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Abstract

Mesenchymal Stem and Progenitor Cells (MSCs) are a heterogeneous 
population of cells, which can self-renew and differentiate into bone, adipose 
and cartilage in culture. Initially isolated from bone marrow aspirates 40 years 
ago, cells with MSC-like features have since been identified in various non-
hematopoietic tissues within a putative perivascular niche. Different tissue 
sources and culture conditions for isolation and expansion of both human 
and mouse MSCs yield distinct subpopulation of cells with potentially different 
potency. Despite attempts to characterize the MSC subpopulations from different 
tissues, the lack of specific phenotypic markers and rigorous potency assays to 
distinguish MSCs functionally presents a significant challenge in the field. In 
the clinic, these cells show great potential for skeletal therapy, enhancement of 
Hematopoietic Stem Cell (HSC) engraftment and have been used extensively 
for various therapeutic applications based on their ability to repair the damaged 
micro environment and modulate inflammatory reactions in damaged tissues. 
However, the need to develop rigorous assays is crucial to better understand 
MSC mediated repair mechanisms and to further elucidate the potency and 
safety of MSCs in transforming regenerative medicine.
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compartment, cells with MSC-like characteristics have been isolated 
from a variety of fetal, neonatal and adult tissues, including cord 
blood, peripheral blood, fetal liver and lung, adipose tissue, compact 
bone, dental pulp, dermis, human islet, adult brain, skeletal muscle, 
amniotic fluid, synovium, and the circulatory system [10-18]. Given 
this broad tissue distribution the focus of much recent research 
has been upon defining the cellular identity of the MSC as it exists 
in vivo. Mesenchymal cells have been shown to express CD146 and 
lack CD34, a phenotype which readily identifies pericytes in various 
tissues.

Pericytes are cells that closely encircle endothelial cells in 
capillaries and micro vessels in multiple organs [19-26] and are 
thought to stabilize blood vessels, contribute to tissue homeostasis 
under physiological conditions, and play an active role in response 
to focal tissue injury through the release of bioactive molecules with 
trophic and immunomodulatory properties [25].

An extensive study by Crisan and colleagues has attempted to 
established links between MSCs and pericytes by validating the 
phenotype of pericytes as CD146+, NG2+, PDGFR+, ALP+, CD34-, 
CD45-, vWF- and CD144- throughout human fetal and adult organs 
[26]. It has been reported that Pericytes and MSCs share several 
common markers such as CD105, CD73, CD90, CD44, CD10 and 
CD13. Accumulating evidence indicates a perivascular location for 
these MSC-like cells in all tissues, implying that all MSCs are pericytes 
[19]. Evidence to the contrary is provided by functional studies 
investigating the ability of various MSC populations to support 
endothelial tubular networks on matrigel. Only CD146+CD34- BM 
derived MSCs and their progeny, not CD146- MSCs displayed a 
pericyte function despite the progeny of the CD146- MSCs expressing 

The Bone Marrow Stroma and MSC Identity
The Bone Marrow (BM) stroma contains a heterogeneous 

population of cells, including endothelial cells, fibroblasts, adipocytes 
and osteogenic cells. It was initially thought to function primarily as 
a structural framework upon which hematopoiesis occurs [1]. Later 
evidence demonstrated, however, that at least two distinct stem 
cell populations reside in the bone marrow of many mammalian 
species: Hematopoietic Stem Cells (HSCs) and Mesenchymal Stem 
Cells (MSCs), with the latter responsible for the maintenance of 
the non-hematopoietic bone marrow cells. MSCs, also termed 
multipotent marrow stromal cells or mesenchymal stromal cells, 
are a heterogeneous population of plastic-adherent, fibroblast-like 
cells, which can self-renew and differentiate into bone, adipose and 
cartilage in culture [2-5]. 

In the late 1960s, Friedenstein and colleagues established that 
single cell suspensions of BM aspirates could generate colonies of 
adherent fibroblast-like cells in vitro. These Colony-Forming Unit-
Fibroblasts (CFU-Fs) were capable of osteogenic differentiation, and 
these studies provided the first evidence of a clonogenic precursor 
for cells of the bone lineage [6]. The CFU-F assay is now widely 
used as a functional method to quantify the frequency of stromal 
progenitors present in primary tissue samples [7,8] and may also 
be used as a means to assess the clonogenicity of culture expanded 
cells. Functional in vitro characterization of the stromal compartment 
by Dexter in the 1970s then revealed its importance in regulating 
the proliferation; differentiation and survival of HSCs [1]. CFU-F 
initiating cells in vivo have been shown to be quiescent, existing at a 
low frequency in human bone marrow [9].

