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Abstract

Identification of women infected with human papilloma virus 16 (HPV 16) 
or with higher grades of cervical intraepithelial neoplasia (CIN 2+) using cost-
effective and non-invasive tests will help to eliminate the worldwide burden 
of cervical cancer. The aim of the study was to explore the usefulness of 
matrix-assisted laser desorption/ionization (MALDI) time-of- flight (TOF) mass 
spectrometry (MS) to identify women infected with HPV 16 or diagnosed 
with CIN 2+ using urine samples. An additional aim was to compare several 
statistical and data mining techniques used to build predictive algorithms. The 
study used urine samples collected from 235 women diagnosed with abnormal 
cervical cytology. 87 and 148 women were diagnosed with CIN 2+ (cases) and 
≤CIN 1 (non-cases), respectively. 126 and 109 women were tested positive or 
negative for HPV16, respectively. The cross-validated accuracy for detecting 
CIN 2+ varied from 62-73% based on the predictive technique used suggesting 
the usefulness of comparing different predictive modeling techniques. The 
positive predictive value (PPV) for detecting CIN 2+ was higher than previous 
studies and varied from 70% to 79%, with highest PPV noted among HPV 
16 negative and African American (AA) women. Similar to CIN 2+ predictive 
models, the cross validated predictive accuracy for HPV 16 infections varied 
based on the predictive technique used, from 53% to 75%. The best PPV 
(75%) for HPV 16 infections was observed for AA women and the worst PPV 
for Caucasian American (CA) women (62%), suggesting racial differences in 
the usefulness of MALDI-TOF-MS based tests. The PPVs for detecting CIN 2+ 
or HPV16 infections were ~ 75%, a reasonably good result given the fact that 
non-invasively collected samples used may allow repeat testing, especially if 
cost-effective ELISA tests based on the discriminatory features identified in our 
study can be developed in the future.
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More than 90% of cervical cancers are associated with HR-HPV 
DNA [4]. Studies that used improved HPV testing procedures have 
established HPV as a causative agent for CIN as well [5]. In the New 
York Cervical Disease Study, Wright et al. [6] detected HR-HPV DNA 
in 75% and 100% of women with low grade squamous intraepithelial 
lesions (LSILs) and high grade squamous intraepithelial lesions 
(HSILs) respectively. Eighty-five percent of women diagnosed with 
low grade cervical lesions in the cohorts established at the University 
of Alabama at Birmingham (UAB) are positive for HR-HPV based on 
Roche diagnostics linear array HPV genotyping test [7]. Results from 
this cohort also showed that among women diagnosed with LSIL and 
HSIL where a large majority are positive for HR-HPV, only 23% and 
50% respectively have biopsy-confirmed higher grades of CIN (CIN 
2+). These observations demonstrate that the presence of any HR-
HPV genetic material is not by itself indicative of cervical disease. 
Therefore, novel markers with higher specificity for the presence of 
CIN 2+ among HR-HPV positive are needed and this will improve 
cervical cancer screening and reduce the cost associated with patient 
care.

Introduction
Certain types of carcinogenic or high risk Human papilloma 

viruses (HR-HPVs), which are sexually transmitted, represent 
the most important risk factors for the development of invasive 
cervical cancer (ICC) as well as cervical intraepithelial neoplasia 
(CIN), precursor lesions for ICC [1-3]. This is unique in cancer 
etiology because no other human cancer has yet been shown to have 
a necessary cause that is so clearly identified. Information on HPV 
prevalence worldwide, however, is inconsistent since there is no 
standardized method for detecting HPV. Currently in the US, several 
HPV test systems exist. The US Food and Drug Administration 
(FDA)-approved Hybrid Capture 2 assay (HC-2) targets 13 HR-HPV 
genotypes (HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68) 
but does not distinguish individual HPV types. On April, 2014, the 
cobas HPV Test was approved by the US FDA for use as a first-line 
primary screening tool in women aged 25 years or older to assess risk 
of ICC. The test simultaneously provides pooled results for HR-HPV 
genotypes (HPV-31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68) and 
individual results for HPV 16 and HPV 18.
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Infection with HPV 16 is the biggest causative agent of cervical 
cancer and it is the most prevalent HR-HPV in the USA. Campion 
et al. [8] reported that 58% of HPV 16-positive women who had mild 
cervical atypia progressed to CIN 3 within 2 years. The Centers for 
Disease Control (CDC) estimates that 20 million people in the US are 
infected with HPV 16 and that every year there are about 5.5 million 
new infections. Results from our studies [7] demonstrate that the 
prevalence of HPV 16 in our population can vary from 21% to 55% 
depending on the grade of cervical lesions.

