
Citation: González-Llano O, Saucedo-Uribe E, Martínez-Garza DM, Mancías-Guerra C, Cantú-Rodríguez OG 
and Mancías-Guerra MC. Serendipitous Improvement of Schizophrenia after Stem Cell Transplant for Hodgkin’s 
Lymphoma. J Schizophr Res. 2018; 5(1): 1036.

J Schizophr Res - Volume 5 Issue 1 - 2018
ISSN : 2471-0148 | www.austinpublishinggroup.com 
Mancías-Guerra et al. © All rights are reserved

Journal of Schizophrenia Research
Open Access

Abstract

21-year-old male patient with schizophrenia diagnosed at age 15 with a 
history of poor response to olanzapine and risperidone. He referred auditory 
hallucinations with a pejorative content about himself. He was very suspicious 
and socially with drawn, to the extent of dropping out of high school and being 
unable to leave his home. One year afterward he was diagnosed with Hodgkin’s 
Lymphoma (HL). He underwent different chemotherapeutic schemes and three 
Stem Cell Transplants (SCT). Between the second and the third SCT, the patient 
received therapeutic doses of quetiapine (Positive and Negative Syndrome 
Scale [PANSS]: 147). In a period of 8 months, after the second SCT, patient’s 
PANSS dropped 60 points, his hallucinations decreased 90%, and he improved 
his negative, cognitive, and social symptoms, which allowed him to gradually 
reincorporate to his usual social and academic life.

Currently, Hematopoietic Stem Cells (HSC) have been proposed as an 
alternative therapy for many chronic and incurable non-hematologic diseases. 
In psychiatry, the theory is that these HSC migrate to areas of inflammation 
in the brain via chemotaxis, and, through immunomodulation and secretion of 
bioactive molecules enhance neurogenesis, angiogenesis, and remodeling of 
axonal circuits. Studies on schizophrenic patients have confirmed both, that 
it is an inflammatory condition (cytokines and interleukins are elevated when 
compared to controls) and, that the brain is underdeveloped due to deficient 
neurogenesis; supporting. why HSC assisted in the marked clinical improvement 
observed in this patient, which would otherwise could not be explained by the 
natural history of the disease or therapeutic measures alone.
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psychotic symptoms at the age of 15. The family was skeptic about this, 
so they did not seek for help until after a year when symptoms became 
more florid. The diagnosis of schizophrenia was made. Olanzapine 10 
mg QD and risperidone 4 mg QD were indicated, without satisfactory 
results, despite complete adherence. Two years later from the start of 
symptoms the patient sought for a second opinion, being attended 
by us.

On examination, he appeared disheveled, suspicious, and 
very anxious. He was very inexpressive with an indifferent and flat 
affect, avoided eye contact, and was very uncooperative. He had 
a disorganized thought process and answered to most questions 
monosyllabically. Patient referred auditory hallucinations; he heard 
two voices that made fun of him. He had reference delusions about 
his neighbors and peers making fun of him and claiming that “he was 
homosexual”. Hence, he became socially withdrawn and eventually 
dropped out of high school. He did not abandon his home for anything 
but therapy. Patient slept all day but could not sleep at night because 
of fear; he sometimes would hide in the walls of his home because he 
thought people were spying on him. The diagnosis of schizophrenia 
with predominant negative symptoms was confirmed (positive and 
negative syndrome scale [PANSS]: 147). He was started on an in 
crescendo scheme of quetiapine until he reached a maintenance dose 
of 300mg bid.

Introduction
Psychiatry has fallen behind other medical specialties regarding 

treatment innovation [1]. It is so, that most of the first line 
medications are now over 40 years old, and the last drug with an 
original mechanism of action was introduced almost a decade ago 
[2]. Nonetheless, psychiatric disorders have a prevalence that may 
be as high as 26% [3], urging the need to develop novel and precise 
therapeutic offers [4]. Schizophrenia, with more than 20 million people 
affected worldwide, currently the third-most disabling condition [5], 
a lifetime prevalence of 0.7%, and carrying a great burden of human 
and economic costs [6], is just one of the many examples of mental 
health diseases demanding new approaches [7-15].

Since their discovery, stem cells have been used as an alternative 
treatment for many diseases, especially chronic diseases with not few 
therapeutic options, such as heart and autoimmune disorders [16]. 
Mental health is not the exception, as psychiatric conditions may 
be caused by deficiencies in neurogenesis and neurodevelopment, 
in which stem cells, hypothetically may be able to restore proper 
psychological function of areas where cells have died or are 
dysfunctional, or may enhance some degree of neurogenesis [17,18].

Case Report
The patient is a male that started experiencing outbreaks of 
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Meanwhile, he was concomitantly diagnosed with HL (Figure 
1). He received an induction treatment with an ABVD (adriamycin, 
bleomycin, vinblastine, and dacarbazine) scheme and received an 
autologous SCT of peripheral blood as consolidation treatment with 
etoposide and carmustine as conditioning regimen. Six 3 months 
later, he relapsed and was started on a second-line scheme that 
included ifosfamide, gemcitabine, and vinorelbine as the induction 
therapy, this time he was consolidated with a second autologous SCT 
with peripheral cryopreserved cells with busulfan and melphalan 
as conditioning regimen. The patient went into a second complete 
remission, though, he relapsed for the second time. He underwent 
a rescue scheme using brentuximab and was now submitted to a 
haploidentical SCT. Cyclophosphamide, fludarabine, and melphalan 
were used as conditioning. He reached complete remission, is free of 
HL and without data of graft versus host disease. Over a period of 18 
months the patient received a total of 15×106/kg HSC.

