
Citation: Tanaseichuk O, Khodabakshi A, Petrov D, Che J, Jiang T, et al. An Efficient Hierarchical Clustering
Algorithm for Large Datasets. Austin J Proteomics Bioinform & Genomics. 2015;2(1): 1008.

Austin J Proteomics Bioinform & Genomics - Volume 2 Issue 1 - 2015
ISSN : 2471-0423 | www.austinpublishinggroup.com
Tanaseichuk et al. © All rights are reserved

Austin Journal of Proteomics, Bioinformatics
& Genomics

Open Access

Abstract

Hierarchical clustering is a widely adopted unsupervised learning
algorithm for discovering intrinsic groups embedded within a dataset. Standard
implementations of the exact algorithm for hierarchical clustering require ()2O n
time and ()2O n memory and thus are unsuitable for processing datasets
containing more than 20 000 objects. In this study, we present a hybrid
hierarchical clustering algorithm requiring approximately ()O n n time and

()O n n memory while still preserving the most desirable properties of the exact
algorithm. The algorithm was capable of clustering one million compounds within
a few hours on a single processor. The clustering program is freely available to
the research community at http://carrier.gnf.org/publications/cluster.

Keywords: Hybrid hierachical clustering; Hierachical clustering; K-means
clustering; Large datasets

millions of compounds ideally should be hierarchically clustered and
prioritized for acquisition. But in practice, informaticians resort to
a greedy algorithm such as Sphere Exclusion [13], which relies on a
predetermined similarity threshold. Second, instead of analyzing all
compound profiles across a panel of screening assays, hierarchical
clustering analyses have usually been compromised and restricted to
~ 20 000 top screening hits due to memory limitations. Therefore,
there exists a significant need to develop a hierarchical clustering
algorithm for large datasets.

Approximating hierarchical clustering in subquadratic time and
memory has been previously attempted [14-18]. However, these
methods either rely on embedding into spaces that are not biologically
sensible, or they produce very low resolution hierarchical structures.
Our goal is to produce hierarchical results with the same resolution
as the exact hierarchical method, although with less accuracy, while
maintaining the bio/chemically meaningful distance metrics. For a
dataset over 20 000 objects, we are limited by both ()2O n memory and
time. Therefore, a reasonable approximation needs to be introduced.
We observe that if an exact hierarchical tree has been constructed,
one can set a similarity cutoff such that tree branches above the cutoff
are distant enough from each other and represent the coarse clusters
of the dataset. The branches and leaves below the cutoff represent
hierarchical structures within small-scale local vicinities. For a large
dataset, we are often initially interested in a “zoomed out” view of the
coarse clusters, then “zoom in” to neighborhoods of interest for a finer
view of the intra-group structures. The two views are often considered
to be the most beneficial properties of the hierarchical clustering. For
example, in the aforementioned compound requisition problem, one
would cherry pick vendor compounds from the coarse neighborhood
if only a small number of compounds can be selected for purchasing.
When budget and logistics permit, one could then lower the cutoff to
pick more compounds within interesting coarse clusters.

To capture both distant and close views of the hierarchical
structure for a large dataset, we propose a hybrid hierarchical
clustering algorithm (Figure 1). Initially, the n objects are clustered

Introduction
Clustering is a popular unsupervised learning technique used

to identify object groups within a given dataset, where intra-group
objects tend to be more similar than inter-group objects. There
are many different clustering algorithms [1], with applications in
biocheminformatics and other data mining fields [2,3], including
studies on protein families [4], functional genomics [2], chemical
scaffolds [5], etc. In particular, clustering algorithms have been widely
adopted in the bioinformatics fields after Treeview [6], a user-friendly
visualization program, was made available following early studies on
gene expression datasets.

Among all clustering methods, hierarchical clustering and
k-means clustering are arguably the two most popular algorithms used
due to their simplicity in result interpretation. In the cheminformatics
field, Wards clustering [7] and Jarvis-Patrick clustering [8] are
corresponding algorithms similar in spirit to hierarchical clustering
and k-means clustering, respectively. Although there is no definitive
answer as to which algorithm is more accurate, hierarchical clustering
has been applied more often in bio-/cheminformatics research
because of its deterministic property and flexibility in flattening the
resultant tree at different cutoff levels.