Although MSCs were first described within the bone marrow 
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CD146 once cultured [27]. These data suggest that pericytes may 
represent a subpopulation of the total pool of assayable MSCs at least 
within the bone marrow.

Despite their shared markers and perivascular location in vivo, 
more evidence is required to prove that MSC-like cells in every tissue 
are derived from or indeed function as pericytes. A recent study by 
Corselli and colleagues identified a second cell type, adventitial cells 
(cells lining the outermost layer of all blood vessels except capillaries) 
as precursor of MSCs, suggesting pericytes are not exclusively 
precursors of MSCs [28]. Both pericytes and adventitial cells 
contain subsets of multipotent precursor cells natively expressing 
mesenchymal markers as well as sharing differentiation potential 
with mesenchymal cells, indicating these cells as possible in vivo 
counterparts of MSCs obtained in culture from diverse tissues [29-
31]. However, the precise link between pericytes/adventitial cells and 
MSCs remains elusive. Recent studies utilizing co-culture models 
have begun to examine the relationship between MSC and Endothelial 
Cells (EC). Short term contact co-cultures combined with an RNA-
seq approach revealed a significant upregulation of key angiogenic 
genes potentially mediated via MSC-secreted cytokines including IL-
1β and IL-6 modulating NF-κB signaling [32]. MSCs may also adopt a 
smooth muscle fate as a result of co-culture with ECs with myocardin, 
a master regulator of smooth muscle gene expression, shown to be 
upregulated. 

Phenotypic and Functional Properties of 
Human and Mouse MSCs
Human MSC

As no unique cell surface marker allowing for prospective 
MSC isolation has been reported, the study and characterization of 
human MSCs is thus heavily reliant on their ability to adhere to and 
subsequently proliferate on tissue culture plastic. Culture selection 
is often used in combination with Ficoll™ separation and/or pre-
enrichment using various cocktails of antibodies [33]. Some of the 
first studies to successfully isolate enriched populations of MSCs 
from human BM aspirates utilized a STRO-1 monoclonal antibody 
in conjunction with antibodies against VCAM-1/CD106, [34] and 
later CD271, [35] D7-Fib [36] and CD49a [37]. Other molecules 
reportedly co-expressed by CD271+ MSCs include PDGFR-α, HER-
2/ErbB2 (CD340) and frizzled-9 (CD349) [38]. However, not all cells 
expressing these markers are MSCs as flow cytometric isolation using 
specific phenotypes yields heterogeneous populations varying in their 
clonogenicity. 

Mesenchymal stem cells are also variously reported to express 
SH2 (CD105), SH3/SH4 (CD73), CD29, CD44, CD90, CD71, CD106, 
CD166, STRO-1, GD2, and CD146 [4,24,25,34,39-44]. Despite years 
of research and a large number of reported cell surface markers there 
is no consensus regarding the MSC phenotype, likely due to the broad 
variety of potential tissue sources and the differences in cell isolation 
and cell culture procedures used? In addition, differences in media 
formulations (FBS, platelet lysates, growth factor combinations), 
plating density and oxygen tension may affect the gene profile, 
epigenomic state and phenotype of the mesenchymal population 
once these cells have been cultured [45]. In an attempt to standardize 
the definition of an MSC, the International Society for Cellular 
Therapy (ISCT) proposed the concept of essential minimal criteria 

for MSCs in culture. The four minimal defining criteria for MSCs are: 
i) adherence to plastic under standard tissue culture conditions ii) 
expression of CD105, CD73, CD90 iii) lack of expression of CD45, 
CD34, CD14/CD11b, CD79a/CD19 and HLA-DR surface molecules 
and iv) differentiation into adipocytes, osteoblasts and chondroblasts 
in vitro [46]. 

