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Abstract

Background: Sequencing has become a popular method for the generation 
of large-scale genomic data and with the inundation of such data source comes 
the necessity for accurate genotype calling of nucleotide bases (A/T/C/G) and 
copy number (0/1/2/3/4) variants (CNV). The use of SNP arrays as a point of 
reference for widely used assays for genomic variants, including the variability 
of different centers and algorithms impacting quality may bear fruit. PennCNV 
is the most popular method for CNV detection from SNP arrays. Therefore, we 
observe the unique features that set it apart: namely using both intensity and 
genotype in tandem to infer CNV states using an HMM and trio based recalling 
of CNVs to bring de novo rates to an acceptably low level. 

Results: Sequencing offers features to assess CNVs intensity which has 
been leveraged by a number of algorithms, including XHMM, but the valuable 
feature of genotype for call accuracy has not been incorporated. Here we show 
derivation of genotype frequency from exome sequencing as a robust data to 
supplement intensity data in CNV detection.We detect more CNVs at a higher 
true positive rate than existing methods. 

Conclusion: This application of BAF furthermore allows an arsenal of tools 
to be utilized including PennCNV and ParseCNV for sequencing data. PennCNV-
ExomeSeq is freely available at http://penncnvexomeseq.sourceforge.net/.
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banding at 1/3 and 2/3 strongly indicates duplication and supports 
marginal intensity gain signals. Adding genotype to the CNV HMM 
algorithm improves confidence of CNV calls. Here, we leverage the 
most powerful softwarefor integration of their best features. XHMM 
[9], GATK [13], PennCNV [14]and ParseCNV [15] are the major 
components of thealgorithm cross-talk advanced here. XHMM 
provides zPCARD for each exon for each sample which is equivalent 
to Log R Ratio (LRR). GATK provides reference and alternative 
allele depths and total depth which can be divided to determine B 
allele frequency (BAF). Then point-wise BAF values are looked up in 
exomic segments of LRR for the corresponding sample creating the 
signal intensity file input for PennCNV.

Methods
Using the Genome Analysis Toolkit (GATK)variant call format 

(VCF) is a convenient procedure since these files are commonly 
generated for single nucleotide variant (SNV) detection and 
genotyping. Other tools require a separate software samtoolsrun with 
the option pileup which requires accessing the much larger binary 
alignment map (.bam)file and additional computational time.

The GATK VCF provides allele depth for the reference allele 
(ADRef) and allele depth for the alternate allele (ADAlt). To meet 
minimal quality control, (ADRef + ADAlt) must be greater than 0 
and FILTER=”.”. Then genotype (GT)= heterozygous (0/1) and GT= 
homozygous alternate allele (1/1) are placed into 2 different files. B 
allele frequency (BAF)= ADAlt / (ADRef + ADAlt).

Abbreviations
ZPCARD: z-Score of Principal Components Analysis 

Normalized Read Depth; WES: Whole Exome Sequencing;BAF: B 
Allele Frequency; LRR: Log R Ratio; XHMM: Exome Hidden Markov 
Model; GATK: Genome Analysis Toolkit

Background
Motivated by the shift from SNP arrays to exome sequencing 

as the most commonly used genomic data, variant calling must be 
optimized for exome sequencing [1] and whole genome sequencing 
data sets [2, 3]. Multiple algorithms exists, including Conifer[4], 
ExomeCNV [5], ExomeCopy [6], ExomeDepth [7], Contra [8], 
XHMM [9], Excavator [10], Control-FREEC [11], and VarScan2 
[12] that were designed for calling CNVs using exome sequencing 
data. Recently, XHMM has been published which uses exon based 
intensities normalized by PCA for exome capture biases. A HMM is 
then applied to segment genomic regions into deletion, diploid, and 
duplication states. While this has been informative, it’s important 
to further differentiate copy number states into homozygous and 
hemizygous deletions and duplications, as well as copy neutral 
LOHs, a six state model. Accurately sizing large CNVs is possible 
through merging adjacent CNV call fragments into a single CNV call. 
Importantly, genotypes need to be assessed in tandem with relative 
intensity to boost CNV calling sensitivity and specificity. Genotype 
homozygosity is an important observation to correspond to the drop 
in intensity mode observed in deletions. Furthermore, genotype 

Research Article

Penncnv-Exomeseq: Genotype Improves Copy Number 
Variant Detection in Exome Sequencing
Joseph T Glessner1*, Jin Li1, Yichuan Liu1, Lifeng 
Tian1, Kelly A Thomas1, Ryan Golhar1, Akshatha 
Desai1, Bao-Li Chang1, Xiao Chang1 and Hakon 
Hakonarson1,2