However, applying hierarchical clustering to large datasets is
rather challenging. First, compared to the linear complexity of the
k-means algorithm, the most popular average-linkage hierarchical
clustering requires ()2O n time; we even observed ()3O n -time
implementations in some popular bioinformatics tools [9]. Second, it
requires ()2O n memory [10], which limits the number of input data
points to ~ 20 000 for a typical desktop computer. In bioinformatics
research, functional genomics profiling data approaching this
limit are routinely generated for the human genome [11]. In
cheminformatics research, modern drug discovery applies ultra-
high-throughput screenings (uHTS) for several million compounds
in one experiment [12]. Two problems arise from uHTS. First, to
expand the screening compound collection, vendor catalogs of

Research Article

An Efficient Hierarchical Clustering Algorithm for Large
Datasets
Olga Tanaseichuk1,2*, Alireza Hadj Khodabakshi1,
Dimitri Petrov1, Jianwei Che1, Tao Jiang2, Bin
Zhou1, Andrey Santrosyan1 and Yingyao Zhou1

1Genomics Institute of the Novartis Research Foundation,
10675 John Jay Hopkins Drive, San Diego,CA 92121, USA
2Department of Computer Science and Engineering,
University of California, Riverside, CA 92521, USA

*Corresponding author: Tanaseichuk O, Genomics
Institute of the Novartis Research Foundation,10675
John Jay Hopkins Drive, San Diego, CA 92121, USA

Received: September 24, 2014; Accepted: February 23,
2015; Published: February 25, 2015

http://carrier.gnf.org/publications/cluster

Austin J Proteomics Bioinform & Genomics 2(1): id1008 (2015) - Page - 02

Olga Tanaseichuk Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

by a k-means clustering algorithm, where k is chosen to be reasonably
large, into roughly k coarse neighborhoods. We then apply the exact
hierarchical clustering algorithm to cluster the k centroids into
a coarse tree, as well as to the objects within each of the k clusters
into k detailed trees. By replacing the k centroids in the coarse tree
by the corresponding detailed trees, this two-step hybrid algorithm
assembles a complete tree of n objects that can be cut, i.e., zoomed
in and zoomed out, at various levels. The number k can be selected
by the user and controls the cutoff reflecting the average similarities
of objects within each coarse neighborhood. Practically, we cannot
reliably distinguish data points positioned closer than the magnitude
of the intrinsic noise of the data. Therefore, these data could be
treated as one aggregated data object without losing meaningful
interpretation of the data set. If the value of k is large enough, the
size of individual k-means clusters approaches the intrinsic noise, and
the k-means clustering step retains most of the essential information,
thus the tree resulted from the hybrid algorithm could be considered
as accurate as the one resulted from the exact AHC algorithm. If
optimized for clustering speed, ~k n can be chosen to yield an
approximate running time of ()O n n and storage of ()O n n as
discussed later in detail.

In the past few years, other attempts have been made to combine
hierarchical clustering with k-means. For example, hierarchical
k-means [19] is a well-known divisive hierarchical clustering
algorithm that constructs a tree by recursively bisecting the data with
k-means. This method has a low time complexity of ()log()O n n ,
however, it may produce low quality clustering results. Specifically,
for small values of k the algorithm inherits disadvantages of divisive
clustering methods-high likelihood that similar objects may be
separated during early stages of clustering, leading to low local
accuracy of the clusters. Choosing larger values of k would potentially
fix this, but at the expense of poor global clustering structure, since
at the same level of recursion all clusters are connected at the same
distance from the root in the complete tree. In contrast, in our hybrid
algorithm we try to preserve both local and global clustering structure
of the data simultaneously.

Materials
As our aim is to develop an algorithm for practical biomedical

research applications, three real datasets encountered in our routine
analyses were chosen. Dataset D1 is an activity matrix consisting of

2117 compounds profiled across 398 cancer cell lines. A subset of this
matrix was previously published as the Cancer Cell Line Encyclopedia
project and was described in detail by Barretina et al. [20]. This dataset
provides an example of a typical medium-size clustering problem
involved in bioinformatics and cheminformatics research.

Dataset D2 is a larger high-throughput screening activity matrix
of 45 000 compounds across 178 assays. This is a subset of the larger
matrix described in a published HTS frequent hit study [21]. A
total of 45 000 compounds that hit the most number of assays were
selected, because this size approaches the upper limit of what an exact
hierarchical clustering algorithm can handle on a typical desktop
computer. This large dataset provides a test case to compare the speed
of clustering and the qualities of resultant trees, when both the exact
hierarchical clustering algorithm and the proposed hybrid algorithm
are applied.

Dataset D3 consists of one million compounds randomly
selected from our in-house compound collection, where the
average Tanimoto structure similarity determined by ChemAxon
two-dimensionalfingerprinting is merely 0.3 [22]. As structural
redundancy of the collection is low, these compounds are expected
to form numerous clusters of fairly small sizes. This set is chosen to
represent the more challenging problem of identifying structurally
diversified compounds from a large vendor catalog as well as to
enable us to study the robustness of the hybrid algorithm.

Results
The hybrid algorithm

In this section, we introduce a hybrid algorithm for hierarchical
clustering of large datasets. Our approach combines the advantages of
the partitioning and agglomerative hierarchical clustering algorithms.

