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Abstract
Schizophrenia (SCZ) is a chronic psychiatric disorder affecting over 

20 million people worldwide, with early diagnosis hindered by inconsistent 
biomarkers and subtle symptom onset. This study presents a machine-learning 
pipeline to identify cognitive biomarkers from neuroimaging data for early and 
reliable SCZ diagnosis. Resting-state and Multi-Source Interference Task (MSIT) 
fMRI datasets were analyzed, highlighting key regions such as the anterior 
cingulate and dorsolateral prefrontal cortex. A novel approach integrated MSIT-
derived features—linked to psychosis treatment progression—into resting-state 
data from prodromal patients. This enabled the prediction of psychosis onset 
through functional connectivity and machine learning. The pipeline automates 
preprocessing, feature extraction, and classification, and is available as an open-
source Python library, promoting reproducibility and scalability. This research 
underscores the potential of cognitive biomarkers in early SCZ detection and 
offers a robust framework for broader psychiatric applications. Future work will 
explore multi-modal data integration to improve diagnostic precision across 
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Introduction
Over twenty million individuals worldwide have schizophrenia 

(SCZ), a severe and long-lasting mental illness. However, only 
30% of cases improve because 50% of patients refuse treatment, 
and another 20% are unresponsive to drugs [1]. Those with SCZ 
typically experience a plethora of symptoms, especially as the disease 
progresses, including hallucinations, delusions, and disorganized 
speech, which can significantly reduce quality of life and impair daily 
function [1]. SCZ signs are clustered into broad categories of positive 
and negative symptoms.

Positive Symptoms

The active stage of SCZ, also known as psychosis, is when positive 
symptoms, those that result in an excess or distortion of behaviors 
[2], are most prevalent, with patients experiencing hallucinations, 
delusions, thought disorder, and hyperactivity [3].

Hallucinations and Delusions: Hallucinations are sensory 
fabrications in which a perceived sensory input accompanies 
false perceptions of reality, while delusions are false perceptions 
of reality that persist despite contrary evidence [3]. Antipsychotic 
medications are effective in treating these symptoms by blocking the 
dopamine-2 (D2) receptor, therefore easing hyperactive dopamine 
transmission and handling delusional symptoms [4]. Side effects of 
antipsychotics yield complications ranging from relatively unpleasant 
(e.g., constipation, sexual dysfunction) to disfiguring (e.g., weight 
gain, tardive dyskinesia) to life-threatening (e.g., myocarditis, 
agranulocytosis) as described by patients [5]. These effects may 

repel patients from continuous use of medications despite doctor 
recommendations.

That is, the more obvious, substantial symptoms of SCZ—thus the 
ones that impel most patients to get treatment—are hallucinations and 
delusions, both of which can be treated with a 75% success rate [4]. 
Delusions, however, can quickly become imperceptible to patients, as 
this symptom also entails one of the most dangerous developments 
associated with SCZ—anosognosia.

Anosognosia: Anosognosia is defined as a condition in which one 
is in denial of an apparent disability or deficit, frequently resulting in a 
patient’s refusal of treatment [3]. In many patients with SCZ, delusions 
develop into a fervent denial of treatment before professional help can 
intervene [3].

Negative Symptoms

The negative symptoms of SCZ, which include cognitive 
impairment, disorganized thought, and social withdrawal, are 
prevalent throughout the illness’s entire progression [2]. These 
symptoms are also seen as the first, preluding symptoms of SCZ.

Cognitive Impairment: The most prominent negative symptom 
observed is cognitive impairment, which includes executive function, 
attention, and working memory problems. Cognitive impairment 
is typically quantified through the measurement of a patient’s 
performance on a series of brain tasks. The MATRICS™ Consensus 
Cognitive Battery (MCCB™) Evaluation is a collection of 10 diverse 
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examinations that is used as the industry standard in determining a 
change in cognitive function and targets common cognitive domains 
associated with SCZ [6]. Cognitive Remediation Therapy (CRT) is 
a treatment strategy for enhancing cognitive abilities in individuals 
with SCZ. However, it is expensive and grows to be less effective as 
SCZ progresses [2]. Moreover, CRT is especially unsuccessful for 
anosognosic SCZ patients, as they are typically confrontational and 
skeptical of treatment [7].

