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Abstract
Objective: The Thyroid Imaging Reporting and Data Systems (TI-RADS) 

is a standard terminology that classifies thyroid nodules according to their 
potential risk of cancer to reduce unnecessary biopsies, minimize variations in 
interpreting thyroid nodule images, and improve diagnostic accuracy. This study 
aims to comprehensively review articles that utilize AI techniques to develop 
decision support systems for analyzing ultrasound images of thyroid nodules, 
following different TIRADS guidelines.

Materials and Methods: We followed a five-step process, this included 
identifying the key research questions, outlining the literature search strategies, 
establishing criteria for including and excluding studies, assessing the quality 
of the studies, and extracting the relevant data. We created a comprehensive 
search string to gather all relevant English-language studies up to January 
2024 from the PubMed, Scopus, and Web of Science databases, and we also 
followed the PRISMA diagram.

Results: In this review, forty-four papers were included, and the most 
important properties of these papers, including dataset characteristics, AI 
technical specifications, results and outcome metrics, metrics, limitations, and 
contributions, were extracted.

Conclusion: We evaluated the technical characteristics and various aspects 
used in the development of artificial intelligence CAD systems based on various 
TI-RADS. This review demonstrates that AI advancements, especially deep 
learning methods, have significantly enhanced CAD systems for evaluating 
thyroid nodules. However, comprehensive datasets, multimodal images, and 
standard evaluation metrics are needed to further enhance machine learning 
models. Our study aims to provide researchers and physicians with a summary 
of the current advancements in this field to guide future investigations.
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Introduction
The thyroid gland, a small yet crucial endocrine organ situated in 

the anterior aspect of the neck, plays a significant role in the regulation 
of metabolism and various bodily functions [1]. Thyroid nodules 
are frequently encountered in clinical practice, with the majority 
of cases being benign. However, accurately differentiating between 
benign and malignant nodules to guide appropriate management 
strategies is paramount. The evaluation of thyroid nodules often 
involves a combination of clinical assessment, imaging studies such 
as ultrasound, and fine needle aspiration biopsy for cytological 
examination [2].

Fine needle aspiration (FNA) is an invasive procedure used to 
evaluate thyroid nodules for the presence of cancerous cells. However, 
it is common practice for many nodules to undergo a biopsy to identify 
a small percentage of cases that may be malignant. It is important 
to consider the potential burden that FNA procedures can place on 

healthcare systems, as they can result in significant costs and create 
stress and anxiety for patients. Therefore, it is crucial for healthcare 
providers to carefully evaluate the necessity of such procedures 
and consider alternative approaches when possible [3,4]. Thyroid 
ultrasound imaging plays a crucial role in the identification of thyroid 
nodules because of its accessibility, noninvasive nature, and cost 
effectiveness. This procedure allows clinicians to visualize the thyroid 
gland and any abnormalities present within it [5]. Furthermore, it is 
a safe and convenient diagnostic tool that can be easily performed 
in outpatient settings, making it a valuable resource for monitoring 
thyroid health and guiding treatment decisions [5].

The Thyroid Imaging, Reporting, and Data System (TI-RADS) 
was established to provide a standardized framework for categorizing 
thyroid nodules according to their specific characteristics associated 
with risk. This system aims to mitigate issues surrounding the 
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variability and low reproducibility that often arise in the detection 
and interpretation of nodule features among different physicians 
[6]. By implementing TI-RADS, healthcare providers can ensure a 
more consistent and reliable approach to evaluating thyroid nodules, 
ultimately leading to more accurate diagnoses and treatment decisions 
for patients [7]. There are several variations of TIRADS, each with 
its own specific criteria and scoring system. These variations, such 
as the American College of Radiology (ACR) TIRADS [8], the 
Korean Society of Thyroid Radiology (KTIRADS) [9], ACE [10], 
ATA [11], Kwak-TIRADS [12], and the European Thyroid Imaging 
and Reporting System (EU-TIRADS) [13], aim to standardize 
the interpretation and management of thyroid nodules. AI-based 
approaches, such as machine learning and deep learning algorithms, 
have demonstrated significant potential in enhancing the accuracy 
and efficacy of thyroid nodule evaluation. These advancements not 
only help reduce variability among observers but also contribute to 
improving diagnostic outcomes by identifying patterns and trends 
that may not be easily identifiable by clinicians alone [14-18].