Hierarchical clustering organizes the data into a dendrogram
that represents the clustering structure of the data. We only consider
the bottom-up clustering approach here due to its ability to capture
the local clustering structure of the data. The classic agglomerative
hierarchical clustering (AHC) method [23] requires computation of
all pairwise distances, which has a quadratic complexity. Therefore,
the construction of the distance matrix creates a bottleneck, especially
for high dimensional data and expensive distance functions. Since
AHC algorithms greedily merge pairs of nearest data points (clusters)
into tree nodes, the exact computation of pairwise distances is
important for data points that are close enoughto each other, while
the computation of distances between remote points is unlikely to
contribute and should be avoided whenever possible. Therefore, it
makes sense to partition the dataset to avoid the fulldistance matrix
computation.

In the first step of the algorithm, we partition the data with
k-means [24], a simple and effective clustering algorithm that
generates a locally optimal partitioning of the data. The number of
components k is predefined.The choice of k and performance of our
algorithm with respect to k are discussed later in the paper. We apply
the optimized version of the exact k-means algorithm, which utilizes
a triangle inequality to avoid unnecessary distance computations
[25]. The clusters are initialized uniformly at random from the
data points. In the second step, at the first level, AHC is applied to
cluster each individual component Pi obtained by k-means into an

k-means

AHC

AHC/Hybrid

Figure 1: Hybrid hierarchical clustering pipeline. First, the objects are
clustered by a k-means algorithm. Then, objects within each cluster are
hierarchically clustered by either the exact agglomerative hierarchical
clustering algorithm (AHC), or the hybrid method is applied recursively for
large clusters. Finally, AHC is preformed to cluster k centroids and combine
the trees into a complete tree.

Austin J Proteomics Bioinform & Genomics 2(1): id1008 (2015) - Page - 03

Olga Tanaseichuk Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

individual detailed tree Ti. At the second level, each Ti is treated as a
leaf and clustered by AHC into a coarse tree T. T, therefore, reflects
both the coarse relationships among components as well as detailed
relationships among members of each component.

A few questions arise in the above procedure and require careful
consideration: (1) How are distancesdefined between the components
for the second level of clustering?(2) What should be done when the
distance between a pair of component centroids is smaller than the
radii of associated components?

Regarding the first question, the naive idea of taking the distance
between the centroids of components as a pairwise distance between
these components is undesirable. Consider two pairs of components,
where the distance between the two centroids within each pair is the
same. Additionally, assuming that the first pair of components have
small radii while the other two components have large radii and may
overlap. Clearly, the above naive approach would not capture the
intuition that the second pair of components should be considered
closer. We adopt the idea of data bubbles [26] and define the distance
of twocomponents P1 and P2 as follows:

if
otherwise

1 2 1 2 NN 1 NN 2 1 2 1 2
1 2

NN 1 NN 2

d(C ,C) - (R ,R)+d (P)+d (P) d(C ,C) - (R ,R)³0
d(P ,P)=

maxd (P)+d (P)

Here, Ci is the centroid of the partition Pi, and Ri is the radius
of the component (most of the objects are located within the radius
Ri around the centroid Ci), dNN(Pi) is the average 1-nearest neighbor
distance within the component Pi.

Regarding the second question, for each component Pi, we define
the distance threshold ri so that all points that are farther than ri away
from the centroid are considered outliers and removed from the
component. Outliers are added as individual points and used in the
second level of hierarchical clustering.

In addition, due to the nonuniform distribution of objects within
a real dataset, the k-means clusteringmight result in components
that exceed the size limit of AHC. Therefore, the hybrid algorithm
might need to be recursively applied in a divide-and-conquer
manner. Occasionally, when the height of a detailed tree Ti exceeds
its corresponding level-two centroid distance, its height should be
propagated up to its ancestral nodes along the tree branches during
the assembly of T.

Our hybrid algorithm is outlined in Algorithm 1.

The running time and memory analysis
We theoretically and experimentally evaluate the running time of

the hybrid algorithm. First, let us show that with a reasonable choice
of the partitioning parameter k, the algorithm runs in ()O N N
time for datasets of randomly distributed objects. The running time
of the algorithm is affected by (1) the time to partition the data in the
k-means phase and (2) the running time of the hierarchical clustering
phase. The traditional k-means algorithm requires computing kNL
distances, where L is the number ofiterations. However, in the
optimized version of k–means, only the first few iterations require
distance computations from all the data points to all the centroids.
The time needed for subsequent iterations drops significantly, because
most of the distances are not computed. Thus the overall number
of distance computations becomes closer to kN than to kNL. The
k-means phase runs in ()' ,O kNL where L<L and can be estimated

experimentally. In our experiments, L was in the range of 2 to 5. The
running time of the hierarchical clustering phase includes the time
required to hierarchically cluster k subsets of approximate sizes N/k
and to cluster k centroids. Assuming quadratic time complexity for
the AHC algorithm, the overall running time of the hybrid algorithm
is O(k2 + N2/k + kNL). As the first term k2 is dominated by kNL, our
algorithm runs in O(N2/k + kNL). time. Thus, the minimum expected
running time is achieved when k is set to N=L’, leading to ()O N N
time complexity. The same analysis applies to the memory complexity
which is also bounded by ()O N N .

