopes for treatment of renal failures [101].

Hematopoietic Restoration
Haematopoietic stem cells have been in the forefront of adult 

stem cells research in restoring various blood disorders such as 
leukemia and lymphomas, anemia, Thalassemia major etc. due to 
their high prevalence and easy accessibility. Autologous stem cell 
transplantation can be done in some diseases such as lymphoma 
[102], whereas for diseases like acute myeloid leukemia allogenic 
hematopoietic stem cells are preferred [103]. Although allogenic 
bone marrow stem cell therapy for blood disorders seems highly 
plausible and desirable, concerns relating to rejection and leukemic 
transformation of the transplanted cells need to be assessed. 

Conclusion 
The most exciting application of stem cells could be their 

potential use in replacement of poorly functioning tissue such 
as aged muscle or cornea; replacement of veins; coronary and 
peripheral stents; replacement of the bladder and fallopian tube; and 
restoration of cells to produce necessary enzymes, hormones and 
other bioactive secretory products. More importantly, certain chronic 
surgical conditions such as peri-anal fistula, which requires repeated 
surgeries due to nagging recurrence, can be addressed with adult 
progenitor/ adipose derived adult stem cell injection after primary 
surgery [104]. There are many types of stem cells suggested to be 
safe for cellular therapy based on murine and human experiments. 
However, substantial challenges such as heterogeneity, differential 
proliferative and differentiation capacities of stem cells have to be 
overcome. If appropriate chemical and physical cues, biomechanical 
parameters and preferably a biodegradable homing receptor/scaffold 
are provided, stem cells could be used to restore organs in near 
future. Experiments on aforementioned strategies could open up a 
common pathway to simplify the modus operandi towards stem cell 
use in injured body parts. A simpler method of differentiation and 
plasticity can be derived, which is very much lacking in our stem cell 
technology research day to day. Methods to isolate pure, native stem 
cells and for robust characterization of expanded stem cells have to 
be established. This would in turn contribute to the establishment of 
a reliable quality control system for clinical applications of stem cells.
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