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Abstract

This paper presents the scientific efforts of the group of engineers and 
scientists from the Laboratory of Biomechanics and Automatic Control Systems 
– LaBACS, Faculty of Electrical Engineering, Mechanical Engineering and Naval 
Architecture, University of Split, Croatia. The field of our expertise is biomedical 
engineering, and we are dedicated to finding the solutions for various current 
biomedical engineering problems. The primary goal of our research interests is 
to develop new, state-of-the-art, cost-effective biomedical and biomechanical 
measurement systems and to apply them on the human subjects to obtain 
scientifically significant results. This paper presents a short review of some 
of our newly developed measurement systems and digital signal processing 
techniques and algorithms for processing and analysis of the measured 
biomechanical and biomedical signals.

Keywords: Biomechanics of human movements; 3D Optical motion tracking 
system; Inertial sensors; Computer vision; Biosignals; Human anthropometric 
parameters 

essential step in biomechanical research used in sports and medicine. 
It can include various methods and technologies because of large 
range of possible applications.

Regarding the term of biosignal; it implies a broad spectrum 
of different signals, from Electroencephalograms (EEG), 
Electrocardiograms (ECG), and Electromyograms (EMG) which 
measure the electrical activity of muscles during contraction, to the 
biomechanical signals such as kinematics data of human motion 
(motion trajectories, velocities and accelerations). Biosignals 
measurement, processing, analysis, identification and classification 
are a wide research area for itself. As an example, biosignal processing 
involves the use of signal processing techniques for the interpretation 
of physiological measurements and the understanding of physiological 
systems [2]. Although the computerized analytical techniques of 
signal processing are obtained mostly from engineering fields such 
as telecommunications and applied mathematics, the nature of 
physiological data requires substantial biological understanding for 
its interpretation [2].

Design and development of bioinstrumentation and biosensors, 
including biosignal processing and classification software, require 
an extensive knowledge and experience in different engineering 
fields like electrical and mechanical engineering, computer science, 
artificial intelligence, and machine learning. 

The research done by LaBACS in the area of biomedical 
engineering is recognized through research grants and numerous 
publications in international scientific journals [3-8]. The intention of 
this review paper is to shortly present our new achievements in some 
of the research areas in which we are currently involved. The paper is 
organized in four major sections, as follows:

In Section 2; our multimodal approaches to the field of 
biomechanics of human movements are presented. We have 

Introduction
Biomedical engineering or bioengineering can be defined as 

the application of engineering techniques to the understanding 
of biological systems of the human, and to the development of 
therapeutic techniques, bioinstrumentation, and biosensors, among 
other. Bioengineering is relatively new, but multidisciplinary research 
field which combines knowledge and principles from electrical and 
mechanical engineering, computer science, biology, medicine, 
chemistry, etc. Therefore, biomedical engineering as a scientific 
discipline can be divided into a whole range of research fields 
including biomechanics, biosignals, bioinstrumentation, biosensors, 
biomaterials, biomolecular engineering – let us mention only few of 
them. The main goal of each of these fields is to improve the quality of 
human life not only in illness, but in wellness, as well. 

At the Laboratory for Biomechanics and Automatic Control 
Systems - LaBACS, at the Faculty of Electrical Engineering, 
Mechanical Engineering and Naval Architecture, University of 
Split, Croatia, a group of electrical and computer science engineers 
and scientists have specialized different subfields of biomedical 
engineering research and education. Our research interests include 
biomechanics of human movements, biosignals measurement, 
analysis, identification, and classification, and development and 
application of bioinstrumentation and biosensors. 

Biomechanics involves the precise description of human 
movements and the study of the causes of human movement [1]. The 
study of biomechanics is relevant to professional practice in many 
professions related to kinesiology, sport and medicine. For example, 
the physical educator or coach who is teaching movement technique 
and the athletic trainer or physical therapist treating an injury uses 
biomechanics to qualitatively analyze movement [1]. Therefore, 
the precise measurement and analysis of human movements is an 
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designed, developed, and tested several different systems for human 
motion tracking and detection which will be described in this paper 
in the following manner:

The first approach is the design, development, and evaluation of 
optical motion-tracking system based on active white light markers 
[3]. The whole system is developed as an affordable (low cost) 
kinematics measurement system for laboratories where commercial 
‘gold standard’ motion-capturing systems such as Vicon [9] and 
Optotrak [10] are unavailable. The novelty of our approach really 
rests with the experimental setup and application of the system 
to measurement of human kinematics. The use of cost-effective 
visible light LED markers, and two low-cost fast cameras, instead of 
expensive Infrared (IR) markers and IR cameras is the novelty itself, 
as well. The system is intended to be used in measurement of human 
motions in laboratory conditions (activities like human gait, treadmill 
walking, and some in-door individual sport activities like cycling and 
ergo meter rowing).