We measured the experimental running time of the hybrid
algorithm for different values of k, for both the partitioning phase
and the hierarchical clustering phase. The results are shown in Figure
2. Even though the real data is not uniformly distributed, trends in
the experimental results agree with the theory. Note, that the exact
algorithm matches the cases of k=1 and k = N. Clearly, the larger
the data size, the more we gain in clustering speed compared to the
exact algorithm. For example, when the parameters are optimized,

begin
P ← ∅
Perform optimized k-means clustering to partition the data into components P i .
for each component P i do

r i = argmin j dist (P i , P j)
Compute centroid C i
for each point p in P i do

if dist (p, C i) > r i then
Remove p from P i . Add p to P .

for each component P i do
if size (P i) > n then

Recursively apply hybrid clustering to generate a tree T i .

else
Apply AHC to generate a tree T i .

Compute a combined distance matrix for all P i and all points in P .
Perform AHC to generate a tree T .
return T

Algorithm 1: Hybrid clustering of N data points. Given k, the algorithm
partitions the dataset and performs two-level hierarchical clustering to
construct a tree T. (The maximum size of the input for the agglomerative
hierarchical clustering (AHC) algorithm is n. It can be supplied by the user, or
estimated automatically).

A

0 500 1000 2000

0
10

20
30

40
50

k

R
un

ni
ng

 ti
m

e,
 s

ec
on

ds

B

0 100 200 300 400 500

0
2

4
6

8

k

R
un

ni
ng

 ti
m

e,
 s

ec
on

ds

C

0 5000 10000 15000

0
20

00
40

00
60

00
80

00

k

R
un

ni
ng

 ti
m

e,
 s

ec
on

ds

D

0 200 400 600 800

0
50

10
0

15
0

20
0

k

R
un

ni
ng

 ti
m

e,
 s

ec
on

ds

Total time K−means Hier. clust.

Figure 2: Running time of the hybrid algorithm for datasets D1 and D2. (A)
Dataset D1, for all values of k. (B) Dataset D1, zoomed in for k < 500. (C)
Dataset D2. (D) Dataset D2, zoomed in for k < 1000.

Austin J Proteomics Bioinform & Genomics 2(1): id1008 (2015) - Page - 04

Olga Tanaseichuk Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

the hybrid algorithm is only 5 times faster on D1 while it is 370 times
faster on D2, running in 22 seconds compared to 8117 seconds for
the exact algorithm.

Performance analysis
There is no universal agreement on how clustering should be

performed. Therefore, methods for validating clustering results vary
significantly [27]. Since our primary goal is to accelerate AHC, the
hierarchical tree T produced by the AHC algorithm is taken as the
gold standard and is referred to as the exact tree. The tree produced by
the hybrid algorithm is referred to as a hybrid tree or an approximate
tree. Quantitative comparison between the exact tree and a hybrid
tree remains an open problem and few results exist in the literature.
One approach is to use a well-known tree edit distance [28], but it
is computationally expensive and may produce counter-intuitive
results [29]. Another popular approach is to cut trees at certain
heights and measure similarity between the resultant clusters. The
latter was chosen for this study, as it provides visualization that can
be cross-examined by biological and chemical domain knowledge.
Various similarity measurements are applicable to two sets of clusters
resulting from tree cuts, e.g., Jaccard index [30], Rand index [31],
Fowlkes-Mallows index [32], information theoretic measures [33],
etc. Each method has its own advantages and weaknesses [34]. For
example, the Rand index has an undesirable property of converging
to 1 as the number of clusters increases, while the Fowlkes-Mallows
index makes strong assumptions about the underlying distribution of
data, making it hard to interpret the results. The information-theoretic
approaches are promising for clustering validation, but require a
more extensive evaluation. In our study, we chose the Jaccard index,
one of the most common similaritymeasures for clustering.

For each of the two given datasets, we first cut the exact tree T at
some height g, which was selected based on the combination of our
domain knowledge of the bio- and cheminformatics problems and
our visual inspection of the exact hierarchical tree T. This resulted
in a set of clusters C(g) = {C1,C2,…,C|C(g)|}. The corresponding hybrid
tree was then cut at different cutoff values h that would correspond to
granularity. For each h, the Jaccard similarity index between C(g) and
thehybrid clusters ()

~
C h was calculated according to:

~
11

11 10 01

J((g),C()) ,=
+ +

NC h
N N N

Where N11 is the number of object pairs consisting of objects
clustered together into the same cluster in both C and

~
C . N10 +N01 is

the number of object pairs consisting of objects clustered together in
either C or

~
C but not both. The h value that led to the highest Jaccard

index was retained and used for the similarity score
~

() :gS T,T
~ ~

() argmax ((), ()).
∈

=g
h H

S T,T J C g C h

The set of cutoff values H was chosen to evenly cover different
granularity levels of the resulting clusterings, where granularity is
defined as a percent of object pairs that cluster together.