Thought Disorder: Thought disorder (TD), more colloquially 
known as disorganized thinking, can be especially damaging because 
it impairs the ability of the patient to self-reflect, thus exacerbating 
anosognosia [8]. Moreover, even if the patient is not enduring a 
psychotic episode, TD significantly detriments daily life by rendering 
patients unable to speak coherently and reason [9]. Further, as shown 
in Figure 1, neurological anosognosia symptoms are similar to those 
of neurocognitive disorders like TD.

Social Withdrawal: Many individuals with SCZ remove 
themselves from social interactions, which is coupled with an overall 
lack of motivation. Social withdrawal is a particularly troubling 
symptom, as it diminishes both the likelihood and quality of 
treatment participation [10,11]. As individuals retreat further from 
social interactions, they often lose the opportunity for supportive 
relationships that might encourage trust in medical interventions. 
Various psychosocial and cognitive-based interventions like CRT may 
be effective in addressing certain symptoms of SCZ [12]. Individuals 
exhibiting social withdrawal often demonstrate high dropout rates 
and low treatment engagement. [12].

Early Diagnosis

The premature diagnosis of SCZ can alleviate and prevent the 
development of the disorder by avoiding the transition into a state of 
psychosis. If the disorder was diagnosed prematurely, there would be a 
smaller likelihood of patients developing anosognosia, and therefore, 
the chance of a full recovery would dramatically increase [13].

Chemical Biomarkers

Biomarkers are specific metrics that serve as indications of disease 
development. Chemical biomarkers, such as neurotransmitter levels, 
inflammatory markers, and specific proteins found in cerebrospinal 
fluid or blood, have long been investigated for their potential to aid 
in the prognosis of SCZ [14]. Such biomarkers aim to offer objective 
measures that reflect underlying biological processes associated with 
the disorder, potentially enabling early detection and more targeted 
interventions. However, they have proven largely ineffective as reliable 
diagnostic tools because they are either not specific enough, resulting 
in a mistaken indication of the disorder, or they are too specific and 
only apply to statistically insignificant fragments in a dataset [15]. 
Moreover, the etiology of SCZ has not yet been identified, which 
further limits the specificity of biomarkers, as studies tend to identify 
clusters of interdependent biomarkers rather than exclusive ones [15]. 
Chemical biomarkers often display significant variability between 
individuals with SCZ. Factors like genetic background, environmental 
influences, lifestyle, and even concurrent medications can affect 
biomarker levels, leading to inconsistent results across patient 
populations [16]. This variability complicates efforts to establish 
standardized biomarker thresholds that reliably indicate SCZ, as 
opposed to individual variability or external factors. For example, 
a study by Saha et al. [17] found that neurotransmitter levels can 
fluctuate based on the stage of illness, current symptoms, or even the 
time of day. Such instability limits their utility for consistent diagnosis, 
as levels may not correlate directly with the patient’s current clinical 
state.

Problem Statements

1. Variability and Limitations of Biomarkers for SCZ 
Diagnosis.

Biomarkers cannot currently yield accurate prognoses for 
SCZ because of the multifaceted nature of the disease's etiology.

2. Treatment Resistance and the Impact of Anosognosia.

A major barrier to effective treatment in SCZ is anosognosia. 
This phenomenon is particularly prevalent in individuals who suffer 
from the second stage of SCZ, which involves delusions/hallucinations 
and can be avoided if the illness is treated before psychosis ensues. 
Compounded by cognitive impairment and social withdrawal, 
anosognosia prevents patients from seeking or adhering to necessary 
interventions despite existing treatments, which exacerbates the 
disease’s progression. As such, a preliminary diagnostic tool is needed 
to most effectively treat SCZ.