The current ISCT criteria are limited to the definition of Human 
BM-derived MSCs and may not be applicable to MSCs derived 
from other tissues. The negative markers in the ISCT definition are 
primarily specific for hematopoietic cells which comprise the vast 
majority of the marrow and are the major contaminating cells in BM 
derived stromal cultures which may not be true for MSC cultures 
derived from other tissues. It may also be possible that MSCs from 
alternate tissue sources may differ in phenotype from their marrow 
resident counterparts. For example, Traktuev and colleagues 
identified a multipotent CD34 + population derived from the adipose 
stromal vascular fraction which shared pericyte and MSC surface 
markers [47]. This is supported by a publication referring to the 
Stromal Vascular Fraction (SVF) of the adipose tissue and the adipose 
tissue-derived stromal cells as a population identified phenotypically 
as CD45-CD235a-CD31-CD34+ [48]. The Expression of CD34 by 
Adipose-derived stromal and Stem Cells (ASC) observed at the time 
of isolation from primary adipose tissue may then be lost following 
extensive culture in vitro. Further characterization revealed that ASCs 
expressed markers in common with other mesenchymal stromal/
stem cells populations including CD90, CD73, CD105, and CD44 and 
remained negative for CD45 and CD31. ASC can be distinguished 
phenotypic ally from BM-derived MSCs by their positivity for CD36 
and lack of CD106. 

Similar to expression of CD34 on freshly isolated ASC, we 
and others [33,35,36] have evidence of freshly isolated BM-MSCs 
expressing low levels of CD45 antigen, which makes the use of CD45 
antibody as a negative selection marker for isolating MSCs from fresh 
BM inefficient. Once in culture, BM-MSCs rapidly lose their CD45 
expression, the significance of which is unknown. 

The phenotype of MSCs varies not only between tissues but 
also between species and may also be affected by culture conditions. 
Differences in cell surface phenotype were reported between 
populations of human MSCs cultured at 21% O2 as defined by 
Pittenger et al, [4] and the Marrow Isolated Adult Multilineage 
Inducible (MIAMI) cells cultured in low oxygen tension as described 
by D’Ippolito et al [49]. The MIAMI cells were shown to have increased 
expression of primitive cell markers such as SSEA-4 when cultured at 
low pO2 compared to the same cells cultured at 21% pO2. A recent 
study showed that CD146+ Human Umbilical Cord Perivascular 
Cells (HUPVCs) cultured under hypoxic conditions displayed both 
increased cell proliferation and colony-forming efficiency however, 
their differentiation towards the osteogenic lineage was reduced 
compared to cells cultured in normoxia. It was proposed that 
hypoxia reduced binding of PPARg to the HIF2a promoter region 
which ultimately up regulates Oct-4 (a downstream target of HIF2a), 
a critical gene controlling self-renewal of CD146+ HUPVCs [50]. 
These studies highlight the importance of standardizing not just a 
MSC phenotype but also the conditions under which these cells are 
cultured.
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Mouse MSCs
Various phenotypes for mouse MSCs have been proposed, 

with little or no overlap with human MSC phenotypes. Short and 
Simmons’ extensive study of mouse CFU-F enrichment identified 
the femoral compact bone as a richer source of progenitor cells than 
the marrow plug within it. By performing the CFU-F assay on single 
cell suspensions depleted of hematopoietic cells, this group reported 
a CFU-F frequency of 2689 ± 58 CFU-F/106 cells in compact bone, 
compared to 102 ± 80 CFU-F/106 cells in mouse BM [51]. They then 
used multiparameter Fluorescence-Activated Cell Sorting (FACS) 
to identify a sub-population of proposed stromal (mesenchymal) 
precursors with the composite phenotype Lin-CD45-CD31-SCA1+ 
[52]. However, an alternate population of primitive mesenchymal 
cells derived from adult mouse BM that express Stage-Specific 
Embryonic Antigen-1 (SSEA-1) was characterized by Bonnet’s group 
[53]. The SSEA-1+ population demonstrated extensive differentiation 
potential, forming astrocyte-, endothelial- and hepatocyte-like cells 
in vitro, and was found in the putative mesenchymal compartment in 
vivo, comprising about 0.04% of the total Lin-/CD45-/CD31- fraction 
of adult mouse BM [53]. In addition, Suire and colleagues defined 
another phenotype for BM-derived mouse MSCs obtained from 
enzymatic ally digested marrow plugs at a frequency two orders of 
magnitude higher than observed in BM harvested by conventional 
methods [54]. These cells are found in the stromal vascular-fraction 
and may be isolated prospectively using the composite phenotype 
Lin-PDGFRαβ+.