Because there is no cure for infection with HPVs, prevention 
and control of these infections could be used for primary cancer 
prevention, possibly saving thousands of lives. Because HPV 16 is 
the most prevalent HPV genotype associated with CIN and ICC, 
its detection and control would clearly offer a cost effective long-
term strategy to reduce the cervical cancer burden. HPV vaccine 
development holds great promise for reducing the incidence of ICC, 
and the addition of a vaccine against HPV 16 is projected to be a cost-
effective use of health care resources [9]. However, a type-specific HPV 
vaccine may reduce but not eliminate the risk of ICC [10]. Therefore, 
cervical cancer screening recommendations are unlikely to change 
for females who receive the HPV vaccine. Because of inadequate data 
on its long-term effectiveness, the impact of type-specific vaccines for 
other HR-HPVs, and duration of immunity, it is unlikely that routine 
screening programs or other preventive measures will be replaced by 
HPV vaccines in the near future. Therefore, at this point, a vaccine 
approach may not reduce the health care cost associated with 
prevention efforts for cervical cancer. Because of this, development of 
cost effective tests that can be used to identify women at risk is more 
important than ever. Tests that may identify women infected with 
HPV 16 are of high importance because of its higher carcinogenicity. 
As discussed below, such tests are also important for providing HPV 
vaccines to the most appropriate individuals.

Ideally, HPV prophylactic vaccine should be administered 
before the onset of sexual activity and females who have not been 
infected with any vaccine HPV type would receive the full benefit of 
vaccination. Females who are already sexually active but not infected 
with vaccine HPV type would still get protection from the vaccine 
but currently, there is no cost-effective test available for clinical use 
to determine whether a female has had any or all of the four HPV 
types in the currently available vaccine (HPV 6, 11, 16, and 18). 
Therefore, development of cost-effective tests which are able to detect 
HPV infections, especially, HPV 16 will not only be useful for routine 
screening but also for identifying women who will benefit from HPV 
vaccines even after the onset of sexual activity.

Protein biomarkers have a great potential in elucidating the 
biology of disease progression. Biomarker discovery efforts have 
shown that proteins such as the cyclin-dependent kinase inhibitor 
p16 are differentially expressed in normal versus cervical cancer cells. 
The potential candidates described so far require in situ hybridization 
or immune histochemistry of tissue samples. Ideally, we would like 
to find biomarkers that are easily detected in non-invasively collected 
samples, such as urine, using an assay that could be adapted for high 
throughput clinical applications. The merits of MALDI MS profiling 
and capillary electrophoresis coupled with electrospray ionization 
(ESI) MS has been recently reviewed by Albalat et al. [12]. While 
each platform offers distinct advantages, MALDI MS, is a particularly 

rapid and simple technique for analyzing complex biospecimens such 
as urine, serum and plasma [13].

The aim of this work was to explore the usefulness of urine mass 
spectrometry to identify women infected with HPV 16 or diagnosed 
with CIN 2+. Since there is no standard way of analyzing MALDI 
MS profiling data, an additional aim of the study was to use several 
statistical and data mining techniques to compare the accuracy of 
results generated by different predictive modeling techniques.

Materials and Methods
Patient population

The study was based on the analysis of urine samples collected 
from 235 women referred for colposcopy because of abnormal 
cervical cytology. All women were diagnosed with abnormal pap 
and were enrolled in a prospective follow-up study funded by the 
National Cancer Institute (R01 CA105448, Prognostic Significance of 
DNA & Histone Methylation). The parent study has been described 
in a previous publication [7]. The study protocol and procedures 
were approved by the UAB Institutional Review Board. Among the 
235 women, 87 were diagnosed with CIN 2+ (cases) and 148 were 
diagnosed with ≤CIN 1 (non-cases). The average age among the 
women was 24.5years (SD=5.1, Range=19-48); 58% (n=136) were 
African American (AA) and 42% (n=99) identified themselves as 
Caucasian American (CA). Additional participant characteristics 
by case status are shown in Table 1. Parity was significantly higher 
among cases compared to controls as previously reported for this 
study population [7]. Urine peptide/protein profiles from this sample 
were used to predict CIN 2+ status. Because 126 women out of the 
235 tested positive for HPV16, the urine peptide/protein profiles were 
also used to predict HPV16 infection status.

Testing for HPVs
DNA was extracted from cervical cells using the QIA amp 

Mini Elute Media Kit (Qiagen, Inc., Valencia, CA) following the 
manufacturer’s instruction for HPV genotyping test. HPV genotyping 
test (Linear array, Roche diagnostics) was performed according to 
the manufacturer’s instructions by a research associate trained by 
personnel from Roche Diagnostics. Briefly, target DNA amplified 
by Polymerase Chain Reaction (PCR) utilized the PGMY09/11 L1 
consensus primer system and included co-amplification of a human 
cellular target, β-globin, as an internal control. Detection and HPV 
genotyping were achieved using a linear array HPV genotyping test 

Characteristic ≤CIN 1 
(N=148)

CIN 2+ 
(N=87) P

Age in years, mean (SD) 24.4 (5.2) 24.8 (4.9) 0.51
Body Mass Index (BMI), kg/m2, mean 
(SD) 28.3 (8.7) 27.2 (7.2) 0.34

Parity, n (%)   0.03

0 53 (35.8) 20 (23.0)  

1 53 (35.8) 26 (29.9)  

2 30 (20.3) 29 (33.3)  

3 12 (8.1) 12 (13.8)  

African American, n (%) 89 (60.1) 47 (54.0) 0.36

HPV16 positive, n (%) 79 (53.4) 47 (54.0) 0.92

Table 1: Participant characteristics by the case status.
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which included probes to genotype for 37 anogenital HPV types (6, 
11, 16, 18, 26, 31, 33, 35, 39, 40, 42, 45, 51, 52, 53, 54, 55, 56, 58, 59, 61, 
62, 64, 66, 67, 68, 69, 70, 71, 72, 73 (MM9), 81, 82 (MM4), 83 (MM7), 
84 (MM8), IS39, and CP6108).