The second approach aims to overcome the drawbacks of the 
first one (system implementation only in laboratory conditions and 
only on individuals). Therefore, we developed the system based on 
image processing procedures which detects the objects (humans) in 
demanding backgrounds such as water [11]. We tested our system in 
case of tracking players in water polo and the obtained results showed 
the validity and efficiency of our proposed system.

Many biomechanical analyses are interested in the estimation of 
the pose (position and orientation) of body segments. In particular, 
head pose estimation is of relevance for both, kinematics data 
acquisition and head range of motion evaluation. While pose inference 
can be made with many commercially available optoelectronic 
systems and inertial measurement units, computer vision techniques 
draw research attention since they provide a cost-effective solutions 
to body segment pose estimation. Therefore, as a third approach to 
human movement, we developed a computer-vision method which 
estimates head pose from uncalibrated monocular images [12]. Our 
method is based on a weak perspective projection model of camera 
and a triangular face model. 

Besides three previously mentioned motion-tracking techniques, 
our fourth approach is oriented toward implementation of inertial 
Micro-Electro-Mechanical (MEMS) sensors. In the field of human 
motion tracking, inertial sensors have become attractive alternative 
to optoelectronic methods since they are usually more cost effective 
and they have higher mobility and lower subject set-up time [4-13]. 
As an alternative to computer-vision based human pose detection, 
previously described, we proposed the system based on inertial 
sensors. In this case, our system was implemented on a problem of 
human head pose estimation with the aim of using head motion as 
a means of controlling computer pointer and different objects (like 
robot manipulator) by subjects with no control over upper limbs [6].

Apart from the third and fourth approaches, that were oriented 
toward detection of head pose, our fifth approach is focused on 
detection and recognition of other body part movements. We 
developed gesture recognition system which also implements 
MEMS inertial sensor (three-dimensional accelerometer build 
into smart phone) [14,15]. Our system uses advanced machine 

learning algorithms, specifically, distance metric learning for gesture 
classification and is capable to recognize nine different gestures 
performed by a human, with very high accuracy.

Section 3: Deals with biosignal measurement, analysis, 
identification and classification. In this paper we will present two of 
our different applications of biosignal processing:

Regarding biosignals, first research interest was focused on gait 
patterns of human and humanoid robots [7]. Human (or humanoid 
robot) gait is often described by changes in angular rotation, angular 
velocity, and angular acceleration of hip, knee and ankle joints during 
one gait cycle. Using optical measurement system, developed in our 
laboratory [3], we performed measurement on 30 healthy barefoot 
humans while walking on a treadmill. We also simulated types of 
irregular gait, by measurements on subjects wearing knee constraints. 
By analyzing obtained measurement results, we proposed new 
kinematics parameters (among which is so-called Gait Factor) which 
clearly indicate the discrepancy between normal, healthy gait trials 
and irregular gait trials. We showed that the proposed Gait Factor 
parameter is a valuable measure for the detection of irregularities in 
gait patterns of humans and humanoid robots.

The second focus of our biosignal research is dealing with EEG 
signals. The purpose of our work was to perform the efficient and 
automatic classification of sleep stage, based on features extracted 
from measured EEG signals [8]. We analyzed EEG signals of 20 healthy 
babies, during daytime sleep. We proposed novel feature vectors of a 
single EEG channel, and performed sleep stage classification by using 
the Support Vector Machine (SVM) classification algorithm. We 
obtained high classification accuracy, higher than the human experts’ 
agreement, which confirms our method as an efficient procedure for 
automatic sleep stage classification. 

Section 4: Deals with human anthropometric parameters 
estimation. Obtaining accurate anthropometric body segment 
parameters in a fast and reliable manner is an essential step in 
biomechanical analysis of human motion. With advance of computer 
vision, and reduction in cost of electronic components, building a 
customized computer-vision based measurement device becomes 
possible. Therefore, we developed 3D structured light scanner for 
anthropometric parameter estimation, consisting of stereovision 
system with one active sensor (LPD projector) and one passive 
sensor (camera) [5]. We proposed novel structured light pattern for 
3D scanner. The efficacy and accuracy of the proposed system was 
tested both on artificial objects with known dimensions, and on eight 
human subjects.