Objectives

1. This study seeks to develop a prognosis algorithm 
based on a comprehensive assessment of the negative symptoms of 
SCZ that can identify cognitive biomarkers.

Figure 1: Regional similarities in brain metabolism and amyloid 
deposition. Graphic by student researcher.

Figure 2: Preprocessing pipeline. The preprocessing pipeline 
depicted above follows standard conventions to ensure data is fitted and 
interpretable by the ML algorithm. Graphic by student researcher.
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2. The prognosis algorithm will also use fMRI data to 
predict whether an individual will develop schizophrenia--more 
specifically, psychosis--, thereby increasing early intervention rates in 
SCZ and preventing treatment refusal.

Methodology
Role of Student vs. Mentor

I conducted all of the work for this project independently, 
including the development of the machine learning (ML) model 
and the execution of the data analysis framework. My mentor, Mrs. 
York, provided minimal edits to my paper, but the conceptualization, 
implementation, and refinement of the ML model and the adaptive 
application were entirely self-directed.

Participants and Data Sources

This study utilized two datasets from Zucker Hillside Hospital 
containing functional magnetic resonance imaging (fMRI) scans of 
participants completing the MSIT task before and after 12 weeks of 
treatment and resting-state fMRI for patients in the prodromal stage of 
SCZ. These datasets provided the trajectory of cognitive improvement 
with treatment in disidentified patients with SCZ, which was later 
emulated by an ML algorithm to identify biomarkers. Participants in 
the datasets were diagnosed with SCZ according to DSM-5 criteria. 
fMRI scans were included only if they demonstrated minimal motion 
artifacts, defined as less than 3 mm of translational movement and 3° 
of rotational deviation. The datasets consisted of a diverse participant 
pool with significant age and ethnicity ranges to maximize the model's 
generalizability.

Equipment and Software

The study utilized a Windows-11-based workstation with an Intel 
Xeon W-2255 processor, 64 GB RAM, and a 2 TB solid-state drive for 
computational tasks. A VPN was established to the dataset’s network 
via SSH X11 forwarding with PuTTy and Xming. All processing, 
ML model development, and figure creation were conducted using 
MATLAB with the SPM12 toolbox and the FMRIB Software Library.

Data Preprocessing

To ensure data uniformity and analytical accuracy, preprocessing 
was conducted in sequential steps for both neuroimaging and 
cognitive datasets.

fMRI Preprocessing

The functional connectivity fMRI data underwent preprocessing 
using MATLAB's Statistical Parametric Mapping (SPM12) toolbox. 
This included spatial realignment and normalization to the Montreal 
Neurological Institute (MNI) space to standardize spatial orientation 
across participants.

Gaussian kernel smoothing was then applied with a full width at 
half maximum (FWHM) of 8 mm to improve signal-to-noise ratio 
and highlight regional activity patterns. Eliminating this obscurity in 
the scan made the statistical analysis more accurate and informative. 
Outlier scans exceeding the predefined motion thresholds were 
excluded to preserve data quality.

Figure 2 illustrates a detailed fMRI preprocessing workflow 

designed to standardize the data and minimize artifacts for accurate 
neuroimaging analysis. The process began with data stored in 
NIfTI format, with a repetition time (TR) of 0.75 seconds, ensuring 
compatibility with analysis tools and capturing high temporal 
resolution for precise neural dynamics. Motion correction was 
performed to realign fMRI volumes to the mean image, with a strict 
tolerance of ±2 mm for translational movements and ±2° for rotational 
deviations to exclude scans with excessive motion and preserve voxel-
level alignment; this restriction was more strict than the dataset’s to 
ensure quality scans and reduce overfitting. Slice timing correction 
was applied to account for interleaved slice acquisition, using the 
middle slice as a reference point to synchronize signal timing across 
the brain. Co-registration aligned structural T1-weighted images with 
functional data, enabling precise anatomical localization of neural 
activity and setting the stage for accurate spatial normalization. 
Functional images were then normalized to the MNI152 template 
with a voxel size of 2 mm isotropic and a bounding box of [-90, -126, 
-72; 90, 90, 108] to ensure uniform alignment with a standard brain 
space. Denoising was performed by regressing out motion parameters 
and physiological confounds, with global intensity scaled to a mean of 
100 for consistency across scans. Temporal filtering using a bandpass 
range of 0.01–0.1 Hz was applied to retain relevant neural signals 
while removing low-frequency drifts and noise. Finally, smoothing 
was conducted using a Gaussian kernel with an 8 mm full-width at 
half maximum (FWHM) to enhance the signal-to-noise ratio and 
improve the detection of regionally significant activation patterns. 
This preprocessing pipeline ensured high-quality, artifact-free data 
suitable for downstream statistical and machine-learning analyses.