1Center for Applied Genomics,The Children’s Hospital of 
Philadelphia, Philadelphia, USA
2University of Pennsylvania, Perleman School of 
Medicine, Philadelphia, USA

*Corresponding author: Joseph Glessner, 
Bioinformatics Specialist, Center for Applied Genomics, 
The Children’s Hospital of Philadelphia, 3615 Civic Center 
Boulevard,Philadelphia, USA

Received: January 21, 2015; Accepted: March 11, 2015; 
Published: March 13, 2015



Austin J Proteomics Bioinform & Genomics 2(1): id1009 (2015)  - Page - 02

Joseph T Glessner Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

Single sample VCFs are used so no homozygous reference(0/0)
genotypes are present. The single sample BAFs are concatenated and 
sorted by position and chromosome (stable sort). The average BAF 
in the population of was calculated along with standard deviation 
and count samples contributing to the average. Assuming there 
are position specific biases in allele depths, we shifted each SNP 
population distribution mean to the expected values of 0.5 and 1.0 for 
heterozygotes and homozygotes, respectively.

We assessed the frequency of data at specific nucleotides across 
our population of samples.

250,533 SNPs >100 Count Occurrences AB only were found in a 
population of 2,190 VCFs.

184, 037 SNPs >100 Count Occurrences BB only were found in a 
population of 2,190 VCFs.

A total of 319,672 SNPs >100 count occurrence combined were 
therefore considered usable for PennCNV calling to make samples 
comparable in terms of genome resolution and were included in the 
PennCNV population frequency of b-allele (.pfb) file which sets the 
probeset to be used across the population of samples. Chromosome 
“GL” entries were removed.

We then applied clustering to center the expected value of 
heterozygotes to 0.5 and homozygotes to 1 in order to improve 
separation of distributions.

Heterozygous 0/1 genotype samples:

CenteredSampleBAF = sampleBAF – (averageBAF – 0.5)

Homomzygous 1/1 genotype samples:

CenteredSampleBAF = sampleBAF – (averageBAF – 1)

Then 0/1 and 1/1 normalized BAFs are concatenated for each 
sample.All samples were then concatenated again and sorted to 
calculate the PFB from the centered sample BAF values. Compile_
pfb.pl failed due to different SNP sets and orders from GATK VCFs 
requiring a custom procedure and script.

BAFs are used as scan_region.pl query and LRRs are used as 
scan_region.pl definition to match single base position BAFs to exon 
spanning LRRs (XHMM zPCARD). Some XHMM zPCARD entries 
with 2 values comma delimited where one value was expected were 
excluded.

Figure 1: Sequencing read depth vs. distance of AB from 0.5. As sequencing 
depth increases, the standard deviation of the distribution of AB b allele 
frequency decreases, albeit at a modest rate with extreme outliers persisting. 

Figure 2: Distribution of genotype (BAF) and intensity (LRR) in exome sequencing and SNP array data. The exome is DNA content of maximal inclusion of bases 
on exons whereas the SNP array can test and select those with the lowest standard deviation from any number of SNPs in a linkage disequilibrium block. The low 
standard deviation is crucial for distinguishing copy number states from noise.
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Results
Instead of using samtools mpileup which requires another 

lengthy iteration through all. Bam files, we use the GATK VCF, the 
most commonly generated file from whole exome sequencing studies. 
Unfiltered allele depth is provided for reference and alternative alleles 
at each heterozygous or homozygous alternative allele base position 
exome-wide to eliminate reporting of the frequent homozygous 
reference allele. The total depth is approximate and filtered for reads 
with root mean square of the mapping quality of the reads across 
all samples <255 or with bad mate pairs. The principal equation is 
quite simple and constitutes: BAF=ADAlt/(ADRef+ADAlt). We 
considered only those variants passing the quality filter of GATK. To 
segment the analysis, we separated the BAF values from AB (0/1) and 
BB (1/1) genotyped base positions. We investigated the effect of read 
depth on the clustering of BAF on the expected values 0.5 and 1 for 
AB and BB genotypes, respectively (Figure 1). We observed no strong 
bias of BAF at low values of depth other than effects of the fractional 
values constrained to be low values. We also observe lower read depth 
in the alternative allele than the reference allele at many AB positions. 
The BAF values exome-wide for a given sample were more widely 
distributed around 0.5 than those of a SNP array (Figure 2). Running 
PennCNV resulted in hundreds of erroneous calls and a high BAF 
standard deviation quality metric centered around 0.11 compared to 
aSNP array centered around 0.03.