Human Motion Tracking and Detection 
Optical motion-tracking system based on active white 
light markers 

Our objective was to design, develop, and validate a simple 
and cost-effective kinematics measurement system with sub-pixel 
accuracy [3]. The novelty of the developed system is its design, 
which is based on LED markers operating with visible light, rather 
than the IR markers or passive reflective markers that are commonly 
used. The backbone of the developed system is a pair of high-speed 
industrial cameras. Calibration procedures and a super-resolution 
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marker model were introduced, ensuring sub-pixel marker centre 
detection which in final resulted with higher 3D reconstruction 
accuracy. Evaluation of the system consisted of an accuracy test for 
stationary and dynamic objects. Major limitations of any marker-
based optical tracking systems are marker occlusion by body parts 
and marker aliasing, and inoperability in dynamic lighting conditions 
(outdoors). Skin-mounted marker trajectories measured with optical 
motion capture systems are considered as an adequate representation 
of the underlying bone trajectories, even though there is an evident 
motion between the bone and a skin-mounted marker. Despite 
these drawbacks, optoelectronic devices are today the major tool 
used for tracking the movements of a human body. Unlike other 
methods, they offer a complete solution, since they enable simple 
reconstruction in all three spatial dimensions of the global coordinate 
system, and are relatively simple to build. Implementation of these 
systems in laboratories has resulted in a higher quality of research and 
many clinical applications.

Materials and Methods
Proposed system was developed as an affordable measurement 

system for laboratories where commercial systems such as Vicon and 
Optotrak are unaffordable. Improvement of the accuracy (resolution) 
of the measurement system was achieved by introduction of an image 
super-resolution technique, which pre-processes the observed image 
frames, and determines the location of objects in the analyzed frames. 
Measurement system (depicted in Figure 1) includes both hardware 
and software components. The main hardware component is a pair 
of Basler 602fc high speed digital cameras, capable of feeding the 
computer at a rate of 100 frames per second with resolution of 560 
X 490 pixels. Body markers were manufactured using a 3mm flat-
top LEDs with light intensity of 10 Cd. Special plastic housings 
were used for holding the LEDs and for their optimal placement 
on a body surface. Software components include procedures for 
camera distortion removal, system calibration, marker detection, 
tracking and 3D marker position reconstruction. A user-friendly 
interface was designed, offering initial marker identification and final 
representation of the measured and analyzed kinematics data in 3D 
space. 

System accuracy improvement

Capturing images of an object in space is a procedure that takes 
discrete samples of the continuous object’s surface and records them 
in the memory in a form of image pixels. The introduced super-
resolution method utilizes the marker’s intensity distribution on a 
captured image: in real conditions, when the marker is not perfectly 
centered with the camera’s pixel centre, marker intensity decreases 
non-uniformly on its edges. Light emitted from light source is 
distributed upon camera’s several neighboring pixels, as shown 
in Figure 2. The intensity slope on the marker edge is following 
Gaussian curve. This property is utilized in the calculation of an exact 
marker centre location. The proposed marker model is based on a 
2D Gaussian curve, which is presented with equation (1), where I is 
intensity at the desired location (x,y) around the marker centre, A is 
maximum intensity, and σ is standard deviation.

2 2( )/(2 )( , ) x yI x y Ae σ− +=
     

      (1)

While having acceptable marker model, it is possible to determine 
marker center location inside single camera pixel. For the sake of 
computing time, algorithm is set to calculate marker center in 1/20 of 
pixel size (while other division are also possible).

Results
The results of the accuracy trial in static laboratory conditions for 

100 markers are presented in Table 1. A comparison of 3d errors in 
the cases with and without application of the sub-pixel algorithm is 
shown. The system has a mean absolute 3D error of 0.2009mm with 
standard deviation of 0.1642mm. Currently, the developed system is 
widely used for biomechanical research in LaBACS. However, future 
work is required to perform motion analysis of more complicated 
movements (where marker occlusion is frequent), by adding more 
cameras, and to include an algorithm for automatic detection and 
identification of markers based on a human body model.

Detection of global movements of multiple persons based 
on image processing

Systems for tracking team movements in sports are dominantly 
focused on the most popular games such as football [16] and 

Figure 1: La BACS 3D kinematic measurement system based on visible light 
LED markers and two high speed cameras.