 With advancements in medical technology, computer-aided 
detection (CAD) systems have been developed to assist radiologists in 
analyzing ultrasound images of thyroid nodules. These CAD systems 
can help in the early detection of suspicious nodules, leading to 
timely intervention and improved patient outcomes. By combining 
the expertise of radiologists with the efficiency and accuracy of CAD 
systems, healthcare professionals, by minimizing the subjective 
nature of traditional diagnostic methods, can provide more precise 
and reliable diagnoses and treatment plans for patients with thyroid 
nodules [18-20].

The development of AI-driven TIRADS models, which combine 
computerized analysis of ultrasound images with established risk 
stratification systems, represents a progressive step in the field of 
thyroid imaging [14,21,22].

The classification of thyroid nodules via various TIRADS systems 
has been the subject of several studies, highlighting the importance of 
evaluating these systems in depth. The primary objective of this study 
is to explore the utilization of artificial intelligence CAD systems in 
the ultrasound image classification of thyroid nodules via various 
TIRADS systems. It is crucial to consider factors such as dataset 
characteristics, technical specifications of the network, evaluation 
metrics, results, advantages, obstacles, and limitations.

By analyzing the literature, this research aims to offer a 
comprehensive understanding of the role of AI techniques in the 
development of TIRADS-based decision support systems for this 
purpose to highlight the challenges and prospects that lie ahead in 
the integration of these groundbreaking technologies into clinical 
settings. However, to the best of our knowledge, no systematic review 
has explicitly focused on this field. The insights gained from this study 
could serve as a valuable resource for researchers and developers 
looking to create more effective systems with improved efficiency. 
Ultimately, the implementation of these systems could help reduce 
unnecessary thyroid nodule biopsies, address issues of over care, 
enhance the reproducibility and reliability of ultrasound diagnostics, 
and provide educational support for less experienced physicians.

To carry out these tasks, the following research questions are 

proposed to direct this systematic literature review:

- What is the best artificial intelligence technique for implementing 
a thyroid nodule classification system based on TI-RADS?

•	 What is the size of the appropriate dataset for the successful 
implementation of these systems?

•	 What are the most common neural network architectures 
used in these systems?

•	 What is the most common TI-RADS used in these systems?

•	 What are the most common evaluation metrics in these 
systems?

•	 What are the limitations and future directions in this field?

The remainder of this paper is structured as follows: Section 2 
outlines the methodology of the systematic review. Section 3 details 
the findings of various uses of AI systems based on TIRADS on 
ultrasound images of thyroid nodules. Finally, a discussion will be 
presented, and conclusions and future works will be drawn.

Materials and Methods
This systematic review involves five main steps: literature search, 

study selection, study quality assessment, data extraction, and 
analysis. Further details of each step are presented in the subsequent 
subsections. Importantly, the protocol for this systematic review 
was registered in the PROSPERO database in August 2024 [23]. 
(Registration number: CRD42024551311).

Literature Search

This study conducted a systematic review to retrieve all relevant 
English language articles up to January 2024 via the PubMed, Scopus, 
and Web of Sciences databases. The search terms included "Thyroid 
Imaging Reporting and Data System", "Artificial Intelligence", 
"ultrasonography" and their related terms (Table 1). In addition, 
the Medical Subject Headings (MeSH) vocabulary and synonym 
keywords were utilized.

Study Selection

This study adheres to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analysis (PRISMA) guidelines [24]. To select 
relevant articles, we defined the inclusion and exclusion criteria.

The inclusion criteria were as follows:

1- Articles that have implemented an AI system based on TIRADS.

2- Articles on ultrasound imaging of the thyroid.

The exclusion criteria were as follows:

1. Nonoriginal articles such as review articles, comments, and 
editorials.

2. Conference abstracts and unpublished articles.

3. Articles that do not use TIRADS.

4. Articles that do not include ultrasound images.

5. Articles that evaluate existing AI systems on the basis of 
TIRADS.
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Study Quality Assessment

The included studies were subjected to a quality assessment 
process to evaluate the credibility and strength of the articles. We used 
a modified quality assessment with 13 questions and three options 
('‘Yes’’= 1, '‘Partly’’= 0.5, and '‘No’’= 0), as suggested by Sharifi et al. 
[18] (Table 1S).

Two independent researchers with backgrounds in systematic 
review, machine learning, deep learning, and medical informatics 
evaluated the quality of the included studies and resolved any 
discrepancies in their findings by consulting a third researcher to 
reach a unanimous conclusion.