We are particularly interested in the approximation quality for
biologically meaningful clusters with pronounced activity patterns.
Therefore, in the computation of the similarity score, we disregarded
clusters with low average Pearson correlation of the activity profiles
(below 0.2) as well as small clustersthat contain less than 0.1% of the

data. The selected clusters for datasets D1 and D2 are highlighted in
Figures 3A and 4A, respectively. For the dataset D1, we additionally
excluded a large cluster of low-activity compounds. Even though this
cluster is well approximated by the hybrid algorithm, it dominates
the resulting Jaccard index leading to an overall high similarity score.
The results of the proposed similarity measures Sg on datasets D1 and
D2 for the selected clusters are shown in Figure 5. It was observed
that quality measurements for both datasets are rather in sensitive
to the choice of k overa wide range. Since the hybrid tree T retains
both the coarse and detailed structures within a datasetand provides
approximate results for interpretations in-between, it is not surprising
that T reasonably approximates the exact tree. Since high quality trees
are produced for a wide range of the parameter values, it makes sense
to optimize the parameter k mainly for improved running time in
practice.

Discussion
The implementation of the exact hierarchical clustering
algorithm

We have been using a non-trivial assumption that AHC
requires an ()2O n running time. The running times of specific
AHC implementations actually vary significantly from the expected

()2 .O n Cluster 3.0 [9] provides a popular AHC implementation that
is used extensively in the bioinformatics field. For the average-linkage
configuration, Cluster 3.0 implementation takes ()3O n time, as shown
in Figure 6. For this study, we adopt the Murtagh reciprocal nearest
neighbor idea [10], which offers a much improved ()2O n time. To
test this, both Cluster 3.0 and Murtagh algorithms were implemented
in Java and were applied to sample datasets sizing between 1 000 and
20 000 (40 000 for the Murtagh implementation), where each data
object consisted of double vectors of length 80. As shown in Figure
6, the Murtaghmethod indeed performed at the scale of ()2O n and
Cluster 3.0 at ()3 .O n These results are in agreement with the recent

A

B

Figure 3: The hierarchical trees for the dataset D1. The trees are produced
by (A) the exact algorithm and (B) the hybrid algorithm with k = 25. Highlighted
are the biologically meaningful clusters selected for the evaluation of the
approximation quality of the hybrid algorithm. The heat map illustrates the
activity of compounds: red and green indicate active and inactive compounds,
respectively.

Austin J Proteomics Bioinform & Genomics 2(1): id1008 (2015) - Page - 05

Olga Tanaseichuk Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

study [35]. It is worth mentioning that our Java implementation of
Cluster 3.0 is two fold faster than the original C implementation,
and the observation in Figure 6 is not an over-estimation. Note
that although the Murtagh method has been used in the JKlustor
program in the cheminformatics field [22], it is not widely adopted
in bioinformatics. Therefore, bioinformatics researchers not using an

()2O n implementation of AHC could benefit from the release of our
package.

Performance on a large dataset and robustness analysis
A major goal in proposing our algorithm is to provide a hierarchical

method that is capable of clustering datasets that contain more than
40 000 objects. Here, we studied dataset D3, which consists of one
million compounds randomly selected from our in-house compound
collection. Running AHC on such a large dataset is infeasible and
cheminformaticians have relied on greedy algorithms such as Sphere
Exclusion (SE) [13] to partition the compounds into clusters. SE
requires a fixed similarity cutoff value as its input. It randomly selects
a query compound and extracts all remaining compounds, where
their structural similarities to the query compound are above the
predefined threshold. The extraction and exclusion process is iterated
until the collection is exhausted. Because the exact tree is not available
for adataset as large as D3, performance comparisons between SE and
hybrid algorithms can not be conductedin a manner similar to what
we presented in Sections The Running Time and Memory Analysis”
and Performance Analysis”. Nevertheless, we speculate that the

hybrid method provides a result closer to the exact AHC tree than
to SE. This is because no super-sized compound cluster is expected
in D3 based on our domain knowledge, i.e., the sizes of chemically
interesting clusters are small. The first k-means clustering step is
expected to produce only large components of structurally diverse
compounds and is unlikely to break down small groups of highly
similar compounds. The SE algorithm, on the other hand, produced
flattened clusters based on a rather subjective similarity threshold,
which may not match the average similarities in small clusters.