Figure 2: Uneven intensity distribution on marker edges.
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basketball [17]. We focused our research on application of tracking 
players in water polo having in mind that this application has some 
interesting specificities that should be addressed adequately [11]. 
General but much simplified system architecture is presented in 
Figure 3. For category classification we used supervised classification 
that uses training sets of object images to create descriptors for each 
defined class. The training sets are selected manually to represent a 
common picture set of that class. The classifier method then analyzes 
the training set and generates a descriptor for that particular class. 
This descriptor could then be used on other object images, which 
determines if that image is a part of that class.

Particular interest is on development of image processing 
procedures that can cope well with problem of object detection in 
scenes with dynamic background such as water. For this purpose, 
we proposed a novel method for pixel classification. Luminance was 
separated from YCbCr color space and optimal 2D color plane and 
3D color space for pixels set classification defined. 2D color plane 
classification is based on Euclidean distance while 3D color space 
classification is based on the use of bivariate histograms. Obtained 
results showed the validity and efficiency of the proposed approach 
[11]. It is important to point out that this approach could be used 
for other applications dealing with tracking objects in water, not only 
sports related. Therefore, our future work will be oriented in that 
direction.

Head pose estimation using computer vision and facial 
anthropometric parameters

In LaBACS, a computer-vision method has been developed which 
estimates head pose from uncalibrated monocular images [5]. The 
approach addresses the problem of 3D configuration reconstruction 
of head using 2D spatial information of locations of facial features in 
images and anthropometric parameters of face.

Description of computer – vision method for pose 
estimation

Proposed method is based on a weak perspective projection 
model of camera and a triangular face model. According to [18], 
the 3D object pose estimation from 2D is possible for any rigidly 
connected structure when following assumptions hold: 

1. The image formation can be closely approximated by a weak-
perspective projection model. 

2. The image coordinates of the points between connected 
segments are known.

3. The relative lengths of the segments are known.

In order to apply weak-perspective projection model, local depth 
of the object of interest must be small compared to the distance 
between object and camera, which is applicable in many image 
acquisition setups. Weak-perspective projection is exemplified in 
Figure 4. And can be described as a scaled orthographic model 
with equation (2), where s is the unknown camera scale, [X,Y,Z]T 
are 3D coordinates of model point, [x,y]T are corresponding image 
coordinates. 

X
x

s Y
y

Z

 
   =       

     
      

      (2)

The system described with (2) is under-constrained and will 
consequently produce more than one solution. This is due to unknown 
scale parameter and inability to resolve relative depth ambiguity. In 
our method constraints are proposed to remove recovery ambiguity. 

Head can be represented as a 3D rigid body within the 3D 
coordinate system. Geometry for such a head model is obtained 
from anthropometric measurements of distances between natural 
landmarks such as eyes, nose, mouth, ears, etc. As the most 
distinguishing features of the face are eyes and mouth, we represent 
the head with the simple triangular model defined by three vertices 
Vi(X,Y,Z), i = 1...3. These vertices, in image coordinates, correspond 

3D
(with sub-pixel algorithm)

3D
(without sub-pixel algorithm)

Er
ro

r
[m

m
]

mean 0.2009 2.8420

std 0.1642 2.3540

RMSE 0.2698 4.5815

Er
ro

r
[p

ix
]

mean 0.0490 0.6937

std 0.0401 0.5746

RMSE 0.06583 1.11798

Table 1: Results of accuracy test in static conditions.

Figure 3: Simplified schema of players tracking system.
Figure 4: Model points V1, V2, V3 undergoing scaled orthographic projection 
to produce image point’s v1, v2, v3.
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to centers of eyes and the middle point between mouth corners, 
denoted as vi(x,y). More complex model would include the detection 
of other facial features, like nose, ears and different face marks which 
are skin-colored and are hard to detect. The anthropometry from [19] 
is adopted: d(V1,V2)=d(V3,V2) ; d(V1,V3)=6.45 cm ; d(V1,V3)= 1.22 
d(V1,V2). 

The approach to computing the pose of triangular model from 
three corresponding points in monocular image follows the work of 
[20]. To recover 3D pose of a model it is required to know the length 
of segments between vertices (D12,D23,D13) and corresponding lengths 
between image points (d12,d13,d23). Dij denote the distances between 
vertices Vi and Vj. Similarly, dij denote the distances between vertices 
vi and vj. (For notation, please refer to Figure 4.) 

