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Abstract

Assisted migration is a viable option to reducing the effect of the misalignment 
between forest trees migration rate and the speed of environmental changes 
caused by climate change. To ensure assisted migration success, several 
biological factors such as the contrasting thermal and photoperiod differences 
between plants original and new environments, novel Delphic conditions, 
and epigenetic factors require serious consideration for the safe moving of 
genotypes to new habitats. In situ selection in species’ leading fronts offers 
great opportunities in identifying genotypes adapted to fluctuating environment 
and thus provide adapted material for pole ward movement with minimal risks. 
Available modern genomics-based quantitative genomics methods could offer 
an effective in situ selection approach for the delivery of greater gains of adapted 
stock faster than their counterpart conventional methods.
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with the increased mobility required to cope with rapid climate 
change.

Populations at a species’ leading latitudinal fronts harbor 
genotypes adapted to fluctuating, unstable environments, and there 
is thus an opportunity for their identification and use as planting 
sources for new sites with minimal latitude shift (Figure 1) [10,15-
19]. In situ selection in these populations offers a unique partnership 
between nature and man where existing natural peripheral 
populations play a dual breeding (production of adapted offspring) 
and testing (exposure to fluctuating environment) role. To maximize 
survival of the selected individuals and their offspring, man-made 
in situ selection among these adapted genotypes should exclusively 
focus on adaptive traits rather than yield attributes. Most adaptive 
attribute, such as cold and drought tolerance and timing of growth 
initiation and cessation, are known to have high genetic control, and 
spatial and age effects differences will thus be minimal [20].

The extent of genetic diversity of species peripheral populations 
is often thought to be lower than that of their central counterparts; 
however, there is increased evidence supporting the role of gene flow 
as an important force replenishing genetic diversity [21], with some 
suggestions that gene flow will introduce genes that will be better 
adapted than local ones under future climate change scenarios [22-
23]. Additionally, it is expected that the warming trend will increase 
growth and fecundity, improve survival, and promote germination 
and recruitment [24-23], thus chances for increased productivity in 
the new favorable environmental conditions.

Genetic evaluation and ranking of selected individuals at species’ 
leading edge can easily be accomplished using modern genomics 
fingerprinting techniques [26]. Furthermore genomics-based 
quantitative genomics approaches that simultaneously utilize large 
amount of genomic information to explain the observed phenotypic 
variability of complex polygenic traits are available [27-29]. These 

Short Communication
Most plant populations are locally adapted and genetically 

differentiated for adaptive traits. Global warming is threatening 
this adaptation. Assisted migration, the physical movement of 
genotypes to “favorable” new environments, is perceived as a viable 
option to ameliorate the misalignment between migration rate of 
plant populations and environmental alterations caused by climate 
change [1-3]. This process is critical for avoiding mal adaptation and 
requires perfect matching between the genotypes being moved and 
a constantly changing environment. While assisted migration seems 
sensible, it assumes perfect matching between the genotypes moved 
and their new environment in spite of the drastic changes caused 
by, for instance: a) contrasting thermal environments, b) substantial 
photoperiod shifts, c) novel and Delphic conditions and d) epigenetic 
after-effects associated with plants transfer (a.k.a., environmental 
preconditioning/imprinting) [4-9].

In forestry, assisted migration endeavors to accomplish two 
goals; namely, capturing the genetic gains achieved through long-
term traditional tree breeding and moving the improved material 
to track the changing favorable environmental conditions created 
by the expansion of a species’ climatic window across latitudes 
[10]. This is motivated by the time scale dedicated to, and the size 
of, finances invested in traditional programs. Tree breeding often 
involves repeated cycles of breeding, testing, and selection [11]. These 
programs are aimed at meeting the planting demands of specific 
breeding zones, and thus parents selection and offspring testing and 
reforestation are often restricted within these areas [12-14]. Substantial 
and unrestricted genetic movement is exercised within the confines 
of these specific breeding zones as offspring (new recombinations) 
are planted throughout these zones. Notwithstanding the man-made 
unrestricted genetic movement within breeding zones, these breeding 
programs are in essence, spatially static and might be slow in dealing 
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genetic analyses are perfectly suited to unstructured natural 
populations where prior knowledge of genealogy is often lacking. 
The selected individuals, in turn, would form the raw material 
for the production of adapted stocks for planting in new favorable 
environmental conditions that are located at the species’ latitudinal 
front edge and beyond. This approach of natural breeding, testing 
and selection mimics traditional breeding and selection programs yet 
offers faster delivery of proven adapted stock.
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