Data Extraction

Two reviewers independently evaluated and extracted data from 
the included articles, using a predesigned table in Microsoft Excel to 
ensure accuracy. A pilot test was subsequently conducted on twenty 
random studies to confirm the reliability of their data extraction. The 
calculated kappa statistic [25] indicated strong agreement in data 
interpretation (kappa statistic = 0.85). The following major aspects 
of the included studies were extracted: paper information, patient 
information, dataset characteristics, technical specifications, results, 
outcome metrics, limitations, and contributions.

Data Analysis

In this section, the major aspects of the articles that implemented 
a TIRADS-based AI system are analyzed.

Results
Literature Search and Study Selection

The identification of potentially related articles to TIRADS-based 
artificial intelligence systems on US images of thyroid nodules in this 
systematic review adheres to the PRISMA flow diagram and guidelines 
[24]. Figure 1 displays the PRISMA diagram for this study, which 
comprises four primary phases. The initial phase involved identifying 
relevant English language articles via the PubMed, Scopus, and Web 
of Sciences databases until January 2024, on the basis of the search 
strategy outlined in Section 2-1. Initially, 618 papers were found, and 
after removing duplicates, 521 papers remained. In the next stage, 
after screening the titles and abstracts, 443 unsuitable articles were 
removed, leaving 88 articles for further consideration. In the third 
phase, we evaluated the suitability of the articles by reading the full 
texts and applying the inclusion and exclusion criteria outlined in 
Section 2-2. As a result, 44 articles were eliminated from the study. 
In the fourth phase, 44 articles were chosen for additional qualitative 
analysis.

Literature Sources

The analysis involved reviewing 44 selected articles to investigate 
TIRADS-based artificial intelligence research on ultrasound images 
of thyroid nodules.

These articles were published from 2017--2024. They were 
categorized as follows: Q1 (66%), Q2 (27%), and Q3 (7%). Summary 
details regarding these articles can be found in Table 2S of the 
Supplementary data.

Study Quality Assessment

To evaluate the quality of the selected articles, two independent 
researchers responded to 13 quality answers [18] for articles that 
implemented a TIRADS-based AI system as previously stated. If there 
were any discrepancies in their evaluations, they sought advice from 
a third researcher. The final scores were subsequently calculated by 
adding the scores of these answers for each article that could receive a 
score ranging from zero to 13.

Furthermore, the articles are divided into three groups on the 
basis of their scores, namely, "low-score," "mid-score," and "high-
score", by splitting the score range into three equally sized intervals: 
[0 - 4.33), [4.33 - 8.66), and [8.66 - 13], respectively.

The details and results of the quality questionnaire are shown 
in Table 3S in the supplementary data. According to the computed 
scores, the articles are distributed as follows: 2% low-score, 17% mid-
score, and 81% high-score categories.

Figure 1: PRISMA flow diagram of this study.

Figure 2: Dataset type and number of TIRADS-based AI systems for 
thyroid US images.
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Data Analysis

In this review, forty-four papers used TIRADS in the 
implementation of an AI system for analyzing ultrasound images of 
thyroid nodules.

Figure 1S in the supplementary data illustrates the number 
of articles by year until January 2024, and the most important 
properties of these papers, including dataset characteristics, AI 
technical specifications, results and outcome metrics, limitations, and 
contributions, are presented in Table 2, Table 3, and Table 4.

Discussion
The primary objective of this study was to conduct a systematic 

review of articles related to TIRADS-based CAD systems for analyzing 
thyroid ultrasound images.

Among the initial 618 publications, 44 articles published up to 
January 2024 were selected for this study. As depicted in Figure 1S, 
articles in this field have been published from 2017 to 2024, with the 
highest number of publications in 2023 (n=14, 30.4%). All the articles 
that have utilized TIRADS guidelines to implement AI systems for 
analyzing thyroid ultrasound images have focused on classification 
tasks. The expected growth in this field is due to CAD systems being 
designed to detect suspicious nodules and differentiate between 
benign and malignant nodules in thyroid ultrasound images.

Comparison of Outcome Metrics

The use of various evaluation metrics in these studies makes 
it difficult to assess and compare the performance of the CAD 
systems being presented. In these studies, as depicted in Figure 2S in 
supplementary data, the most popular metrics are accuracy (n=35, 
21%), sensitivity (n=34, 20%), specificity (n=34, 20%), area under the 
curve (AUC) (n=23, 13%), PPV (n=18, 10%), NPV (n=18, 4011%), 
and F score (n=8, 5%).