       
      (3)

      (4)

       
       (5)

Where:

       (6)

       (7)

      (8)

      (9)

s – Scale; h1, h2, H1, H2 – depths

The solution has two-way ambiguity except when h1 = h2 = 0. 
The ambiguity corresponds to a reflection about a plane parallel to 
image plane, since we cannot tell which of the points has smaller 
z-coordinate. To resolve this issue we proceeded by accounting for 
foreshortening of each triangle’s side separately. This was motivated 
by the observation that recovered three-point model varies under 
different scales in some range around previously estimated scale 
factor. 

The detailed description of constraints to a solution are given 
in our previous work [12], as well as the procedure to calculate the 
rotation matrix R and translation vector t, which are used to define 
pose estimation. The proposed procedure estimates the relative pose, 
as there is no world coordinate frame with which to associate the 
head in the scene. We used image coordinate frame related to the 
image of frontal view (z=0), but any other image coordinate frame is 
appropriate as well. 

Results: The example of recovered 3D model points is given 
in Figure 5. Results are presented for yaw pose changes. The arrow 
showing the orientation in head images is a result of a back projection 
of a fourth vertex V4 to image plane. Since the pose recovery is 
affected by facial feature localization, our current efforts to improve 
the proposed method are oriented toward stabilization of feature 
detection and future work will be directed on verification of our 
results with our 3D measurement system XSense [21].

Body orientation estimation based on inertial sensors and 
new two-layer stochastic filter architecture

As already mentioned, inertial sensors have become attractive 
alternative to optoelectronic methods in the field of human motion 
tracking and detection. However, they rely on rather intensive signal 
processing algorithms in order to eliminate or reduce drawback of 
individual sensors (accelerometers, gyroscopes and magnetometers) 
like temperature drift, gravity bias and magnetic interference. This 
is in general achieved with some variant of Kalman filter or more 
recently particle filters. 

Kalman filters are usually more computationally effective than 
particle filters (note computation times in Figure 6), but due to 
assumptions about linearity (depending on variant) and Gaussian 
distribution of process and measurement noises they might perform 
rather poor when compared to particle filters. This is depicted in 
Figure 6 where EKF stands for Extended Kalman filter. In order to 
overcome this we combined both estimators in two layer architecture 
with the aim of increasing computational efficiency while maintaining 
high level of accuracy [6]. Several different architectures were tested 

2b b acs
a

+ −
=

2 2 2 2
1 2 12 12 13 13( , ) ( ( ) , ( ) )h h sD d sD dσ= ± − −

1 2 1 2
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Figure 5: Pose recovery for pitch head pose variation.
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on a problem of human head pose estimation with the aim of 
using head motion as a means of controlling computer pointer and 
different objects (like robot manipulator in Figure 7) by subjects with 
no control over upper limbs [22].

After testing several architectures both on simulated data and 
on real life data we found two layer scheme depicted in Figure 8 
to perform best in terms of both accuracy and computational cost 
(indicated by required computational time). In this scheme layer 2 
which contained particle filter was executed at highly reduced rate 
and was active when layer 1 was not active. Thus a good hand-off 
procedure was required. When going from layer 1 to layer 2 hand-
off was achieved so that particle filter is presented to extended 
Kalman filter as additional measurement source with mean value and 
standard deviation calculated over all particles. Transition from layer 
1 to layer 2 is made under assumption that gyroscopes biases cannot 
change significantly during those time instances when layer 2 is active 
thus they were not forwarded to that layer reducing computational 
time. Layer 1 output is then used to generate required number of 
particles based on Gaussian distribution with estimated value as 
mean and using calculated covariance matrix. Final output is current 
output from either layer 1 or layer 2 depending which time instance is 

considered (i.e. which layer is currently active).

Results: Proposed scheme was tested on real life data recorded 
during mouse pointer control with human head. Obtained results 
(processed in batch mode) are presented in Table 2. Measurements 
from X Sense MTx sensors were used as baseline measurements. 
Procedure described above is annotated as Scheme 2in the table. As 
can be seen from the table proposed scheme has the best combination 
of performance values: reasonably low computational time (about 
4 times lower than standard particle filter) and good accuracy in 
terms of root mean square error (between 5-20% improvements in 
comparison to Extended Kalman filter).

To show practical applicability of the proposed architecture it was 
tested in real time scenarios of:

1.) text entry on virtual keyboard based on 15 test subjects with 
achieved performance of average typing speeds of 5.01 normalized 
words (5 characters including space) per minute

2.) Head gesture recognition with 15 test subjects based on 
discrete dynamic movement primitives as features. In total 6 different 
gestures were considered with average recognition rate of 77% using 
simple classificatory (based on correlation coefficient of calculated 
primitive weights).