A distinct subset of mouse perivascular cells (nestin+) was found 
to regulate murine Hematopoietic stem cell maintenance as ablation 
of this nestin+ MSCs cells significantly reduced the number and 
homing ability of HSCs [55]. A direct role for perivascular cells in 
regulating HSCs was examined using a SCF knock-in mouse model 
by selectively silencing c-kit ligand expression in Leptin-receptor 
positive cells surrounding BM blood vessels which significantly 
reduced the frequency of long-term reconstitution of HSCs [56].

Like many other cell types, [57-61] mouse MSCs demonstrate 
enhanced proliferation and optimal clonogenicity when cultured in a 
hypoxic environment (Brenton Short, unpublished data) [52]. It has 
also been reported that increased proliferation of rat bone marrow-
derived MSCs at 5% oxygen is most likely due to increased expression 
of Hypoxia Inducible Factor (HIF), which in turn upregulates genes 
involved in metabolism, cell proliferation and survival [61,62]. 
Culture in low oxygen conditions thus appears to be a critical factor 
in the in vitro expansion of mouse mesenchymal cells. 

MSC: A question of definition within non hematopoietic 
tissues

As well as lacking a consensus phenotype by which to identify 
putative MSCs, the inability to phenotypically distinguish between 
MSCs of differing potency either from primary tissues or in culture 
hinders the ability to identify more primitive from mature cells and 
precludes the analysis of different subpopulation of MSCs in culture. 
All cultured MSCs are the progeny of the rare cells responsible for 
generating CFU-F in the primary culture and as such likely posess 
a wide range of proliferative and differentiative capabilities when 
analyzed at the clonal level. This heterogeneity is in large part masked 
by the nature of the culture conditions; the cells capable of more rapid 

division maintain the cultures and are selected for over time such that 
a population of passaged MSCs may be more oligoclonal than a true 
representation of the possible cellular diversity.

Accordingly, the phenotypes used to isolate MSC from primary 
tissues do not necessarily predict MSC function particularly when 
related to their differentiation potential. In culture, CD73, CD105 
and CD90 continued to be highly expressed on human BM-
derived MSCs from early to late passages (P3 to P9) during which 
time the same cell population showed significant reduction in their 
differentiation potential after Passage 5, particularly when cultured 
in serum-containing medium (unpublished data).Researchers have 
also reported poor correlation between the broad differentiation 
potential of the MSCs in vitro and the function of these cells in vivo. 
For example, Adipose derived MSCs were reported to exhibit inferior 
osteogenic potential to that of Bone marrow MSCs in vitro, however 
the in vivo studies were more controversial [37]. Similarly, MSC 
populations derived from umbilical veins [63] and dermis (Daniel 
Blashki and Brenton Short, unpublished data) failed to generate 
ossified tissue when transplanted into an in vivo bone forming model, 
whereas their BM derived counterparts displayed robust osteogenic 
potential.

It is possible that MSC populations derived from different primary 
tissues may have intrinsic differences in their capacity to differentiate 
into the various mesenchymal lineages despite exhibiting identical 
phenotypes in vitro. One possible explanation for this was provided 
by Ackema and Charite’ who investigated whether Hox genes, master 
regulators of regional specification and organ development, may 
play a role in the tissue-specific properties of MSC [64]. Hox gene 
expression profiles were generated from clonal CFU-F populations 
derived from various non-hematopoietic tissues including lung and 
thymus as well as BM from the sternum, forelimbs and hind limbs, 
and the relatedness of these profiles analyzed using hierarchical cluster 
analysis. This analysis revealed that CFU-F have heterogeneous Hox 
signatures that are highly specific for their anatomical origin, and that 
this topographic Hox specificity is maintained during differentiation. 
Similarly Sági and colleagues showed that not only were Hox genes 
differentially expressed, but MSC maintained expression of a subset of 
transcription factors characteristic of the tissue from which they were 
isolated, with thymus-derived cells expressing Tbx5 and Pitx2, spleen 
derived cells Tlx1 and Nkx2.5, femoral BM cells Pitx1 and aortic 
wall derived MSCs expressing En2 [65]. These data suggest that Hox 
proteins and other transcription factors play a role in specifying the 
cellular identity of an MSC and may affect the biological properties 
of tissue specific populations of MSC long after the removal of 
these cells from their tissue of origin. This innate cellular identity 
may have implications in the clinical use of MSC should cells from 
various tissues have different immunomodulatory or differentiative 
function depending on their origins. More rigorous investigation 
of the properties of MSC from various tissues is needed to further 
elucidate the differences in potency of cells which, despite appearing 
phenotypically indistinguishable, may in fact be functionally very 
different.