Generation of Protein Profiles
Mass Spectrometry

Sample preparation: Urine samples collected from patients were 
stored at -80oC until analysis. A high affinity solid core lipophilic 
extraction resin was used to desalt and prepare the urine sample 
MALDI MS analysis. Bondapak C18 125 A, 37-55 µm resin (Waters, 
Milford, MA, USA) was packed into 96 well 0.45 µm Unifilter plates 
(Whatman, Florham Park, NJ, USA). Packed resins were activated with 
80% acetonitrile: 20% water. Urine samples were thawed, acidified by 
adding Tri Fluoro Acetic acid (TFA) to a final concentration of 1% 
TFA v/v, and mixed with the activated C18 resins. The unbound urine 
fraction was removed by centrifugation of the 96 well plates for 5 min 
at 1500 g. The resin was washed twice with 200 µl of 1% TFA per 
well, and the bound low molecular weight proteins and peptides were 
eluted with 100 µl of 70% CH3CN:30% water with 0.1% TFA. Eluants 
were mixed with an equal volume of matrix consisting of 20 mg/ml 
sinapinic acid (Fluka, St. Louis, MO, USA) in 50:50 CH3CN: water 
with 0.1% TFA and spotted onto a MALDI target plate for MALDI-
TOF analysis.

Mass profiling
Mass spectra were acquired in linear positive ion mode using 

an Ultra flex III MALDI-TOF/TOF mass spectrometer (Bruker 
Daltonics). Instrument settings optimized for mass range m/z 2-20 
kDa were used: ion source 1 = 25.0 kV, ion source 2 = 23.45 kV, 
pulsed ion extraction time = 15 ns. Mass calibration was carried 
out externally using a mixture of standards consisting of insulin, 
cytochrome C, myoglobin and ubiquitin (Bruker Daltonics, Bremen, 
Germany).

Data analysis
Data obtained from the mass spectra was exported as text files for 

preprocessing and further analysis. Spectral preprocessing included 
baseline correction, noise estimation, background estimation, 
normalization (using total ion current) and finally peak picking. The 
preprocessing step resulted in 171 features in the mass-to-charge 
(m/z) range of 2–20 kDa.

Two sets of analyses were conducted for this study. In the first 
set, the urine peptide/protein profiles were utilized to predict CIN 2+ 
status. In the second set of analyses, the urine protein profiles were 
utilized again but to predict HPV16 infection status. In addition to 
the 171 m/z features from the MALDI MS profiles, other predictors 
included age, body mass index (BMI), parity, and race (AA vs. CA).

Within each set of analyses, several statistical and data mining 
techniques were applied to the peak data in order to obtain prediction 
algorithms. All analyses were conducted using the R statistical software 
[14]. The predictive analytical techniques are briefly described below.

Weighted k-nearest neighbors
The classical k-nearest neighbor technique is a non-parametric 

classification method where a new observation is compared to the 
k closest available observations (with respect to some covariates 

and a distance measure), and is then assigned to the majority class 
among these closest k observations. The weighted k-nearest neighbor 
technique [15] is an extension of the classical method that weighs the 
majority class assignment for the new observation by the distance 
between the new observation and each of the k closest available 
observations, with closer observations having more weight in the class 
assignment. The weight can be determined by different mathematical 
functions. For this study, we used the implementation of the 
technique in the R package kknn [16] Using leave-one-out cross-
validation, the kknn algorithm searches for the optimal number k and 
weight function (from nine choices). The default Euclidean distance 
was used as distance metric. Because the algorithm may perform 
poorly in the presence of irrelevant covariates, a first step consisted 
of screening the predictors to be used as covariates with Wilcoxon 
tests or Kolmogorov-Smirnov two-sample tests (p-value <.2), and 
then in a second step the weighted k-nearest neighbor algorithm was 
applied. Leave-one-out cross-validation was conducted for the two-
step procedure.

Nearest shrunken centroids
The nearest centroid method is a classification technique similar 

to linear discriminant analysis. A new observation is assigned to the 
class for which the multivariate distance between the observation’s 
covariate values and the class centroid (vector of means) is shortest. 
The nearest shrunken centroids method [17] is an extension of the 
original technique developed for high dimensional problems and that 
includes built-in covariate selection using cross-validation. For this 
study we used the implementation of the technique in the R package 
pamr [18]. Using 10-fold cross-validation the pamr algorithm 
searches for the value of a tuning parameter involved in the selection 
of predictors to include in the centroid and distance computations. 
Classification results from the 10-fold cross-validation are reported.