3.) Control of robotic manipulator (Figure 7) using 3 test subjects 
on a task of relocating plastic cup from current to target location. Task 
was achieved successfully in all three instances with varying execution 
times and was aided with inclusion of on inverse robot model.

Thus we concluded that the proposed two layer architecture 
does indeed combine some of the positive qualities of Kalman and 
particle filters (as demonstrated in Table 2) and can be used in 
real time for practical applications. Possible future improvements 

Figure 6: Example of Kalman filter poor performance in comparison to 
particle filter, in terms of accuracy.

Figure 7:  Human head motion tracking for mobile manipulator control.

Figure 8: Two layer architecture combining Extended Kalman filter and 
particle filter for improved performance.

Algorithm
Root mean square error [o]

Time [s]
Roll Pitch Yaw

EKF 1.49 1.42 2.63 0.37

PF 1.08 1.38 2.17 21.52

PF (simplified) 2.85 4.83 4.68 4.41

Scheme 1 1.14 1.24 3.5 4.92

Scheme 2 1.15 1.37 2.21 5.01

Scheme 3 0.92 1.68 2.72 155.66

Scheme 4 3.22 8.08 10.41 4.28

Table 2: Estimation results for real life human head pose .
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include implementation of adaptive extended Kalman filter, adaptive 
number of particle filter particles and inclusion of different hand-off 
procedures.

Gesture recognition system based on MEMS accelerometer 
sensor

Another approach of implementation of inertial sensors is 
described in the following section. The rapid development of 
the MEMS sensor technology has inspired research in the field 
of accelerometer-based gesture recognition. This new, emerging 
interaction technique suits well the requirements in ubiquitous 
computing environments. Therefore, we focused our research 
toward the development of gesture recognition system based on 3D 
accelerometers embedded into smart phones. 

Previous work on accelerometer-based gesture recognition 
mainly performed matching or modeling in time domain. The 
two main directions of presented research are Dynamic Time 
Warping (DTW)-based approach [23,24], and Hidden Markov 
Model (HMM)-based approach [25-27]. In our work, additional 
improvement is provided with introduction of adopted set of features 
used for recognition stage [15]. The developed system uses distance 
metric learning for Large Margin Nearest Neighbor (LMNN) 
classification in order to improve the results of classification and 
pattern recognition [14]. LMNN classification was proposed because 
it showed significant improvement on nearest neighbor classification 
using a Euclidean distance metric. After testing phase that was 
performed using MATLAB and PC computer, a prototype user 
application was developed on Google’s Android platform to examine 
how the system performs in real life situations. Figure 9 presents the 
gesture recognition system architecture. In order to ease and to speed 
up interaction with a smart phone or some other mobile device, the 
device’s built-in three-dimensional accelerometer is used. The system 
consists of a knowledge database that stores several sets of gestures 
and the corresponding execution actions, and a gesture recognizer 
algorithm that takes the tracking data obtained from the user and 
identifies the gestures. Whenever the user inputs a gesture, it is being 
picked up and recorded by the accelerometer sensor. The acceleration 
data is then filtered and feature extraction module codes it to a 
corresponding feature vector. In teaching mode, the gesture example 
feature vector is simply saved to the database with an appropriate label 
attached to it for future use, whilst in recognition mode, it is passed 
further to the classifier component that uses the preset several sets of 
gestures in the knowledge database to learn the distance metric and 
identify the most probable gesture. Finally, the result of the gesture 
recognition process launches the corresponding action. 

The ongoing work is focused on extending the proposed system 
to include gesture spotting. In the current setup, the user needs to 
touch the screen of the device to indicate the beginning and the end 
of the gesture, which is not realistic. A more appropriate scenario 
would be to detect meaningful gesture traces from the stream of hand 
movements and recognizing them accordingly. Another interesting 
topic that is being explored is the issue of input device tilting, which 
can produce erroneous recognition results, if not taken into account. 
Additionally, we are planning to conduct a comprehensive, subjective 
user study that will help us evaluate the quality of user experience 
while running the system.

Biosignal Measurement, Analysis, 
Identification and Classification
Processing and analysis of kinematics data measured 
during human gait

Our approach to the analysis of human (humanoid robot) gait 
was to propose the new kinematics parameters which would indicate 
the deviations of the gait of a particular subject from the normal 
gait pattern [7]. 3D gait kinematics was measured with the “in-
house’’ made system, described in section 2.1. In order to provide 
a quantitative measure which would distinguish an irregular from 
a normal healthy gait pattern, we introduced five new kinematics 
parameters including the Gait Factor parameter (GF). Proposed 
Gait factor parameter is prominent to be the valuable measure for 
detection of irregularities in gait patterns of humans and humanoid 
robots.