Some insight into potential methods to distinguish between 
phenotypically identical cells was provided by a recent publication 
examining the physical characteristics of MSCs. The authors 
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identified a set of biophysical markers predictive of a multi-potent 
MSC subpopulation in cultures derived from fetal and adult BM. 
The three biophysical markers including small cell diameter, low cell 
stiffness and high nuclear membrane fluctuations together were able 
to identify multipotent stem cells from committed osteochondral 
progenitors [66]. It is possible that a combination of biophysical 
traits can be used in conjunction with standard Immunophenotypic 
analysis to give further insight into MSC biology and may lead 
to reproducible methodologies to separate primitive cells from 
committed and differentiated cells within the same cultures.

Assays to define MSCs
Unlike the HSC field where multiple rigorous assays are available 

(eg.NOD-SCID, LTC-IC, CFC) to analyze the different function and 
maturation stage of distinct stem and progenitor cells of HSCs, the 
MSCs field is lacking stringent assays to demonstrate self-renewal 
and multipotency derived from single cells and stemness properties 
through serial transplantation experiments in vivo. Most researchers 
currently characterize a heterogonous pool of MSCs derived from 
high plating density cultures which do not accurately reflect cell 
behavior at a clonal level.

More stringent studies utilizing clonally derived MSC populations 
may enable the identification of sub-populations of cells better able 
to maintain the characteristics required of a stem cell population. 
Similarly these potency assays could help increase the efficacy and 
safety of cell therapies utilizing large numbers of culture expanded 
cells.

Generation of gene and protein expression databases of MSCs 
from diverse MSCs tissue, donor and culture conditions may provide 
knowledge of the heterogeneity of MSC subpopulations (FDA Voice, 
2014). Transplantations of heterotopic ossicles can serve as an assay 
to show the intrinsic capacity of cells to generate specific tissue in 
animal reflecting the functional capacity of MSCs in vivo [60]. Should 
serial transplantation of MSCs derived from a primary ossicle prove 
to be feasible and reproducible, the question of MSC self-renewal may 
finally be answered. The use of animal models is essential to assess the 
efficacy of MSCs in vivo and together with rigorous in vitro assays the 
true nature and function of the MSC may finally be unraveled. 

Therapeutic Potential of MSCs
MSC in the Clinic: bench to bedside

It is still poorly understood how mesenchymal cells repair 
damaged tissues in vivo. Recent evidence suggests that repair is 
achieved using paracrine factors released by mesenchymal cells, 
rather than by the Trans differentiation of mesenchymal cells into 
specific tissue cell types. Paracrine secretion by MSCs has been 
reported to support tissue repair by promoting neovascularization 
and increasing angiogenesis. For example, exosome purified from 
culture medium conditioned by human ESC-derived MSCs was 
recently identified as the active compound for reducing infarct size 
in pig and mouse models of myocardial ischemia [68]. Other ongoing 
studies examining the efficacy of transplanted mesenchymal cells in 
animal models of myocardial infarction [69], lung injury [70], kidney 
damage [71] and neurological diseases [72] may provide further 
insight into mechanisms underlying MSC-mediated tissue repair. 
Understanding the biology and the role of different mesenchymal 

cell subpopulations in tissue repair will be key to determining their 
potential for various therapeutic applications.

In recent years, over 400 clinical trials worldwide have used MSCs 
to treat various diseases (www.clinicaltrials.gov) [74]. Most trials are 
currently in Phase I/II for various diseases such as heart disease, 
diabetes, cancer, bone/cartilage, neurological and immune-related 
disorders. MSCs are attractive candidates for cell therapy, being: 
1) easy to isolate and expand in culture, 2) able to home to sites of 
inflammation 3) able to differentiate into multiple mesodermal cell 
types, 4) immunomodulatory, 5) low in immunogenicity, 6) able to 
confer cytoprotection by secreting a broad spectrum of cytokines and 
growth factors. 