Dataset Comparison

The performance of research articles has been validated via 
various datasets of different sizes and types, including local and public 
datasets.

Table 4S and Figure 2 present statistical information about the 
size and type of datasets included in the studies. The used dataset 

consisted of a minimum of 134 images from a local source and a 
maximum of 31888 images, which included both a local dataset and 
a public dataset. In Figure 2, it is clear that only a small fraction (n:3, 
4.4%) of the studies use public datasets, making it difficult to compare 
their methods.

The public ultrasound thyroid datasets used in these papers are 
the Thyroid Digital Image Database (TDID), provided by Pedraza et 
al. [74], and an open-source dataset from the scientific community 
[75]. Among the studies that used local datasets, (n=31, 68.9%) 
utilized one dataset (one center), and (n=9, 20%) utilized two to four 
datasets (multiple centers).

Image Preprocessing and Augmentation

Image preprocessing is a crucial step in medical image analysis. 
It sets the foundation for accurate image interpretation and insight 
extraction. This phase often includes detailed operations such as 
cropping and resizing the region of interest (ROI), which are essential 
for focusing the analysis on the most relevant aspects of the image 
[29,32,36-38,44].

Fundamental to image preprocessing are processes such 
as binarization, which effectively separates objects from their 
backgrounds, and normalization, which is crucial for ensuring that 
intensity values remain consistent across a dataset, facilitating more 
reliable comparisons and evaluations [30,31,53].

 In addition to these core techniques, various image filtering 
methodologies, such as median filters [34] and bilateral filtering 
[65], are used to reduce noise and enhance important features in 
images, thus improving the clarity and usefulness of visual data. 
Specialized preprocessing techniques, such as removing patient 
identification details and any misleading markers (artifacts) from 
nodules [45,64,66,68], improve image clarity, enabling more accurate 
analysis and diagnosis. This is often complemented by additional 
image enhancement techniques and advanced denoising strategies. 
All of these techniques aim to improve the overall quality of the 
images. Such comprehensive preprocessing efforts are critical, as 
they significantly increase the reliability and accuracy of image-based 
assessments across a multitude of applications. This informs decision-
making processes and enhances the efficacy of subsequent analyses 
[68].

In addition to the initial processing steps, detection of the 
region of interest (ROI) is conducted to identify and isolate the 
relevant areas within the images. The images are subsequently 
resized to standardized dimensions to ensure uniformity. A manual 
cropping process is employed to format the images into a square 
shape, facilitating consistency across the dataset and enhancing the 
effectiveness of subsequent analysis [44,45]. The detection of regions 
of interest (ROIs) enhances the accuracy of diagnostic assessments 
by prioritizing specific areas within an image that warrant further 
examination. Many studies have employed manual methodologies 
[27,30,33,36,37,44,45,52-54,58,59,61]. These manual techniques, 
while traditional, often require considerable time and are subject 
to human error. This has prompted a shift toward more automated 
approaches. In contrast, a few research endeavors have embraced 
automated methods for detecting regions of interest (ROIs) [31,48,66]. 
With the continuous advancement of technology, there is a growing 

Figure 3: Preprocessing methods used in the included articles.
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opportunity to improve manual techniques by integrating automated 
solutions. This approach has the potential to increase the efficiency 
and consistency of nodule detection.

Among modern techniques, deep learning models, such as 
RetinaNet [32] and Faster R-CNN [42], which utilize cutting-edge 
frameworks, have gained significant attention because of their ability 
to enhance detection capabilities. In terms of segmentation, various 
methodologies have emerged, including StableSeg [28], U-Net++ 
[47], U-Net [49], and deep learning-based segmentation approaches 
such as SkaNet [67] and EfficientNet B6 [68].

Moreover, various tools and applications for detecting regions 
of interest (ROIs) and facilitating their extraction and analysis are 
discussed in the literature. One notable tool is ePADlite, which is a 
semiautomated segmentation tool integrated within the Electronic 
Physician Annotation Device [35]. Manual ROI tools such as ITK-
SNAP [38,50], MATLAB [51], and ImageJ software (version 1.48, 
National Institutes of Health, USA) serve as alternative options for 
researchers. Additionally, LabelMe software [65] is recognized for its 
ability to facilitate precise annotation and segmentation tasks within 
this dynamic field of study.