To address this challenge, we applied the correction of clustering 
on the population at each SNP derived from the wisdom of SNP 
array efforts and the assumption that biases in allele depth would be 
reproducible at each SNP across the population. We clustered AB 
and BB states of each SNP and adjusted the population mean of each 
distribution to 0.5 and 1.0, respectively (See methods). Unfortunately, 
the standard deviation for allele depth in exome sequencing was 
much higher at 0.12 than SNP arrays at 0.03 (Figure 3).

Given the fact that the full set of 250,506 variant bases was 
unacceptably noisy, we filtered out SNPs with SD>0.1 to yield a set 
of 98,168 bases. Lowering the SD threshold down to 0.04, where the 
majority of SNP array bases reside, would have yielded only 1,793, an 
unacceptably low coverage. The BB was cut-off at SD>0.01 since the 
distribution of BB was tighter.

The clustering and high SNP SD filtering resulted in a much 

tighter distribution of BAF derived from exome sequencing at 0.5 
and 1.0 (Figure 4).

A reasonable BAF_SD of 0.7 was achieved and clear true positive 
CNVs were recovered (Figure 5) in a call set with mean of 36 calls per 
sample, more than XHMM which typically provides a mean set of 10 
calls per sample. This broadens the realm of possibility of significant 
association in CNV by increasing the number of putative variants, 
which have additional confidence by referencing the BAF rather than 
LRR alone. We have also built in an algorithm to filter XHMM calls 
based on the frequency of heterozygous genotypes in deletion and 
duplication CNV calls (Figure 6).

Discussion
In addition to standard CNV calling, PennCNV also allows 

for family based recalling to be done, therebylowering the putative 
de novo rate which is important for prioritizing de novoCNVs and 
transmission disequilibrium testing in families [16]. Parental origin 
p-value for de novo further prioritizes de novoCNVs by measuring 
consistency of the inheritance model across the length of the de novo 
region in the child and tracing the genotype states back to the parents.

GC wave correction for intensity is now possible in exome 
sequencing data using the PennCNV gcmodel [17]. 

The sample quality metrics provided in the PennCNV log is 
critically important in measuring error and noise properties of 
samples and be able to exclude those that will bias association.

Having exome sequencing data interpretable by PennCNV allows 
for true integrative SNP array and exome sequencing CNV detection 
by combining these assays CNV data on the same samples generated 

Figure 3: Standard deviation of AB BAF in whole exome sequencing and 
SNP array data. The standard deviations are quantified for the full panel of 
markers for each assay. The distribution of exome probes is clearly shifted 
to higher values, indicating a pronounced noise content hindering clustering 
ability.

Figure 4: Normalized BAF from exome sequencing showing tighter 
distribution around 0.5 and 1.0 with distinct distributions. Using clustering 
and high standard deviation probe removal, the exome sequencing b allele 
frequency distribution is much improved to clarify copy number modes.
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by these two methods. Large gaps between exons and between genes 
cause uncertainty in boundary determination HMM state transition 
from diploid to CNV states and this is helped by integrating the SNP 
array data. 

PennCNV is by far the most widely used CNV detection software 
for SNP arrays. Here we adapt exome sequencing data into the proper 
format and normalized values to fully assess copy variants from WES 
data.

Mosaicism is another important case of CNV in a subset of cells 
or a diseased organ with important cytogenetic implications. Our 
derivation of BAF for sequencing allows visualization of mosaicisim 
and automated detection using RGADA-MAD [18]. Loss of 
heterozygosity (LOH) or run of homozygosity (ROH) can only be 
called by utilizing the allele content, another important feature for 
the CNV field otherwise missed.

Collectively, we detected an average of 10 CNVs using XHMM 
and 36 CNVs using PennCNV-ExomeSeq on the same samples with a 
lower error rate and high confidence score. An average of 2.05 (21%)
CNV calls per sample were the same between the two algorithms. 
This in part reflects calls being excluded by PennCNV-ExomeSeq due 
to heterozygous genotypes in putative deletions with low intensity 

waves and in putative duplications with high intensity waves.