Least angle regression (LAR)
LAR [19] is a forward stepwise linear regression technique 

developed for high dimensional problems. To be used in binary 
classification, the outcome is coded as 1 or -1 and a cutoff value of 
zero is applied to the prediction [20]. For this study we used the 
implementation of the technique in the R package lars [21]. Using 
10-fold cross-validation, the lars algorithm searches for the optimal 
number of predictors to be included in the regression model. Results 
from the 10-fold cross-validation are reported. Three models were 
implemented: (1) a model with features and additional predictors as 
main effects; (2) a model with main, quadratic, and cubic effects for 
all predictors; and (3), a model with main, quadratic, cubic effects for 
each predictor, and all two-way interaction terms between predictors.

Logistic regression with elastic net
The term elastic net [18] refers to a forward stepwise model 

selection technique in generalized linear models such as logistic 
regression, developed for high dimensional problems. For this study 
we used the implementation of the technique in the R package glmnet 
[22]. Using 10-fold cross-validation the glmnet algorithm searches 
for the value of a tuning parameter involved in the selection of 
predictors to include in the model. Cutoff predicted probability for 
classification was at 0.5. Classification results from the 10-fold cross-
validation are reported. Three models were implemented: (1) a model 
with features and additional predictors as main effects; (2) a model 
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with main, quadratic, and cubic effects for all predictors; and (3), a 
model with main, quadratic, cubic effects for each predictor, and all 
two-way interaction terms between predictors.

Principal component regression (PCR) and Partial least 
squares regression (PLSR)

Given a set of correlated variables, the principal components are 
a smaller set of non-correlated synthetic variables computed as linear 
combinations of the original variables, and that capture most of the 
information contained in the original correlated variables [23]. PCR is 
a linear regression where the covariates are the principal components 
of the explanatory variables originally measured. To be used in binary 
classification, the outcome is coded as 1 or -1 and a cutoff value of 
zero is applied to the prediction. PLSR is a modification of PCR, in 
that the outcome is also included in the computation of the principal 
component scores [24]. Typically, PCR and PLSR achieve similar 
prediction accuracies, but PLSR needs fewer components than PCR. 
For this study we used the implementation of the techniques in the 
R package pls [25]. Using Leave-one-out cross-validation, the pls 
algorithm searches for the optimal number of components extracted 
from the features and additional predictors to be included in a 
regression model as covariates (main effects only). Results of leave-
one-out cross-validation are reported.

Classification trees
Classification tree models are created by recursive partitioning, 

i.e. splitting the predictor space recursively into disjoint regions 
and then assigning the class of each resulting cell to the majority 
class among the observations included in that cell. The resulting 
models can be represented as binary trees. Two common algorithms 
were used in this study. The first is the non-parametric CART 
(Classification and Regression Tree) algorithm [26] that builds the 
tree model in two stages: first, the single variable is found which 
best (with regards to the target classification) splits the observations 
into two groups. The data are separated, and then this process is 
applied separately to each sub-group, and so on recursively until the 
subgroups either reach a minimum size or until no improvement 
can be made. The second stage consists of using cross-validation to 
“prune” or trim back the initial full tree to a size that provides the best 
cross-validated accuracy. For this study we used the implementation 
of the technique in the R package rpart [27]. Results of leave-one-out 
cross-validation are presented. A second algorithm used in this study 
builds conditional inference tree models [28]. As opposed to CART, 
this algorithm builds the tree model in one stage by establishing the 
splits with significance tests (adjusted for multiple testing), so that the 
stopping criterion for splitting is statistical (based on p-values), and 
no pruning is needed. We used the implementation of the algorithm 
provided in the R package party [29]. Leave-one-out cross-validation 
results are presented.

Ensembles of classification trees
The term ensemble refers to a method to generate many 

classification models and combine their results. The classification for 
a new observation is produced by the ensemble as a combination of 
the predicted classifications from each of its individual models. Using 
CART tree models, two common ensemble methods were applied 
in this study. The first method is Random Forests [30]. It consists 
of generating a number n of bootstrap re hyphen samples from the 

original dataset, and for each resample building an untrimmed tree 
model; however for each split in a tree, only a small random set of 
predictors are available for consideration. The resulting ensemble 
is composed of n trees, and the classification for a new observation 
is given by the majority class among each of the individual tree 
predictions. An unbiased estimate of accuracy is given by classifying 
each observation with only those trees corresponding to bootstrap re 
hyphen samples in which the observation did not appear. In Random 
Forest implementations, this estimate of accuracy is referred to as 
‘out-of-bag’ accuracy, and is equivalent to a cross-validated estimate 
of accuracy [18]. We used the implementation of the technique in the 
R package random Forest [28], with n=500 re hyphen samples. Out-
of-bag classification results are presented. A second ensemble method 
used in this study is Adaptive Boosting [31]. This algorithm associates 
weights to each observation, and builds a tree ensemble sequentially. 
After each new individual tree model is built, the observation weights 
are updated by increasing (boosting) the weights of misclassified 
observations, so that in the next individual tree model in the sequence, 
these misclassified observations are given more importance. The final 
prediction is a combination of the predictions from each individual 
tree model in the sequence. We used the implementation of the 
technique in the R package ada [32], with a sequence of up to 150 
individual trees. Results from 10-fold cross-validation are presented.