MSC homing
MSCs are able to migrate to site of inflammation under diverse 

pathological conditions which makes these cells attractive for 
therapy. Homing of MSCs to injured or inflamed tissues depends on 
many signals including growth factors, chemokines and interleukins 
secreted by damaged cells and the microenvironment. Chemokines 
such as CCR2, CCR3, and CCR4 have been implicated in supporting 
MSC migration. For example murine MSCs could home to lung and 
reduce inflammation in lung tissue of mice exposed to bleomycin in 
and improve fibrotic effects in response to injury [70]. Transplanted 
adipose tissue derived MSCs- were able to migrate to injured muscle 
tissue and ameliorate muscular dystrophy in MDX mice [75].

A recent study by Park and colleagues investigated the chemo 
tactic response of BM-MSCs toward chemokines in an in vivo model 
of articular cartilage repair [76]. MSC migration was increased in 
vitro by MIP-3a and IL-8 and in vivo IL-8- and MIP-3-containing 
scaffolds enhanced tissue regeneration of an ostechondral defect site 
through increased recruitment of MSCs to the transplanted scaffolds. 
MSCs were also shown to express CCR2, CCR4, CCR6, CXCR1, and 
CXCR2 and to upregulate expression of these molecules following 
treatment with pro-inflammatoy cytokines, suggesting that not only 
do MSC themselves migrate to damaged tissues but they may also 
play a key role in attracting other immune cells. 

Differentiation potential of MSCs
It has been extensively documented that under specific stimuli, 

cultured MSCs can differentiate into mesodermal cell types (e.g. 
adipocytes, osteoblasts, chondrocytes). However, accumulating 
evidence has revealed that the tissue of origin impacts the 
differentiation potential of derived MSCs [67,77]. The stem cell niche 
could thus be a determining factor for stem cell relf-renewal and 
lineage differentiation potential and moreover, the same perivascular 
niche in different tissues may impart different characteristics on 
cells extracted from a particular tissue. MSC-like cells derived from 
synovium were shown to be superior for chondrogenic potential 
compared to MSCs derived from bone marrow [78]. This information 
is particularly relevant when designing a therapy to stimulate resident 
progenitors for repair in articular cartilage. Isolation of MSCs from 
a particular tissue can yield distinct subsets of MSC populations 
with diverse differentiation potential. A recent study by Harrington 
and colleagues examined the differentiation potential of clonally 
derived MSC populations from Dental Pulp (DP) and BM [79]. All 
BM derived MSC clones were shown to be capable of generating 
osteogenic, adipogenic and chondrogenic lineages whereas DP 

http://www.clinicaltrials.gov
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derived clones were all capable of osteogenesis but were restricted 
in their chondrogenic and adipogenic capacity. Another study 
comparing BM-MSCs to DP- MSCs also reported less differentiation 
ability into the adipogenic lineage but stronger differentiation into 
osteogenic lineage of DP–MSCs compared to BM-MSCs [80], a 
finding supported by a recent study showing DP derived MSC 
to be superior to both adipose and BM MSC in their osteogenic 
differentiation capacity [81].

The apparent ability of MSCs to give rise to cells of multiple germ 
layers, however, must be examined with care, as undifferentiated 
mesenchymal cells from human adipose tissue, skin, periodontal 
ligament and dental pulp tissues have been shown to spontaneously 
express neural [82] as well as smooth muscle cell markers in culture 
[83].

The effect of tissue-specific origin of MSCs on their differentiation 
potential into specific lineages thus may need to be taken into 
consideration for cell therapy applications.