Neuroimaging

fMRI Analysis: Neuroimaging analyses were performed to 
determine and characterize the functional connectivity of patients in 
the datasets, i.e., identify the performance of brain regions associated 
with cognitive performance (Figure 3).

For the MSIT task database, a General Linear Model (GLM) 
correlated each patient's 12-week treatment and functional 
connectivity. The contrast matrix [1 -1] was used in the GLM for 
congruent (assigned a value of 1) and incongruent (assigned a value 
of -1) MSIT task responses, respectively, to account for task-specific 
design matrices. Activation maps were generated to visualize regions 
showing significant activity changes. Additionally, a paired t-test 

Figure 3: Workflow diagram for analyzing MSIT task fMRI data, 
encompassing 219 patients and 219 controls across two sessions. 
The process includes creating an MSIT task design matrix, accounting for 
confounds, generating beta images and ROI masks, extracting ROI beta 
values, and performing feature extraction to compute functional connectivity 
metrics. Graphic by student researcher.
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correlated the General Linear Models' parameters collectively to 
generate an overall trend between treatment and change in functional 
connectivity, identifying voxels relevant to the patient's cognitive state 
and the extent and quality of responses thereof to treatment. This 
was done in order to later identify relevant ROIs accordingly. Beta 
images were generated to represent neural activation patterns, and 
these outputs were combined with ROI masks to extract mean beta 
values across all voxels for each ROI. Functional connectivity was 
then assessed by computing the differences between beta values and 
generating correlation metrics (Figure 4).

The resting-state fMRI analysis pipeline began with the extraction 
of regions of interest (ROIs) from functional masks generated during 
MSIT task-based fMRI analyses. That is, the relevant features mapped 
onto masks were super positioned onto the resting state scans. These 
ROIs represented key brain regions implicated in cognitive processes 
in SCZ. Within each ROI, voxel-level signals were averaged to 
compute mean time-series data, capturing the overall neural activity 
within each region.

The extracted features were filtered to retain only those present 
in both MSIT task-based and resting-state datasets, ensuring a 
consistent basis for functional connectivity comparisons. Pairwise 
Pearson correlation coefficients were calculated between ROI time 
series, generating correlation matrices that quantified the strength 
of connectivity between regions. These matrices were standardized 
using z-scores to normalize connectivity measures and account for 
inter-subject variability. Dimensionality reduction was performed 
using principal component analysis (PCA), retaining over 95% of the 
variance while optimizing computational efficiency. The resulting 
features were concatenated to form a robust dataset for downstream 
ML applications, ensuring that all functional connectivity measures 
were consistently integrated for predictive modeling (Figure 5).

The resting-state fMRI matrix for 1,684 patients diagnosed with 
SCZ and 1,684 healthy controls was divided into training and testing 

datasets. For both groups, 1,347 matrices (80%) were designated for 
training, while 337 matrices (20%) were set aside for testing. This split 
ensured that the models were trained on a substantial portion of the 
data while being evaluated on an independent and unseen dataset to 
prevent overfitting and assess generalizability. The training dataset 
was used to develop five ML models: Random Forest, Support Vector 
Machines (SVM), Naïve Bayes, k-Nearest Neighbors (kNN), and 
Decision Tree. These models were chosen for their varying strengths 
to provide the highest chance of a successful model. Each model 
was fine-tuned using hyperparameter optimization on the training 
data to maximize predictive accuracy. The testing dataset was used 
exclusively for the final model evaluation.