Because an ensemble model is a collection of hundreds of 
individual models, loss of interpretability is a drawback. The 
algorithms, however, compute measures of relative predictor 
importance (for instance by counting the most frequent predictors 
in the ensemble) that allow ranking of predictors by their usefulness.

Artificial neural networks (ANNs)
An ANN is an extension of a generalized linear model [18,33] that 

can be used to model complex linear and non-linear relationships 
between a set of covariates and an outcome. It is inspired by the 
functional aspects of biological neurons, with a set of inputs, a set 
of intermediary ‘neurons’ or nodes (referred to as a ‘hidden layer’ of 
neurons) and a set of outputs. A model with one set of intermediary 
nodes or neurons (one ‘hidden layer’) works as a two-stage 
regression. In the first stage, the algorithm computes values for the 
intermediary neurons or nodes as linear combinations of the inputs 
(i.e. the covariates or predictors). In the second stage, the values of 
the intermediary neurons form a second linear combination to then 
model the output (i.e. the outcome variable). Because the algorithm 
does not have built-in predictor selection, and may perform poorly 
in the presence of irrelevant covariates, a first step consisted of 
screening the features and additional predictors to be used as inputs 
or covariates with Wilcoxon tests (p-value<.2), and then in a second 
step the ANN models were fitted. We used the implementation of the 
technique in the R package neuralnet [34]. We implemented models 
with one hidden layer fitted with up to 20 neurons. Results from 10-
fold cross-validation, conducted for the two-steps (peak selection and 
model fitting), are reported.

Cross-validated accuracy results were complemented by 
computation of measures of sensitivity, specificity, positive predictive 
value (PPV) and negative predictive value (NPV) for the whole 
sample as well as for the following subgroups: 1) race groups; 2) 
HPV16 infection (for prediction of CIN 2+); and 3) case status (for 
prediction of HPV16 infection).
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Results
Cross-validated accuracy results for the two sets of analyses are 

presented in Table 2. For the first set of analyses (predicting CIN 2+) 
a classification tree with the CART algorithm provided the best cross-
validated prediction (73% accuracy). Cross-validated sensitivity, 
specificity and PPV were estimated at 85%, 51% and 75%, respectively 
(Table 3). Accuracy of the prediction among HPV16 negative samples 
was slightly higher than among HPV16 positive samples (76% vs. 
70%), however the difference was not statistically significant (p=.296). 
Accuracy among AAs was slightly higher than among CAs (75% vs. 
70%; p=.394). The CART model used the following four features: m/
z=6081, m/z=6296, m/z=6793, and m/z=9502. The model is shown 
in Figure 1.

In the second set of analyses (predicting HPV16 infection) a 
complex logistic regression model consisting of a cubic term and 32 
two-way interactions between predictors provided the best cross-
validated prediction with 75% accuracy (Table 2). Cross-validated 
sensitivity and specificity were estimated at 77% and 74%, respectively 
(Table 4). Accuracy of the prediction among ≤CIN 1 samples was 
slightly higher than among CIN 2+ samples (76% vs. 74%; p=.731). 
Accuracy among AAs was slightly higher than among CAs (76% vs. 
73%, p=.523). With all 235 samples, the following 37 features were 
used in the logistic model: m/z=2111, m/z=2152, m/z=2208, m/
z=2436, m/z=2477, m/z=2569, m/z=2755, m/z=2878, m/z=2943, m/

z=3255, m/z=3444, m/z=4243, m/z=4483, m/z=4833, m/z=4922, m/
z=5252, m/z=6066, m/z=6338, m/z=6404, m/z=6435, m/z=6550, m/
z=7206, m/z=7891, m/z=8020, m/z=8051, m/z=8188, m/z=8301, m/
z=8938, m/z=9077, m/z=9192, m/z=9219, m/z=9502, m/z=9866, m/
z=10162, m/z=12439, m/z=20191, m/z=20351. Additional predictors 
in the model included age, BMI and race. The model is shown in 
Table 5. Because of the model’s complexity, traditional interpretation 
of the individual parameters is unfeasible.

Descriptive statistics of intensity (measured in total ion current) 
for the features included in the final CART model (predicting CIN 
2+) an in the logistic model (predicting HPV16 infection) are shown 
in Table 6.