A main criticism on SE is its greediness, which led to different
clustering results in different runs in our experiment. As the hybrid
algorithm also has a random component in the k-means stage, it
would be interesting to compare the two methods for robustness in
the results. We shuffled records in the one million compound dataset
ten times and applied both algorithms. We then measured how well
each method was able to reproduce its own results. In particular, we
first applied a cutoff value to flatten hybrid trees into a similar number
of clusters as in the output of the SE algorithm. Then, through random
sampling of compound pairs in the output clusters, we estimated
the probability that a pair of compounds will cluster together in
consecutive runs to be 37.1% with a standard deviation of 0.9%15for
the hybrid method, and 27.8% with a standard deviation of 1.6%
for the SE methods (p-value is 1×e-10). Similarly, we also estimated
the probability that a pair of compounds will not cluster together in
consecutive runs to be 99.8% and 99.9%, respectively. These results
indicate the superior robustness of the hybrid algorithms across
multiple runs.

Conclusion
We have introduced a hybrid hierarchical clustering algorithm

that requires approximately ()O n n running time and ()O n n
memory, producing hierarchical trees similar to what the exact
hierarchical algorithm offers but applicable to much larger datasets.
With three example datasets, the hybrid algorithm was demonstrated
to be much faster, reasonably accurate and robust for clustering
large datasets encountered in bioinformatics and cheminformatics
research. The software package has been made available to the

A

B

Figure 4: The hierarchical trees for the dataset D2. The trees are produced by
(A) the exact algorithm and (B) the hybrid algorithm with k = 130. Highlighted
are the biologically meaningful clusters selected for the evaluation of the
approximation quality of the hybrid algorithm. The heat map illustrates the
activity of compounds: the intensity of red is proportional to the compound’s
activity.

A

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

S(
T,

T(
k)

)

B

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

S(
T,

T(
k)

)

Figure 5: Approximation quality of the hybrid algorithm. The similarity score
O(n2) between exact tree T and the hybrid trees O(n2) for different values of
the parameter k. (A) Dataset D1. (B) Dataset D2.

3.0 3.2 3.4 3.6 3.8 4.0 4.2

0
1

2
3

4
5

6
7

Log of number of data points, log(N)

Lo
g

of
 tim

e
(m

s)

Log of Murtagh time (ms)
Log of Cluster 3.0 time (ms)
2*log(N)−4
3*log(N)−7
2*log(N)−3.5

Figure 6: The performance comparison between the Murtagh method and
the Java implementation of the Cluster 3.0 method. The running time of the
Murtagh method matches a linear curve of slope 2 while the running time of
the Cluster 3.0 method matches a linear curve of slope 3, showing that their
running time are of O(n2) and O(n2), respectively. The green curve is a linear
curve of slope 2 that crosses the curve of Cluster 3.0 running time included to
make the comparison easier.

Austin J Proteomics Bioinform & Genomics 2(1): id1008 (2015) - Page - 06

Olga Tanaseichuk Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

informatics community and should prove very useful when applied
to a wide range of data mining problems.

Acknowledgments
We would like to thank Frederick Lo and Tom Carolan for their

help proofreading the manuscript.

References
1. Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comput Surv

1999; 31: 264-323.

2. Jiang D, Tang C, Zhang A. Cluster analysis for gene expression data: a
survey. IEEE Transactions on Knowledge and Data Engineering 2004; 16:
1370-1386.

3. Brohee S, van Helden J. Evaluation of clustering algorithms for protein-
protein interaction networks. BMC Bioinformatics 2006; 7: 488.

4. Klimke W, Agarwala R, Badretdin A, Chetvernin S, Ciufo S, et al. The National
Center for Biotechnology Information’s Protein Clusters Database. Nucleic
Acids Res 2009; 37: D216-D223.

5. Downs GM, Barnard JM. Clustering Methods and Their Uses in Computational
Chemistry. John Wiley and Sons 2003; 1-40. doi:10.1002/0471433519.ch1.

6. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display
of genome-wide expression patterns. The National Academy of Sciences
1998; 95: 14863-14868.

7. Ward JH. Hierarchical grouping to optimize an objective function. Journal of
the American Statistical Association 1963; 58: 236-244.

8. Jarvis RA. EAP Clustering using a similarity measure based on shared near
neighbors. Computers, IEEE Transactions 1973; 1024-1035.

9. de Hoon MJL, Imoto S, Nolan J, Miyano S. Open source clustering software.
Bioinformatics 2004; 20: 1453-1454.

10. Murtagh F. Complexities of hierarchic clustering algorithms: state of the art. J
omputational Statistic Quarterly 1984; 1: 101-113.

11. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GMC, et al. Global analysis
of hostpathogen interactions that regulate early-stage HIV-1 replication. Cell
2008; 135: 49-60.

12. Hertzberg RP, Pope AJ. High-throughput screening: new technology for the
21st century. Curr Opin Chem Biol 2000; 4: 445-451.