Performance metrics, including accuracy, precision, recall, F1-
score, and ROC-AUC, were computed to compare model efficacy. 
Further, all models underwent 5-fold cross-validation to tune 
hyperparameters and ensure overfitting was not inflating accuracy.

Results
Preprocessing Validation

Preprocessing steps were validated through quality control 
analyses, including intensity histograms (Figure 6) and time-series 
visualizations (Figure 7). These checks confirmed the removal of noise 
artifacts and the preservation of signal integrity, providing reliable 
inputs for downstream analysis. The time-series plots demonstrated 
stable signals across the ROIs, with minimal motion artifacts, ensuring 
high-quality data for functional connectivity calculations.

ROI Correlation and Dimensionality Reduction

Figure 8 represents the significant regions of interest (ROIs) 
derived from the MSIT task-based fMRI data, explicitly identifying 
key brain areas, such as the anterior cingulate cortex and the 
dorsolateral prefrontal cortex, associated with cognitive processing 
in SCZ. These ROIs were mapped onto the resting-state fMRI data 
to investigate functional connectivity patterns (Figure 8). The 
coordinates shown were obtained through statistical parametric 
mapping, with thresholding applied at p<0.001 (FWE-corrected). 
These clusters overlapped substantially with the connectivity findings 
from resting-state analyses.

Table 1 highlights the top five most significant regions of 
interest (ROIs) identified through functional connectivity analyses 

Figure 4: Workflow for resting-state fMRI data analysis involving 
1,684 patients and 1,684 controls. The process includes ROI extraction, 
filtering features common to MSIT and resting-state data, extracting time-
series data, generating ROIs from functional masks, extracting relevant 
features, normalizing functional connectivity matrices using z-scores, and 
concatenating the results for further analysis. Graphic by student researcher.

Figure 5: Machine learning workflow using resting-state fMRI data from 
1,684 patients with schizophrenia (SCZ) and 1,684 healthy controls. 
Data is split into training (1,347 matrices) and testing (337 matrices) sets 
for both groups. Multiple ML models, including Random Forest, SVM, Naive 
Bayes, KNN, and Decision Tree, are trained for classification and analysis. 
Graphic by student researcher.
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in schizophrenia patients. Each set of X-, Y-, and Z-coordinates 
represents a specific spatial location within the Montreal Neurological 
Institute (MNI) standard brain space. These regions correspond to 

areas such as the anterior cingulate cortex and dorsolateral prefrontal 
cortex, which are critical for cognitive and executive functions. The 
ROIs were derived from both task-based and resting-state fMRI 
datasets, ensuring consistency and capturing functional disruptions 
associated with schizophrenia's prodromal and psychotic stages.

Functional Connectivity Analysis

The resting-state functional connectivity analysis demonstrated 
notable differences between patients with SCZ (SCZ) and healthy 
controls. 

The difference matrix (Figure 1) highlighted regions of disrupted 
connectivity in SCZ patients, particularly in networks associated 
with cognitive control and executive functioning. These disruptions 
were evident in the comparison of connectivity patterns for healthy 
controls (Figure 2), which exhibited higher integration and consistent 
inter-network correlations (Figure 9).

Table 1: Significant regions of interest (ROIs) identified from functional 
connectivity analyses in schizophrenia patients. The X-, Y-, and Z-coordinates 
represent spatial locations in the Montreal Neurological Institute (MNI) standard 
brain space. These coordinates correspond to brain regions implicated in 
cognitive and executive function disruptions, including the anterior cingulate 
cortex and dorsolateral prefrontal cortex. The listed ROIs were derived from both 
task-based and resting-state fMRI datasets to ensure consistency and relevance 
for schizophrenia-related biomarkers. Table by student researcher.
X-Coordinate Y-Coordinate Z-Coordinate
33.8597609247093 59.9620920506786 42.4955526978798
41.0378039171211 33.3182052901436 39.7932140095036
54.1653227081646 44.7644183166397 58.2622015950437
34.6353414987793 59.5532967852488 31.2781975105254
45.1278636733702 32.8260975757721 46.5219422860492