Discussion
Even though HR-HPV is a necessary factor for the development 

of CIN and ICC, being positive for HR-HPVs does not invariably lead 
to such lesions [2]. Several studies have shown that the detection of 
HR-HPVs provides high sensitivity, but has lower specificity for the 
identification of CIN 2+ lesions in screening populations in many 
countries [35,36]. A recent study which compared seven HPV tests 
and p16 INK4a cytology in a high risk population demonstrated that 
the PPV for detecting high grade CIN varied from ~37% to 55% and 
49% respectively [37]. These tests, therefore, would always require 
follow-up tests including referrals to invasive colposcopic procedures 
to confirm diagnosis and avoid patient anxiety. Numerous attempts 

 
 

Cross-validated Prediction 
Accuracy (%)

Predictive technique CIN 2+ HPV16 infection
 
 

N=235 (87 
CIN2+) 

N=235 (126 
positive)

K-nearest neighbors   

    Featuresscreened with Wilcoxon test 62 65

    Features screened with K-S test 62 66

Shrunken centroids 65 69

Least Angle Regression   

    Main effects (ME) 63 65
    ME+Quadratic and Cubic effects 
(QCE) 63 68

    ME+QCE+Two-way interactions 63 53

Logistic regression with elastic net   

    Main effects (ME) 63 70
    ME+Quadratic and Cubic effects 
(QCE) 63 66

    ME+QCE+Two-way interactions 63 75

Partial least squares regression 63 68

Principal Components Regression 63 71

Classification trees and tree ensembles   

        CART 73 56

        Conditional 63 61

       Random Forest with CART 63 70

       Boosting with CART 63 70

Artificial Neural Networks   

      Features screened with Wilcoxon test 63 60

Table 2:  Cross-validated accuracy results from predictive analytical techniques.

Subgroups N Target/
N Total

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

*PPV 
(%)

*NPV 
(%)

All 87/235 73 85 51 75 67

HPV 16       

     Positive 47/126 70 86 42 71 64

     Negative 40/109 76 84 61 79 69

Race       

     African American 47/136 75 84 57 79 66

     Caucasian 
American 40/99 70 87 44 70 69

Table 3: Cross-validated prediction results for case status by subgroups.

*PPV and NPV: Positive and Negative Predictive Value, respectively

Figure 1: Classification tree model for CIN 2+ status using intensities for 
features m/z=6081, m/z=6296, m/z=6793, and m/z=9502 as predictors.
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have been made to identify protein biomarkers with higher PPV for 
detecting high grade CIN. Most studies focused on proteins involved 
in cell cycle regulation, signal transduction, DNA replication or 
cellular proliferation [38,39]. The PPV of most of these tests for 
detecting high grade CIN also has been ~50% [40].

An important application of MALDI-TOF MS is the simultaneous 
analysis of multiple proteins to establish “fingerprint” profiles that 
discriminate disease from non-disease. This is an important approach, 

since no single biomarker or protein alone may be sufficient for 
detecting high grade CIN with high PPV. If these types of testing can 
be performed using non-invasive and easy to collect samples such as 
urine, the clinical utility of such tests is likely to be enormous. Our 
results demonstrated that the accuracy for detecting CIN 2+ based 
on urine protein profiles varied from 62-73% based on the predictive 
technique used suggesting the usefulness of utilizing and comparing 
different predictive modeling techniques. We also observed that the 
PPV for detecting CIN 2+ is higher than previous studies and varied 
from 70% to 79%, with highest PPV noted among HPV 16 negative 
women and AA women. For modeling the relationship between 
CIN 2+ and urine protein profiles, the non-parametric CART model 
that provided the best prediction appeared to be somewhat simple, 
utilizing only 4features.

While most HPV infections are asymptomatic and transient, 
HPV is of clinical and public health importance because persistent 
infection with certain HR-HPV types can lead to CIN 2+ or ICC. 
Repetition of the cytology/colposcopy/biopsy-based screening for 
HPV associated changes in the cervix has led to substantial decreases 
in cervical cancer rates in countries that have sufficient resources to 
sustain a high-quality, organized screening programs [41]. All these 
approaches have limitations in terms of sensitivity and specificity [42] 
and higher health care costs as a result of those issues. HR-HPV testing 
as an adjunct to cytology in primary cervical cancer screening is now 
accepted [43], but whether this type of testing implemented into an 
existing public-health screening program can result in an increase in 
the program effectiveness is somewhat controversial. These methods 
are even less useful in developing countries, which currently carry 
the greatest burden of cervical cancer incidence and mortality, due 
to the expense and expertise required for the gynecologic exams 
and sample collection for cytological and HPV tests. Because HPV 
testing that distinguishes HPV16 and HPV18 from other HR-HPV 
types has been shown to identify women at the greatest risk of CIN 
3+, this type of testing is more likely to be clinically useful than a 
pooled HPV test [44]. Even though only a fraction of women infected 
with HPV16 develop CIN 2+, these lesions have the highest rate of 
progression to ICC [45]. Further, the recurrence rate of CIN 2+ after 
a loop electrosurgical excision procedure (LEEP) was shown to be 
significantly higher among those who were tested positive for HPV 16 
before and after the procedure [46]. Therefore, identification of this 
fraction of women and treatment of their lesions and closer follow-
up after treatment are important unmet medical needs in the current 
management protocols. Further, as discussed in the introduction, 
such tests are also important for providing HPV vaccines to the most 
appropriate individuals.

Subgroups N target/ N total Accuracy (%) Sensitivity (%) Specificity (%) *PPV (%) *NPV (%)

All 126/235 75 77 74 73 78

Case status       

       CIN 2+ 47/87 74 73 74 71 76

       ≤CIN 1 79/148 76 79 73 73 79

Race       

      African American 58/136 76 87 62 75 78

      Caucasian American 68/99 73 53 84 62 78

Table 4: Cross-validated prediction results for HPV16 infection by subgroups.