Measurement procedure: The experiment included 
measurements on thirty healthy, barefoot humans while walking 
on a treadmill with normal natural gait and simulated irregular 
gait. Series of collection periods lasting no less than 1 min for each 
subject provided total of 150-200 gait cycles. In order to simulate 
irregular gait pattern, subjects were instructed to walk with artificial 
constrain on right knee. This procedure produced reduced mobility 
of a selected joint, thus causing irregular gait pattern. The kinematics 
of each joint were presented in a form of phase plots, closed 3D curves 
that portray the relationship between joint angle, angular velocity and 
acceleration, Figure 10. In order to compare an individual, potentially 
irregular gait trail with the normative (healthy gait), and to detect and 
evaluate the difference between irregular and normal gait pattern, 
we proposed a set of new kinematics parameters, En, for each 
analyzed joint (En_hip, En_knee, and En_ankle). Each parameter is based on 
the calculation of Euclidian distance between points in phase plot 
of observed gait cycle and its corresponding normative phase plot. 
Second introduced parameter, PSn, indicates the phase difference 
between the hip, knee, and ankle angle trajectories in phase plots 
for the normative and particular gait trial, Figure 10. The trajectory 
of phase shift plotted against the percentage of gait cycle shows us 
if gait events of particular subject are shifted according to the gait 
cycle of the normative gait. In order to establish a unique kinematics 
parameter which would indicate difference between normative gait 
trial and particular gait trial, we propose the third parameter, the gait 
factor, GFn, which incorporates PSn parameter and En for all joints 
contributing in the movement, and is defined as: 

      (10)

Figure 9: Gesture recognition system architecture.

( )_ _ _
1
3n n hip n knee n ankle nGF E E E PS= + + ⋅
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Results: We calculated the values of the proposed parameters for 
two types of gait: normal, healthy gait performed by healthy subject, 
and irregular gait simulated by wearing external knee constrains 
during walking trials. By focusing on the results shown in Figure 11, 
the difference between normal and irregular gait patterns is clearly 
indicated. Moreover, exact moment or phase in gait cycle could be 
determined where large irregularities are observed. As a future work 
idea, application of the proposed method on other cyclic movements 
like pedaling or rowing is also an option.

Automatic classification of infant sleep based on 
instantaneous frequencies in a single-channel EEG signal

There have been numerous studies related with sleep stage 
classification, which have confirmed that feature extraction plays 
an important role for success of the proposed methods. In addition, 
more than 70 different features have been tested for sleep stage 
classification [28]. Our approach toward biosignal research was to 
develop the automatic sleep stage classification based on features 
of only the Electroencephalogram (EEG) signals [8]. EEG signals 
(Figure 12) are in constant research focus of numerous biomedical 
engineering researchers. Our aim was to find a feature inside EEG 
signal that represents the time sequence of a signal according to the 
physical meaning of the sleep stage we wanted to identify the signal 
with. Our hypothesis was that features that better describe sleep stage 

specificities could be extracted from a signal if it was decomposed 
into components that reflected the true physical processing. Thus, 
the kernel is not known in advance and the nature of the signal is 
acquired by applying the appropriate decomposition mode.

Methods: As a time-frequency method, designated for nonlinear 
and non-stationary signals, the Empirical Mode Decomposition 
method (EMD) was selected for the basic decomposition procedure 
because it embeds the basic idea of the proposed hypothesis [29]. It 
decomposes the signal into Intrinsic Mode Functions (IMF) with 
corresponding frequency ranges that characterize well the appropriate 
oscillatory modes embedded in the brain neural activity acquired by 
EEG [30]. 

The new approach presented in this study includes the 
introduction of new features derived from IMFs. To calculate the 
instantaneous frequency of IMFs, an algorithm was developed 
using the Generalized Zero Crossing method. With the resulting 
frequencies, we can demonstrate that during one 30 s epoch, the EEG 
signal changes its instantaneous frequency more often if it belonged 
to an active sleep stage than if it belonged to a quite sleep stage epoch. 
Considering this frequency dynamic, we proposed the new feature, 
which describes how many times the instantaneous frequency changes 
during one 30 s epoch (IMF frequency change). An additional new 
feature affecting the classification of sleep stages was the median value 
of instantaneous frequency (IMF med frequency), which exhibited 
higher values in REM than in NREM sleep stages in the first seven 
IMFs contained in the EEG signals. The Relative Power Spectral 
Density (RSD) of the EEG signal at characteristic frequency bands 
was selected as the reference point feature to validate the efficiency 
of the sleep stage classification of our proposed features. To achieve a 
more accurate automatic classification, a hybrid feature was created 
by combining two different types of EEG features, the spectral feature 
and time-frequency feature.