Figure 6: Time-series visualization of neural activity extracted from 
resting-state fMRI data. The plot overlays signal intensity fluctuations over 
time for two distinct regions of interest (ROIs). Temporal patterns reflect 
regional activation dynamics and are integral to functional connectivity 
computations.
Stable oscillatory patterns within the plot demonstrate the preprocessing 
efficacy, ensuring the integrity of the extracted signals. Graphic by student 
researcher.

Figure 7: Composite brain images displaying significant regions of 
interest (ROIs) are identified as critical for cognitive impairment in 
schizophrenia. Regions such as the anterior cingulate cortex and dorsolateral 
prefrontal cortex exhibit notable disruptions in functional connectivity. These 
ROIs were derived from task-based and resting-state fMRI analyses and are 
implicated in executive function and symptom severity. Graphic by student 
researcher.

Figure 8: Functional connectivity matrix for schizophrenia patients 
during resting-state fMRI. The x- and y-axes correspond to the same ROIs 
analyzed in healthy controls. Lower correlation values (depicted in blue-
green) reflect reduced connectivity and impaired neural communication. This 
disruption is characteristic of schizophrenia
and underpins deficits in cognitive and executive functions. Graphic by 
student researcher.

Figure 9: Functional connectivity matrix illustrating inter-regional 
correlations for healthy control subjects. The x- and y-axes represent 
distinct regions of interest (ROIs) in the brain. High correlation coefficients, 
denoted by yellow, signify robust connectivity, indicating normal neural 
integration across functional networks. This matrix serves as a baseline for 
comparison with disrupted connectivity observed in schizophrenia patients.
Graphic by student researcher.



J Schizophr Res 12(1): id1049 (2025)  - Page - 06

Lyakhov ML Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

Open Sourcing Library

A Python-based library was developed to support the 
preprocessing, feature engineering, and ML workflows required for 
this study. The library was designed to integrate with SPM outputs, 
enabling the efficient import and processing of task-based and 
resting-state fMRI data. It includes modules for region of interest 
(ROI) extraction, functional connectivity matrix computation, 
and dimensionality reduction using principal component analysis 
(PCA). The library automates the calculation of pairwise Pearson 
correlation coefficients between ROIs, z-score normalization, and 
PCA to ensure standardized and computationally efficient processing 
of high-dimensional data. The ML module within the library includes 
implementations for multiple classifiers, such as Random Forest, 
Support Vector Machines (SVM), Naïve Bayes, k-Nearest Neighbors 
(kNN), and Decision Tree. It supports hyperparameter optimization 
through grid search and cross-validation. Intermediate outputs, 
including connectivity matrices and feature selection logs, are saved 
for transparency and reproducibility. The modular design of the library 
allows it to be applied to various datasets, enabling flexible adaptation 
for future neuroimaging studies while maintaining methodological 
rigor. Further, the library was published as an open-source Python 
package to ensure accessibility and reproducibility, with detailed 
documentation and example workflows provided (Appendix C). To 
install the library in Windows command prompt:

Discussion
Functional Connectivity Analysis

Resting-state functional connectivity analysis revealed distinct 
disruptions in brain networks critical for cognitive control and 
executive functioning in individuals with SCZ (SCZ). These 
disruptions were characterized by lower inter-network correlations 
compared to healthy controls, as illustrated by the difference 
matrix (Figure 1). Task-based analyses further identified significant 
regions of interest (ROIs), such as the anterior cingulate cortex and 
dorsolateral prefrontal cortex, which play essential roles in cognitive 
processes. These findings align with previous literature on cognitive 
impairments in SCZ and underscore the pervasive impact of the 
disorder on functional brain organization.