Bone repair
Devine et al. first showed that cultured mesenchymal cells 

could home to the bone marrow in non-human primates [84]. One 
study has also shown that culture-expanded MSCs can persist and 
contribute to de novo bone formation in vivo. Eight weeks after MSCs 
were placed into a porous cylinder and implanted into a rat femur, 
the implant-containing defect healed completely [85,86]. However, 
culture-expanded MSCs are unable to home to osteogenic sites. Two 
different methods for overcoming this challenge have been explored: 
1) peptidomimetic ligands for ß1 integrin on the MSC surface, 
coupled to a bisphosphonate to facilitate migration of transfused 
MSCs to the bone surface [87], and 2 ) RNAi against Ckip-1, a 
negative regulator of osteogenesis that targets RunX2 for degradation 
[88], to bone surfaces using AspSerSer6 liposomal targeting moieties 
. The latter method was the first to provide a means of facilitating 
bone formation without concomitant osteoclast activation and 
bone resorption. These two methodologies may provide alternate 
and complementary strategies for enhancing bone formation in a 
clinical setting by facilitating both the homing of transplanted MSCs 
to osteogenic sites, and by enhancing the osteogenesis of resident 
osteogenic lineage cells at bone forming surfaces.

Cultured allogeneic human mesenchymal cells have also been 
used in clinical trials for the treatment of children suffering from 
osteogenesis imperfect [89]. The first year after MSC engraftment, 
patients showed improvement as measured by reduced incidence of 
bone breakages, effects that however declined with time. The decline 
could have been caused by senescence of the culture-expanded cells 
or by terminal differentiation during cell culture and passaging 
[90], which may be related to epigenetic changes of mesenchymal 
cells during prolonged culture [91]. It is also possible that achieving 
sustained and measurable improvement in a systemic disease affecting 
bone, a tissue in which cell and tissue turnover is low compared to 
most soft tissues, requires repeated infusions of large numbers of cells. 
Recent innovative cell targeting strategies may enable improvements 
in the efficacy of MSCs in treating skeletal disorders.

Cellular allografts containing MSCs have been used in high risk 
foot and ankle surgery for bone reconstruction purposes, resulting in 
improved healing and interval to partial weight bearing [92]. A serial 

transplantation experiment using fluorescently tagged MSCs showed 
MSCs were able to localize to areas of bone injury regardless of their 
administration route [93]. 

Immunomodulatory effect of MSCs
One property of MSC that greatly increases their value in a 

clinical setting is their ability to modulate immune responses. The 
immunosuppressive activity of MSCs is poorly understood but 
recent reports provide some mechanistic insights into key regulatory 
molecules. Programmed death-ligand 1 (PD-L1)/CD274 also known 
as B7 Homolog 1 (B7-H1) has been shown to be expressed in cultured 
MSCs and is strongly upregulated following IFN-ϒ stimulation. 
Combination therapy using rapamycin and MSCs induced immune 
tolerance to allografts, but monoclonal antibodies against B7-H1 were 
shown to abrogate this tolerance leading to allograft rejection [94]. 
The immunomodulatory effects of MSC were show to be mediated 
in part through upregulation of regulatory immune cells including 
CD4+CD25+FoxP3+ T cells and tolorogenic dendritic cells and a 
decrease in alloantibody levels.

MSC expressed B7H1 may also induce the apoptosis of activated 
T-cells as co-culture of CD4+CD25- T cells with MSCs resulted in 
significant upregulation of Programmed cell Death-1 receptor (PD-1) 
on activated T cells [95]. Similar results were reported by Chinnadurai 
who further examined the role of IFN-ϒ in the ‘licensing’ of MSCs 
to inhibit the proliferation of activated T cells [96]. Both MSCs and 
IFN-ϒ licensed MSCs inhibited T-cell proliferation, however only 
IFN-ϒ licensed MSCs significantly inhibited Th1 cytokine (IFN-ϒ, 
TNFα and IL-2) production as well as T-cell degranulation. This IFN-ϒ 
licensed MSC inhibitory effect on T cells is thought to be dependent 
on Indoleamine 2,3-Dioxygenase (IDO), however Chinnadurai 
showed that MSC IDO catalytic function is dispensible with regard to 
MSC driven T-cell inhibition and identified the B7-H1 PD1 pathways 
as essential effectors in blocking T-cell function. Further complexity 
was also suggested by a recent report that IFN-ϒ treatment of MSC 
upregulated HLA-DR /Class II MHC after 48 hours and MSCs ability 
to inhibit T cells through B7-H1 was dependent upon the presence of 
HLA-DR [97].