*PPV and NPV: Positive and Negative Predictive Value, respectively.

Model Parameter Coefficient Estimate
Intercept -1.18E+00
(m/z=2436)3 -6.80E-01
BMI x Age -2.37E-04
AA x m/z=5252 -4.55E-04
m/z=2111 x m/z=6338 5.86E-10
m/z=2152 x m/z=20351 7.44E-07
m/z=2208 x m/z=2943 -2.93E-08
m/z=2477 x m/z=6338 2.04E-07
m/z=2477 x m/z=20191 1.33E-06
m/z=2569 x m/z=4922 -4.89E-08
m/z=2755 x m/z=8301 -1.48E-08
m/z=2878 x m/z=9866 7.71E-08
m/z=2943 x m/z=9502 -6.24E-08
m/z=3255 x m/z=6066 1.37E-07
m/z=3255 x m/z=6435 4.39E-07
m/z=3255 x m/z=7891 4.56E-07
m/z=3255 x m/z=8020 2.08E-07
m/z=3255 x m/z=20351 1.12E-06
m/z=3444 x m/z=4483 7.29E-09
m/z=4243 x m/z=6338 2.62E-07
m/z=4833 x m/z=8188 -2.76E-07
m/z=6066 x m/z=6338 5.65E-08
m/z=6066 x m/z=7206 5.40E-07
m/z=6066 x m/z=8020 7.32E-08
m/z=6066 x m/z=8051 5.63E-08
m/z=6338 x m/z=8051 1.50E-07
m/z=6338 x m/z=8938 1.70E-07
m/z=6338 x m/z=9192 6.96E-08
m/z=6338 x m/z=20351 7.15E-07
m/z=6404 x m/z=8301 -2.34E-07
m/z=6435 x m/z=20351 2.55E-06
m/z=6550 x m/z=9077 4.17E-08
m/z=9077 x m/z=10162 2.52E-07
m/z=9219 x m/z=12439 3.08E-06

Table 5: Logistic model for prediction of HPV16 infection status.

Notes: AA = African American (1=yes, 0=no); BMI = body mass index.
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Intensity

Feature ≤CIN 1 CIN 2+

Min. Median Mean Max. Std. Dev. Min. Median Mean Max. Std. Dev.