The regions identified provide a clear framework for understanding 
how SCZ alters neural communication pathways. By combining 
insights from task-based and resting-state connectivity patterns, the 
analysis highlights both localized and network-wide deficits, offering 
a nuanced perspective on cognitive biomarkers. The overlaps between 
regions implicated in executive function and those linked to symptom 
severity further validate the clinical relevance of the findings. These 
results suggest that cognitive decline in SCZ is not isolated to specific 
tasks but reflects broader disruptions in neural integration and 
coordination and that focusing on functional networks rather than 
isolated regions could yield more comprehensive diagnostic tools and 
therapeutic strategies. This pattern recognition requires ML, which 
validates the results from the six models built. Most importantly, the 
mean significant coordinates, although these will vary per dataset, 
atlas, and participant, corroborated with past literature.

Limitations

The study's limitations primarily stem from the data utilized and 
its potential generalizability.

Using cognitive impairment data from the MSIT task in 
psychotic patients presents a challenge, as these findings may not 
directly translate to individuals in the prodromal stages of SCZ. 
This discrepancy arises because cognitive changes in the prodromal 
phase are often subtler and less pronounced than those observed 
during psychosis, potentially making the model less sensitive to 
early-stage indicators. This limits the algorithm's ability to reliably 
detect early-stage cognitive biomarkers in a broader population. 
Additionally, potential biases in data collection, such as variability in 
imaging protocols, scanner types, or participant demographics, may 
affect the generalizability and accuracy of the findings. For instance, 
differences in the resolution or signal-to-noise ratio of imaging data 
across scanners could lead to inconsistencies in the identification of 
functional connectivity patterns [18]. Furthermore, the datasets used 
in this study may not adequately capture the full diversity of clinical 
presentations, which could constrain the algorithm's performance 
when applied to heterogeneous populations

Future Research
Building upon the successes of this study, future research should 

aim to expand the current ML algorithm to identify biomarkers 
for a broader range of psychiatric disorders. Many psychiatric 
conditions, such as major depressive disorder (MDD), bipolar 
disorder, and anxiety disorders, often co-occur with SCZ (SCZ), and 
their overlapping symptoms may result from disruptions in similar 
brain regions and networks. By integrating multi-modal datasets 
that include functional connectivity, task-based neural activity, and 
cognitive assessments across different disorders, a new ML algorithm 
could be developed to differentiate and predict multiple psychiatric 
conditions simultaneously. This expansion would enhance the clinical 
applicability of the algorithm, providing a comprehensive diagnostic 
framework to account for the complexities of comorbid conditions. 
Additionally, to ensure accessibility and usability, an interactive 
cognitive training application is under development to house the 
algorithm.

This application employs a Model-View-Controller (MVC) 
architecture to ensure modularity, scalability, and patient 
confidentiality. Using Amazon Web Services (AWS) for secure 
data management and a user-friendly interface (e.g., Wix or a 
comparable platform), the application could integrate the algorithm 
into a functional tool for clinicians and researchers. The interactive 
tasks, including the Multi-Source Interference Task (MSIT) and the 
MATRICS Consensus Cognitive Battery (MCCB), would dynamically 
adapt difficulty based on user performance to provide a detailed 
cognitive profile. Future iterations of the application will expand 
task sets to include assessments targeting emotional regulation and 
memory, which are relevant for disorders beyond SCZ.

Relation to Prior Literature
This study aligns with and expands upon prior literature examining 

the neural and cognitive biomarkers of SCZ. Consistent with previous 
research (e.g., Goldsmith et al.; Correll & Schooler [2,14]), the 
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findings highlight significant disruptions in functional connectivity 
in brain regions critical for executive function, such as the anterior 
cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC). 
These results support established models that link SCZ to widespread 
network dysfunction rather than isolated regional abnormalities. This 
paper expands on traditional approaches by integrating task-based 
and resting-state fMRI with ML models. Most studies focus on either 
task-based or resting-state data, so this research bridges both domains 
to identify biomarkers for early SCZ diagnosis. Lastly, the study’s 
open-source Python library provides a novel, scalable framework for 
reproducible neuroimaging analyses, addressing a common limitation 
in prior research.
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