During this time, the patient dramatically decreased his symptoms 
and PANSS results (Figure 2). The patient referred hallucinations had 
decreased 70-90%, and when they happened, he was conscious about 
them coming from his head and not being real. His negative, social 
and cognitive symptoms began gradually improving. Soon after the 
third SCT he could walk and normally interact on the streets and 
since then has been stable without any relapse. Currently, still on 
quetiapine, the patient is majoring in arts with academic excellence 
and with a stable social life. Even though auditory hallucinations 
persist, they have diminished in frequency, and he now has the ability 
to neglect them.

Discussion
The assumption that the brain cannot be modified after adulthood 

is long gone. There is evidence of neural stem cells (NSC) that supply 
the rest of the brain for renovation [19], as they migrate to areas 
of damage and inflammation [20]. After brain insults that cause 
neuronal death such as stroke[21,22], schizophrenia, and Alzheimer’s 
disease [23,24], NSC migrate, differentiate, and incorporate into lost 
neural circuits [21-25].

They do as such as a result of two things. First, after cell 
death, many neurogenesis genes activate, such as the ones in the 

transforming growth factor-beta superfamily [26]. Second and most 
importantly, because of inflammation, many chemotactic molecules 
up-regulate (e.g., interleukin 8, monocyte chemoattractant protein-1) 
[27], attracting not only NSC [28], but also HSC [29], element that 
becomes the linchpin of how stem cell therapy works in the brain as 
we will describe later on.

HSC lie on the stroma of the bone marrow and give rise to all the 
types of blood cells; their phenotype is CD34+ and CD133+ [30-33]. 
As mentioned before, these are recruited to areas of inflammation 
in the brain, where they aid in neurorestoration. These cells have 
limited cellular differentiation potential when compared to other 
types of stem cells, so their beneficial properties are instead through 
immunomodulation [34], as they secrete many bioactive molecules 
such as brain-derived neurotrophic factor, basic fibroblast growth 
factor, β-nerve growth factor, vascular endothelial growth factor, and 
angiopoietins 1 and 2, promoting neurogenesis, angiogenesis, axonal 
growth, and reducing apoptosis in areas of brain damage [35-38]. 
This means that without any intervention, the natural response of 
the body to neuronal damage is to create a microenvironment that 
stimulates neurorestoration through the proliferation and migration 
of HSC. Therefore, the hypothesis of how stem cells enhance neuronal 
recovery lies in the fact that exogenously administrating stem cells 
would multiply and extend the efforts activated physiologically by the 
body [39-44].

Studies have shown increased levels of proinflammatory cytokines 
(e.g., tumor necrosis factor alpha, interleukin-6, and interleukin-2) 
in schizophrenia [45,46]. This is critical because it confirms that 
psychiatric disorders constitute a state of active and chronic 
inflammation, which would justify the migration of peripheral 
blood stem cells to the brain to execute their paracrine effects of 
up-regulating and augmenting both neurogenesis and angiogenesis. 
Ergo, linking the clinical improvements with a SCT.Even though 
many trials advocate for intra-organ stem cell transplant (in this case 
the brain), it could be sufficient to allocate them intravenously, given 
that they are capable of crossing the blood-brain barrier (BBB) [47], 
and finding their way to reach damaged areas, even within the brain 
[48].

Figure 1: Hodgkin’s Lymphoma evolution.
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This is not the first psychiatric disease in which the neurogenesis 
theory has been tested on. For instance, it has been demonstrated 
that lower levels of 5-hydroxytryptamine decrease the rate of 
neurogenesis in the hippocampus [49], and that the chronic 
administration of serotonin selective reuptake inhibitors, currently 
the first-line therapy for depression, increase neurogenesis [50] and 
leads to the upregulation of Brain-Derived Neurotrophic Factor 
(BDNF) messenger ribonucleic acid [51]. Another example is bipolar 
disorder, in which it has been proven that neurogenesis is diminished 
while proper pharmacotherapy augments it [52-54].

Even though clinical improvements were seen in our patient at 
the same time quetiapine was being used at high doses, this would not 
justify the marked improvement (58-point drop in PANSS) in just 
eight months, after a stable course. Even though positive symptoms 
tend to respond well to medication [55-61], negative symptoms, such 
as flat affect and asociality are far less responsive to antipsychotics 
[62]. Therefore, knowing how refractory negative and cognitive 
symptoms are [62], their notable amelioration cannot be explained 
by quetiapine alone.

Moreover, this is not the natural history of schizophrenia; 
positive symptoms do tend to lessen with age. However, negative and 
cognitive symptoms continue to worsen as the patient gets older [63], 
contributing to a poor quality of life [64,65]. Some patients achieve 
do recover and function well, though this is the minority [66]. In fact, 
three of every four patients end up having some type of disability with 
multiple relapses [62], and up to 85% end up unemployed [67].

One of the limitations of this report is the fact that we first saw 
the patient after receiving the first SCT, and we do not know the 
severity of the disease before the transplant and how it might have 
been altered by it. Nonetheless, given the history and presentation, it 
is clear that his schizophrenia was a refractory one.

Conclusion
The organic approach shift that mental health is experiencing 

nowadays is supported by the volume of research and new discoveries 
of how the brain is modified during a psychiatric illness. This is not 

the first time that by serendipity patients submitted to SCT improved 
in concomitant diseases. For example, renal and cardiac function 
improvements after SCT have been reported as well [68,69]. Given 
the disabling character of schizophrenia, paired with the high 
prevalence of it, we must not ignore any hint of mending the disease. 
We must encourage further research to clarify this matter, aiming to 
provide hope of removing, or at least lighten the great burden of this 
condition.
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