m/z=6081 139.3 995 1123.5 3377.8 615.9 324.7 1098.3 1147.8 2531.1 451.3

m/z=6296 63.3 470.2 505.6 1640.9 269.6 31.8 424.1 466.1 2879.8 328.7

m/z=6793 33.6 205.1 278.9 2025.3 246.1 36.4 194 263.8 1146.7 229.7

m/z=9502 0 136.3 189.6 781.2 148.9 0 161 213.6 951.1 163.9

HPV 16 Negative HPV 16 Positive

m/z=2111 8.4 664.4 717 3013.8 439.8 4.8 769.4 829.3 3082.3 490.7

m/z=2152 82.3 921.9 1343.1 5594.8 1176.6 70.2 1168.1 1717.6 8995.9 1578.4

m/z=2208 94.9 590.1 718.8 3380.3 522.1 83.3 494.4 599.6 2064.5 370

m/z=2436 335 1521.2 1916.2 9766.6 1594.4 274.2 1169.8 1793.9 7365.6 1491.7

m/z=2477 94.2 515.1 574.4 2720.6 366.2 40.2 587.6 723.6 6685.2 747.2

m/z=2569 21.7 787.6 856.7 3049.7 509.8 59.9 593.2 745.5 3330.1 489

m/z=2755 237.7 4630.6 6423.4 37281.6 6648.4 194.7 3339.9 5059.5 41936.8 6238.3

m/z=2878 9.8 241.2 294.8 1221.4 240.2 0 300.9 463 4852.6 526.7

m/z=2943 269.8 3302.5 4958.9 27037.3 5374.2 177.8 2113.2 4592.6 32363.1 5951.3

m/z=3255 100.2 577.4 653.1 1988.1 333.5 197.9 719.9 873 3643 558.2

m/z=3444 217.1 875.4 1681.7 26391.2 2942.7 320 1131.9 1968 12501.7 2250.3

m/z=4243 104.7 764.2 823.1 2544 401.1 168.4 888.6 1019.5 7830.3 844.1

m/z=4833 54 445 464.1 1741.7 242.1 29.3 403.2 444.9 1152.5 256.4

m/z=4922 13.8 558 648.6 2789.8 430.5 16 508.5 557.5 1508.1 308.2

m/z=5252 68.4 314.3 346.5 1003.2 178 54.7 275.8 318.9 1065.5 185.1

m/z=6066 121.4 568.2 628.9 1427.8 273.9 61.1 699.4 784.4 2178.9 389.1

m/z=6338 99.4 655.7 776.4 2574.5 451.5 206.6 1014.9 1285.7 4195.9 749.4

m/z=6404 47.3 358.2 452.6 2945.4 431.3 48.1 366.7 417.1 2997 332

m/z=6435 36.1 270.8 361.7 2205.1 325.9 42.9 470.1 568.5 2303.9 385.7

m/z=6550 15.5 151.6 300.5 3480.9 543.7 7.2 164.8 334.6 5366.3 629.2

m/z=7206 2.2 111.3 127 668.7 85.4 5.8 129.6 170 2648.2 247.2

m/z=7891 49.6 143.6 161.7 455.5 76.8 27.5 173.8 200.1 1121.5 130.5

m/z=8020 141.1 369.8 433.4 1804.1 239.5 110.8 532.9 618.7 2150 382.2

m/z=8051 93.1 284.9 303.8 727.1 116.2 110.2 349.7 375.9 1052.4 171.8

m/z=8188 100.5 482.9 511.3 1572.3 300.8 13.1 406 450.1 2513.5 297.8

m/z=8301 50.5 180.9 201.7 868 122.4 33.4 156.3 176.4 1110 119.8

m/z=8938 45.4 795.7 839.1 2589.8 395.3 56.2 747.3 834.5 2699.8 422

m/z=9077 168.3 968.9 1237.7 7029.4 1055.9 171.1 1305.7 1758.1 6489.8 1336.9

m/z=9192 13.3 159.8 217.8 1304.7 196.5 45.5 208.4 324.2 1984.3 323.3

m/z=9219 17.2 76.5 146.6 2018.3 244.6 19.1 127.1 372.8 6000.6 698.8

m/z=9502 0 165.2 217.5 951.1 164.8 0 127.5 181.6 781.2 143.7

m/z=9866 143.5 957.9 1213.4 4742.7 809.3 196.1 1153.9 1399 4715 925.7

m/z=10162 4.3 15.3 21.8 104.7 17.6 0.3 19.3 25 163.3 21

m/z=12439 19.5 171.6 192.7 571.6 96.1 48.6 180.1 196.1 717.2 103.7

m/z=20191 35.6 93 99 236.9 39.9 34 97 111.2 296.3 49.4

m/z=20351 37 100.8 109.2 238.2 41.3 47.3 120.2 127.8 324.1 54

Table 6: Descriptive statistics of intensity (measured in total ion current) for the features included in the final CART model, predicting CIN2+, and in the logistic model, 
predicting HPV16 infection.
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Currently available tests do not have adequate specificity for 
identifying women with HPV 16-associated CIN 2+. In the patient 
sample used in this study, 37% (n=47) of the 126 women infected with 
HPV 16 were diagnosed with CIN grades higher than 2 (CIN 2+). 
Identification, treatment and closer follow-up of these women would 
offer a cost-effective strategy to reduce the cervical cancer burden. 
A meta-analysis showed that detecting any HR-HPV by the Hybrid 
Capture 2 test among women with abnormal pap demonstrated 97.2% 
sensitivity for detecting CIN 2+ and 97.1% sensitivity for detecting 
CIN 3+. This analysis also demonstrated a pooled specificity of 30.6% 
and 26.1% when the outcome was CIN 2+ and CIN 3+ respectively 
[47]. A recent study demonstrated that the sensitivity of the HPV 
16/18 genotyping test for detection of CIN 2+ was > 93% while 
the specificity of the test for detection of CIN 2+ and CIN 3+ was 
44.2% and 43%, respectively [48]. Two protein features identified in 
serum in one of our previous studies demonstrated higher specificity 
for identifying CIN 2+ among HPV 16 positive women than these 
published studies [49].

The results from the current exploratory study suggested 
that the relationship between HPV16 infection status and urine 
protein profiles is complex, and might only be modeled by complex 
algorithms that include non-linear effects and interactions among a 
fairly large number of features. Similar to CIN 2+ predictive models, 
the cross validated predictive accuracy for HPV 16 infections varied 
based on the predictive technique used, from 53% to 75%. The best 
PPV (75%) for HPV 16 infections was observed for AAs and the worst 
PPV for CAs (62%), suggesting racial differences in usefulness of 
MALDI-TOF-MS based tests. To our knowledge, this is the first study 
to evaluate the usefulness of urine protein profiles for identifying 
women infected with HPV 16. PPV was similar among cases and 
controls suggesting that urine profiles are useful in identifying HPV 
infections regardless of lesion status.

We demonstrated that the PPVs for detecting CIN 2+ or HPV16 
infections are ~ 75%, a reasonably good result given the fact that non-
invasively collected samples used may allow repeat testing, especially 
if cost-effective ELISA tests based on protein features identified in our 
study can be developed in the future. However, the observed PPVs 
may not be high enough to be used in triage of patients, especially 
in populations exposed to HPV 16/18 prophylactic vaccines where 
the rate of HPV 16 infections and CIN 2+ are likely to be reduced 
resulting in further lowering of the PPV value of these tests. Therefore, 
continuation of biomarker research with other non-invasively 
collected samples are needed to discover and validate biomarkers 
with higher PPV to identify and treat only those women truly at high 
risk for developing CIN 2+ or ICC in the future.
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