13. Gobbi A, Lee ML. DISE: Directed Sphere Exclusion. J Chem Inf Comput Sci
2003; 43: 317-323.

14. Krznaric D, Levcopoulos C. The first subquadratic algorithm for complete
linkage clustering. 6th International Symposium, ISAAC; Cairns,
Australia,December 4-6, 1995 Proceedings. Springer 1995; 392-401.

15. Krznaric D, Levcopoulos C. Optimal algorithms for complete linkage clustering
in d dimensions. 22nd International Symposium, MFCS 97, Bratislava,
Slovakia, August 25-29, 1997 Proceedings. Springer 1997; 368-377.

16. Kull M, Vilo J. Fast approximate hierarchical clustering using similarity
heuristics. Bio Data Mining 2008; 1: 9.

17. Murtagh F, Downs G, Contreras P. Hierarchical clustering of massive, high
dimensional data sets by exploiting ultrametric embedding. SIAM J, Sci,
Comput 2008; 30: 707-730.

18. Murtagh F, Contreras P. Fast, linear time, m-adic hierarchical clustering
for search and retrieval using the baire metric, with linkages to generalized
ultrametrics, hashing, formal concept analysis, and precision of data
measurement. P-Adic Numbers, Ultrametric Analysis, and Applications 2012;
4: 46-56.

19. Bocker A, Derksen S, Schmidt E, Teckentrup A, Schneider G. A hierarchical
clustering approach for large compound libraries. J Chem Inf Model 2005;
45: 807-815.

20. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, et al. The
Cancer Cell Line Encyclopedia enables predictive modelling of anticancer
drug sensitivity. Nature 2012; 483: 603-607.

21. Che J1, King FJ, Zhou B, Zhou Y. Chemical and biological properties of
frequent screening hits. J Chem Inf Model 2012; 52: 913-926.

22. Chemaxon. Http://www.chemaxon.com.

23. Day WH, Edelsbrunner H. Efficient algorithms for agglomerative hierarchical
clustering methods. Journal of Classification 1984 1: 7-24.

24. Mac Queen JB. Some methods for classification and analysis of multivariate
observations. In: Procedings of the Fifth Berkeley Symposium on Math,
Statistics, and Probability. University of California Press 1967; 1: 281-297.

25. Elkan C. Using the triangle inequality to accelerate k Means. In: Proceedings
of the Twentieth International Conference on Machine Learning 2003 (ICML-
2003).

26. Breunig MM, Kriegel HP, Kroger P, Sander J. Data bubbles: quality
preserving performance boosting for hierarchical clustering. In: SIGMOD
‘01: Proceedings of the 2001 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM 2003; 79-90.

27. Handl J, Knowles J, Kell DB. Computational cluster validation in post-genomic
data analysis. Bioinformatics 2005; 21: 3201-3212.

28. Bille P. A survey on tree edit distance and related problems. Theor Comput
Sci 2005; 337: 217-239.

29. Zhang Q, Liu EY, Sarkar A,Wang W. Split-order distance for clustering and
classi_cation hierarchies. 21st International Conference SSDBM 2009 New
Orleans, LA, USA, June 2-4, 2009 Proceedings. Scientific and Statistical
Database Management 2009; 10:517-534.

30. Hamers L, Hemeryck Y, Herweyers G, Janssen M, Keters H, et al. Similarity
measures in scientometric research: The Jaccard index versus Salton’s
cosine formula. Information Processing and Management 1989; 25: 315-318.

31. Rand WM. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association 1971; 66: 846-850.

32. Fowlkes EB, Mallows CL. A method for comparing two hierarchical clusterings.
Journal of the American Statistical Association 1983; 78: 553-569.

33. Vinh NX. Information theoretic measures for clusterings comparison: variants,
properties, normalization and correction for chance. J Mach Learn Res 2010;
11: 2837-2854.

34. Wagner S, Wagner D. Comparing clusterings: an overview. Technical Report
2006-04, University at Karlsruhe 2007;

35. Mullner D. fastcluster: Fast hierarchical, agglomerative clustering routines for
R and Python. Journal of Statistical Software 2013; 53: 1-18.

Citation: Tanaseichuk O, Khodabakshi A, Petrov D, Che J, Jiang T, et al. An Efficient Hierarchical Clustering
Algorithm for Large Datasets. Austin J Proteomics Bioinform & Genomics. 2015;2(1): 1008.