Medical image augmentation plays a vital role in overcoming 
the challenges associated with limited medical image datasets. 
Artificially expanding the volume and diversity of training data 
through augmentation techniques such as rotation, flipping, 
zooming, mirroring, shifting, scaling and adjusting brightness or 
contrast [27,30,32,33,54,60] or adding Gaussian noise [30,33,45] can 
significantly enhance the performance and robustness of machine 
learning models.

Transfer learning has become a highly effective strategy for 
addressing the challenges of insufficient medical imaging data and 
improving generalizability across various applications. Several studies 
have shown that using pretrained models significantly enhances 
the performance of machine learning frameworks, providing a 
strong starting point for tasks where data scarcity is a concern. 
Many researchers in deep learning have specifically utilized various 
architectures pretrained on ImageNet datasets, demonstrating the 
adaptability of these models to medical imaging tasks [27-33,35-
37,44,54,55,60,65,66,68]. This not only increases the prediction 
accuracy but also speeds up the training process, ultimately leading to 
better clinical outcomes.

Compared with traditional machine learning methods, 
contemporary deep learning methods tend to use image augmentation, 
nodule detection, and segmentation techniques. The ratio of these 
approaches used is illustrated in Figure 3.

Detailed Technical Comparison

Among the reviewed articles, two distinct approaches were 
identified: traditional machine learning and deep learning 
methodologies. Recent studies have shown that a variety of traditional 
machine learning techniques have been used to analyze medical 
images. Several articles have used XGBoost to improve the accuracy 
of predicting and classifying ACR-TIRADS features. XGBoost is 
an advanced machine learning algorithm that uses a decision tree-
based framework to efficiently process and analyze complex datasets, 

thereby significantly improving diagnostic performance in thyroid 
imaging assessments [39,50,52,62,75]. In several articles, researchers 
have explored and compared multiple machine learning approaches 
to identify the most effective method for specific applications. Some 
frequently used techniques include support vector machines (SVMs), 
artificial neural networks (ANNs), logistic regression (LR), K-nearest 
neighbors (KNNs), and random forests (RFs) [30,34,39,45,46,52,5
9,61,62,69]. Through systematic evaluation, the goal is to select the 
optimal algorithm that provides the best performance on the basis of 
the data characteristics and desired outcomes.

Deep learning methods stand out from traditional machine 
learning approaches, primarily because they rely on transfer learning, 
especially in the medical imaging field, where labeled data are often 
limited. As shown in the previous section, out of 19 studies that used 
transfer learning, the majority (17 out of 19) employed architectures 
that were pretrained on ImageNet.

This trend demonstrates the effectiveness of ImageNet as a 
fundamental dataset, providing strong feature extraction capabilities 
that improve performance across various tasks.

The detection and segmentation of nodules have become 
important parts of deep learning frameworks. In their work, 
researchers used StableSeg [27] because of its strong performance 
in segmentation tasks, whereas Unet [49] and Unet++ [47] were 
chosen for their excellent capabilities in segmenting biomedical 
images. With respect to architecture, researchers have relied mainly 
on previously developed methods to improve their models, including 
ResNet50 [28,29,37,44,47,55,66], DenseNet121 [29,30,32,44,56,68], 
InceptionV3 [30], MobileNetV2 [33,35], VGG16 [36], EfficientNetB7 
[45], EfficientNetB3 [65], InceptionResNetV2 [60], and GoogleNet 
[44].

In the machine learning literature, significant results were 
reported by Vadhiraj et al. in [34]. They used a median filter and 
image binarization techniques for effective image preprocessing and 
segmentation. Additionally, they utilized the gray-level co-occurrence 
matrix (GLCM) to extract seven relevant features from ultrasound 
images.

The support vector machine (SVM) achieved impressive 96% 
accuracy in classification, as reported by Gomes et al. [58]. In their 
study, 27 morphological and geometric features were meticulously 
extracted from images obtained from a publicly available U.S. thyroid 
nodule image database. These features were then analyzed via an RF 
classifier (RFC), which achieved a remarkable classification accuracy 
of 99.33%.

Yu et al. proposed an innovative fused deep learning model 
for analyzing thyroid nodules. The model begins by extracting 33 
clinically significant statistical features. After conducting principal 
component analysis (PCA) for dimensionality reduction, the top four 
features are integrated with the feature map generated by EfficientNet 
B3 [65]. This approach achieved an impressive accuracy rate of 96.4%, 
demonstrating its effectiveness in the given application.