There remains a challenge of noisy BAF and LRR derived from 
exome sequencing causing false positive CNV calls, even after 
clustering and excluding high standard deviation markers. Plotting the 
WES GATK UnifiedGenotyper vcf alt AD/DP (BAF) and WES XHMM 
zPCARD (LRR), we see wider distributions for both compared to SNP 
array. The main concern is the wide distribution around 0.5 for WES 
BAF. To tighten up this distribution we propose several new ideas for 
further investigation: PCA based normalization methods to remove 
high variance latent components?Filtered AD instead of unfiltered 
AD?There could be other filtering quality metrics, however minimum 
depth surprisingly showed modest improvement?Clustering?0/1 
genotypes centeredPFB = PFB – (meanPFB – 0.5), including 1/1 for 
homozygosity, Samtools mpileup –q 15 –Q 20? Genotype base/exon, 
Intensity base/exon, closest match distance allowance filter, VarScan2 
fpfilter. pl bam-readcount, specific heuristics VarScan2 proposed and 
annotated by bam-readcount were: read position 10-90, strandedness 
1-99%, variant reads ≥4, variant frequency ≥5%, distance to 3’ ≥20, 
Homopolymer <5, map quality difference <30, read length difference 
<25, and mismatch quality sum difference <100. Train hmm exome 
data iterative batches of 10, Square matrix with homozygote reference 
genotypes, filter for lower SD SNPs in pfb. We envision that the next 

 
 

 

Exome Duplication TP with AAB/ABB Genotypes 
SD<0.1 AB and SD<0.01 BB Exome Deletion TP without AB Genotypes 

SNP Array Deletion TP without AB Genotypes SNP Array Duplication TP with AAB/ABB Genotypes 

Figure 5: LRR and BAF plots of exome sequencing and SNP array deletion and duplication. Uniform processing of exome and SNP array data show similar 
patterns of LRR and BAF in tandem. Importantly, the loss of 0.5 values for BAF in exome data is evident in the putative deletion region indicated by the drop in 
LRR, a feature not considered by existing exome CNV detection software.
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version of the PennCNV software we anticipate to release in about a 
year, will have vastly improved CNV detection capabilities for WES 
and other sequencing data.

Genomic variant detection from datasets available from large 
cohorts of diseased and healthy individuals lies at the heart of 
genomic association. In order for these associations to be confident 
and well powered, well validated tools must be continually improved 
and nuances of data quality considered. We see the application of 
PennCNV-ExomeSeq software to be highly impactful for elucidating 
variants completely and confidently.

Cell line immortalization may impact the copy number status of 
certain loci. Epstein-Barr virus nuclear antigen leader protein localizes 
to promoters and enhancers with cell transcription factors and EBNA2 
[19]. Epstein-Barr virus nuclear antigen (EBNA) leader protein (LP) 
and EBNA2 (E2) up-regulation of virus and cell gene expression 
is important for human B-lymphocyte conversion to continuous, 
potentially malignant, lymphoblast cell lines. Although the molecular 
mechanismunderlying LP and E2 regulation of cell gene expression 
have been partially elucidated, LP ChIP sequencing studies have now 
revealed that LP and LP/E2 interact genome-wide with human B-cell 
transcription factors, mostly at or near prepatterned promoter sites, 
to increase cell transcription factor occupancies, increase activation-
associated histone marks, and positively affect cell gene transcription.
Epstein-Barr virus oncoprotein super-enhancers control B cell 
growth [20]. Resting B cells have enhancers primed with H3K27ac. 
Upon EBV infection, NFkB, STAT5, NFAT, and EBNA are recruited 
to these enhancers to yield immortalized lymphoblast cells with 
activated EBV super enhancers driving higher level expression of 
MYC, BCL2, and MIR155. Better understanding of the copy number 
states genome-wide along with epigenetic gene regulation in EBV 
cells will create a more complete picture of disease biology.

Conclusion
Here we advance a novel feature to be assessed in whole exome 

sequencing CNV detection: built in genotype B allele frequency for 
automated read of sequencing data. We find the standard deviation 
to be much higher in whole exome sequencing derived BAF than SNP 
array BAF and address the disparity by population clustering and 

Figure 6: Frequency of heterozygous genotypes within XHMM CNV calls. 
XHMM deletion CNV calls have a distribution of heterozygous genotypes 
clearly indicating false positives in a large proportion of calls. XHMM 
duplication CNV calls have an increased frequency of heterozygous 
genotypes 0.5 to 1, indicating potential triallelic genotypes in support of the 
duplication call.

probe standard deviation quality metric filtering. The integration of 
BAF in whole exome sequencing CNV detection led to more putative 
CNV calls to add power to association studies using ParseCNV and 
allows for interpretation of mosaicism and LOH/ROH regions. We 
leveraged this collective wisdom of the SNP array era and the tried 
and true popular tool PennCNV to inform sequencing CNV detection 
and association through ParseCNV [15].
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