Austin J Proteomics Bioinform & Genomics - Volume 2 Issue 1 - 2015
ISSN : 2471-0423 | www.austinpublishinggroup.com
Tanaseichuk et al. © All rights are reserved

http://dl.acm.org/citation.cfm?id=331504
http://dl.acm.org/citation.cfm?id=331504
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1339264&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1339264
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1339264&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1339264
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1339264&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1339264
http://www.ncbi.nlm.nih.gov/pubmed/17087821
http://www.ncbi.nlm.nih.gov/pubmed/17087821
http://www.ncbi.nlm.nih.gov/pubmed/18940865
http://www.ncbi.nlm.nih.gov/pubmed/18940865
http://www.ncbi.nlm.nih.gov/pubmed/18940865
http://www.pnas.org/content/95/25/14863.short
http://www.pnas.org/content/95/25/14863.short
http://www.pnas.org/content/95/25/14863.short
http://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845#.VImBSWdrKIU
http://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845#.VImBSWdrKIU
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1672233&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1672233
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1672233&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1672233
http://bioinformatics.oxfordjournals.org/content/20/9/1453.short
http://bioinformatics.oxfordjournals.org/content/20/9/1453.short
http://www.ncbi.nlm.nih.gov/pubmed/18854154
http://www.ncbi.nlm.nih.gov/pubmed/18854154
http://www.ncbi.nlm.nih.gov/pubmed/18854154
http://www.sciencedirect.com/science/article/pii/S1367593100001101
http://www.sciencedirect.com/science/article/pii/S1367593100001101
http://pubs.acs.org/doi/abs/10.1021/ci025554v
http://pubs.acs.org/doi/abs/10.1021/ci025554v
http://link.springer.com/chapter/10.1007/BFb0015445
http://link.springer.com/chapter/10.1007/BFb0015445
http://link.springer.com/chapter/10.1007/BFb0015445
http://link.springer.com/chapter/10.1007/BFb0029980
http://link.springer.com/chapter/10.1007/BFb0029980
http://link.springer.com/chapter/10.1007/BFb0029980
http://www.ncbi.nlm.nih.gov/pubmed/18822115
http://www.ncbi.nlm.nih.gov/pubmed/18822115
http://epubs.siam.org/doi/abs/10.1137/060676532
http://epubs.siam.org/doi/abs/10.1137/060676532
http://epubs.siam.org/doi/abs/10.1137/060676532
http://link.springer.com/article/10.1134/S2070046612010062
http://link.springer.com/article/10.1134/S2070046612010062
http://link.springer.com/article/10.1134/S2070046612010062
http://link.springer.com/article/10.1134/S2070046612010062
http://link.springer.com/article/10.1134/S2070046612010062
http://www.ncbi.nlm.nih.gov/pubmed/16045274
http://www.ncbi.nlm.nih.gov/pubmed/16045274
http://www.ncbi.nlm.nih.gov/pubmed/16045274
http://www.ncbi.nlm.nih.gov/pubmed/22460905
http://www.ncbi.nlm.nih.gov/pubmed/22460905
http://www.ncbi.nlm.nih.gov/pubmed/22460905
http://www.ncbi.nlm.nih.gov/pubmed/22435989
http://www.ncbi.nlm.nih.gov/pubmed/22435989
http://link.springer.com/article/10.1007/BF01890115
http://link.springer.com/article/10.1007/BF01890115
http://www.aaai.org/Papers/ICML/2003/ICML03-022.pdf
http://www.aaai.org/Papers/ICML/2003/ICML03-022.pdf
http://www.aaai.org/Papers/ICML/2003/ICML03-022.pdf
http://dl.acm.org/citation.cfm?id=375672
http://dl.acm.org/citation.cfm?id=375672
http://dl.acm.org/citation.cfm?id=375672
http://dl.acm.org/citation.cfm?id=375672
http://bioinformatics.oxfordjournals.org/content/21/15/3201.short
http://bioinformatics.oxfordjournals.org/content/21/15/3201.short
http://www.sciencedirect.com/science/article/pii/S0304397505000174
http://www.sciencedirect.com/science/article/pii/S0304397505000174
http://link.springer.com/chapter/10.1007/978-3-642-02279-1_37
http://link.springer.com/chapter/10.1007/978-3-642-02279-1_37
http://link.springer.com/chapter/10.1007/978-3-642-02279-1_37
http://link.springer.com/chapter/10.1007/978-3-642-02279-1_37
http://www.sciencedirect.com/science/article/pii/0306457389900484
http://www.sciencedirect.com/science/article/pii/0306457389900484
http://www.sciencedirect.com/science/article/pii/0306457389900484
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356#.VImLBWdrKIU
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356#.VImLBWdrKIU
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1983.10478008#.VImLLGdrKIU
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1983.10478008#.VImLLGdrKIU
http://dl.acm.org/citation.cfm?id=1953024
http://dl.acm.org/citation.cfm?id=1953024
http://dl.acm.org/citation.cfm?id=1953024
http://www.jstatsoft.org/v53/i09/paper/
http://www.jstatsoft.org/v53/i09/paper/

	Title
	Abstract
	Introduction
	Materials
	Results
	The hybrid algorithm
	The running time and memory analysis
	Performance analysis

	Discussion
	The implementation of the exact hierarchical clustering algorithm
	Performance on a large dataset and robustness analysis

	Conclusion
	Acknowledgments
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Algorithm 1