Among the articles included, Figure 3S in supplementary data, 
shows that the most commonly implemented TI-RADS guideline as 
an artificial intelligence system is the ACR-TIRADS (n=29, 61.7%). 
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This finding highlights the high effectiveness of this ultrasound risk 
stratification system.

Challenges and Future Perspectives

In machine learning (ML) and deep learning (DL), many studies 
face significant challenges due to inadequate and unbalanced datasets. 
These issues are largely attributed to local data scarcity and improper 
labeling of features by domain experts.

This issue is particularly pronounced in thyroid research, where 
the availability of comprehensive datasets accompanied by reliable 
ground truths and annotations is essential for enhancing model 
accuracy and robustness. A notable gap exists in the representation 
of benign and malignant cases across all risk levels of the TIRADS 
classification [76], which is crucial for improving the generalizability 
of AI models.

Additionally, collecting and accurately labeling thyroid nodules 
is a time-consuming and costly process. It requires extensive 
resources and specialized expertise to ensure the reliability and 
representativeness of the training data. Poorly labeled or insufficient 
data can lead to suboptimal AI outcomes, undermining the potential 
advantages of using AI in the diagnosis and management of thyroid 
conditions.

 Furthermore, variability in image acquisition techniques such 
as multimodal images can significantly influence training results, 
whereas clinical decision-making often necessitates a comprehensive 
evaluation, including video assessments, rather than relying solely on 
isolated images.

Finally, we highlight important areas of future work for this line 
of research as follows. As medical imaging advances, it is crucial to 
create a comprehensive dataset from multiple centers. This dataset 
should contain a diverse and balanced distribution of images 
representing various levels of malignancy risk, along with an adequate 
representation of benign samples. This is essential for the progress 
of thyroid nodule classification. This dataset not only improves 
classification accuracy but also includes scoring systems based on 
international guidelines, such as the American College of Radiology 
Thyroid Imaging, Reporting and Data System (ACR-TIRADS) and 
its associated variants. This structured approach will be crucial in 
developing advanced artificial intelligence (AI) models for medical 
applications.

Cutting-edge image generation techniques such as generative 
adversarial networks (GANs) can improve the quality of images used 
to train AI systems in the medical imaging field. investigating the 
effects of different techniques to address the performance challenges 
associated with small datasets is necessary.

Moreover, the use of pretrained deep learning architectures 
designed for medical image processing is essential for improving the 
ability of AI systems to work with different types of medical images.

This initiative will focus not only on static images but also on 
evaluations of both images and videos, which will greatly enhance 
the decision-making capabilities of AI applications for analyzing 
thyroid nodules. This comprehensive approach has the potential to 
revolutionize the diagnostic process, providing more accurate and 

dependable tools for clinicians and ultimately leading to better patient 
outcomes.

Furthermore, the absence of uniform metrics for evaluating the 
effectiveness of the suggested networks complicates result comparison. 
Thus, it is essential to utilize standardized metrics for measuring and 
contrasting the performance of various methods.

Conclusion
This article provides a comprehensive review of AI systems that 

utilize the Thyroid Imaging Reporting and Data System (TIRADS) 
for analyzing ultrasound images of thyroid nodules. This systematic 
review is valuable for further research and encompasses articles 
from reputable academic journals. The focus is on the design and 
development of TIRADS guidelines via machine learning (ML) 
methodologies, with the quality of the papers assessed on the 
basis of specific criteria. Notably, deep learning (DL) techniques, 
including transfer learning, have been widely adopted, using various 
segmentation and classification methods at different levels of 
complexity.

This review revealed that AI advancements have greatly improved 
computer-aided diagnosis (CAD) systems for evaluating thyroid 
nodules. However, the lack of comprehensive datasets, multimodal 
images of thyroid nodules, and standard metrics for comparison 
continues to hinder the progress of ML models. The results of our 
study are expected to aid researchers and physicians who are keen on 
AI-based CAD tools. This will be achieved by providing a summary 
of the evidence to determine the current level of advancement and 
guiding researchers in selecting appropriate methods for their future 
investigations to improve their reliability and accuracy in diagnosing 
thyroid-related conditions.

Data Availability
All data generated or analyzed during this study are included in 

this published article and its supplementary information files.
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