A novel mechanism for MSC induced immunosuppression was 
recently proposed by Obermajer and colleagues who showed that 
cells of the Th17 type, predominantly associated with the rejection 
of allogeneic solid organ grafts, can be directly converted into 
a regulatory T cell (Treg) type [98]. The induction of Tregs was 
preceded by development of a CD11b (hi)Gr1(int) myeloid-derived 
immunosuppressive cell mediated Th17 response. They identified 
retinoic acid receptor-related orphan receptor γ as a common factor 
in the differentiation of Treg and Th17 cells. Treatment of enriched 
IL-17A (+) cells from MSC-primed allograft mouse recipients 
with the immunosuppressant mycophenolate mofetil reduced IL-
17A production and increased the Foxp3 (+) Treg cell fraction. 
The identification of specific subset of T cells, IL-17A(+) Foxp3(+) 
double-positive and ex-IL-17-producing IL-17A(neg)Foxp3(+) in 
this paper argues for direct conversion as the mechanism for MSC-
mediated immunotolerance. This proposed mechamism where MSCs 
–induced myeloid –derived immunosuppressive cells act as mediator 
for immunetolerance without complete immunosuppression may 
have significant implication for therapeutic application.
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The importance of species variations related to 
immunosuppression mechanisms by MSCs are sometimes 
overlooked. For example, Immunosuppression by human -derived 
MSCs is mediated by Indoleamine 2,3-Dioxygenase (IDO), whereas 
mouse MSCs is mediated by nitric oxide [99]. When the expression 
of IDO and inducible nitric oxide synthase (iNOS) were examined 
in human and mouse MSCs after stimulation with their respective 
inflammatory cytokines, human MSCs expressed extremely high 
levels of IDO, and very low levels of iNOS, whereas mouse MSCs 
expressed abundant iNOS and very little IDO. Thus, studies of MSC-
mediated immunomodulation in mice may not be informative in the 
setting of human disease.

HSC engraftment: MSCs appear to be extremely sensitive 
to chemical and radiation-induced damage, and remain at a 
significantly lower frequency after exposure [100]. Transplantation 
may perturb the ability of MSCs to regulate hematopoietic cells, 
which would explain the slow and skewed recovery of many immune 
cell populations [101].

Co-transplanting MSCs with HSCs could thus enhance long-
term HSC engraftment, as has been demonstrated by in utero co-
transplantation of fetal sheep with human bone marrow stromal 
cells and human HSCs [102]. MSCs may also prevent the onset of 
immune cell-induced Graft-Versus-Host Disease (GVHD) following 
transplantation [103], as cultured MSCs do not express MHC-class 
II antigens on their cell surface and can suppress a primary mixed 
lymphocyte reaction. When MSCs cultured in both FBS- and platelet 
lysate-based media were given to patients with chronic and acute 
GVHD, half of the patients responded positively, with pediatric 
patients faring best [104]. In one clinical trial, the infusion of MSCs 
into 8 patients with steroid-refractory grade III - IV acute GVHD 
even resulted in the complete disappearance of GVHD in 6 of 8 
patients [105].

Despite the extensive use of MSCs in clinics and in many ongoing 
clinical trials, there is a lack of long term safety data examining 
the use of MSCs in humans. It has been reported that MSCs may 
variously exert an anti- or pro-tumor growth effect depending on the 
tumor type and its microenvironment [10-108]. Tumor formation 
in patients receiving MSCs has not been reported to date; however, 
the risk of potential tumorigenicity when MSCs are used in therapy 
was recently discussed [107]. Two possible scenarios include 1. 
Malignant transformation of the MSCs occurs (possibly as a result of 
extensive proliferation in vitro and resultant accumulation of genetic 
pertubations) 2. The immunesuppressive effect of MSCs which could 
enhance the growth of existing malignant cells of a patient. A third 
potential area of concern is the risk of MSCs contributing to neo-
angiogenesis in developing tumors thus promoting enhanced tumor 
growth. The absence of a suitable in vivo model system which can 
completely rule out the risk of tumor formation is of concern.

Despite the challenges facing the field, the potential of MSCs 
to transform regenerative medicine is undeniable. From repair of 
skeletal maladies, to the treatment of GVHD, to their efficacy in 
abrogating the severity of myocardial infarcts, MSCs may one day 
be able to treat a broad range of debilitating conditions. Through 
rigorous studies and the development of novel assays this potential 
may soon be realized. 
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