Results: The sleep stage classification, based on the novel feature 
vectors of a single EEG channel, for the daytime sleep of 20 healthy 
Croatian babies aged three months, was performed using the SVM 
classification algorithm. The results were evaluated by applying the 
cross-validation method to achieve approximately 90% accuracy 
(Figure 13) and with new examinee data achieving 80% average 
accuracy classification (Figure 14). The obtained results were higher 
than the results for classification using only the RSD feature, and 
higher than the human experts’ agreement [31,32], which positioned 
the method, based on the proposed features, as an efficient procedure 
for automatic sleep stage classification. In our future work we plan to 

Figure 10: Hip angle - knee angle - ankle angle trajectories for normative gait 
cycle (dotted red line), and gait cycle measured on arbitrarily chosen subject 
(full blue line). Phase shift between two different gait cycles is denoted as 
PSn.

Figure 11: Gait factor calculated for normal (healthy) gait (full blue line), and 
irregular gait (dotted red line).
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Figure 12: Raw EEG signal.
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study the potential of the newly proposed EEG features to highlight 
the congruence of twin pairs, indicating the genetic determination 
of sleep.

Improved Structured Light 3D Scanner for 
Anthropometric Parameter Estimation 

Cost effective estimation of anthropometric parameters used in 
biomechanical analysis is still open research issue due to the desire 
for increased accuracy with off-the-shelf components. This is in turn 
motivated by the observations that inverse dynamic’s results can 
differ significantly depending on accuracy of used anthropometric 
parameter [4]. Thus we wanted to improve on available 3D structured 
light scanners while keeping costs at acceptable level. Additionally we 
wanted our new structured light pattern to be robust to small subject 
movements and possible light reflections, which led to introduction of 
scanning stripes at the end of patter cycle. This was achieved with kind 
of stereovision system with one active sensor (LPD projector) and 
one passive sensor (camera) [5]. In order to evaluate newly proposed 
scanning pattern we carried out experimental measurements with 8 
test subjects. Example of measurement setup can be seen in Figure 
15. Measurements were achieved with new light structure pattern 
as well as standard one (for comparison reasons) while immersion 
method was used as baseline measurement method. In addition 
testing was done on artificial objects (measurement etalons, boxes, 
tubes and life size mannequin) with known geometrical properties 
and under significantly different conditions (e.g. vibration induced 
by vibrating motors to simulate small subject movements; different 
surface textures to simulate different cloths subjects might wear etc.).

Results
Obtained results for static objects are depicted in Figure 16, which 

in terms of used calibration object size were 0.38% for x axis, 0.12% 
for y axis and 1.7% for z axis. Associated root mean square errors 
were: 4.24mm, 2.34mm and 1.62mm for corresponding axis. This 
demonstrated that scanner performed well for simple 3D objects. The 
mean error was around 0 (0.14 ml) with highest being for subject 4 
with 1.89 ml. This led to total error estimation of a whole segment 
under 1% with rather high standard deviation of about 10%. Such 
high deviance was attributed to imperfections of immersion method 
and setup as well as relatively small measurement increments used 
(1cm). Results from the mannequin had similar mean values but 
significantly lower deviations (about 50% less) which indicated that 
subject movements during immersion measurements might have also 
contributed to larger standard deviation values. Finally, to illustrate 
system accuracy, segment-by-segment comparison between three 
methods used in the study for forearm volume estimation (and 
subsequently mass estimation) is presented in Figure 17. From figure 
it can be concluded that newly proposed structured light pattern 
follows better immersion curve than standard light structure with 
RMSE value of 3.42 ml compared to 4.59 ml (which is improvement 
of about 25%). For mass estimation we compared our method and 

Fp2–T41 Fp1–T3 Fp2–C4 Fp1–C3
70

75

80

85

90

95

100

EEG channel

ac
cu

ra
cy

 (%
)

 

 
RSD
IMF median freq.
IMF freq. change
hybrid

Fp2–T41 Fp1–T3 Fp2–C4 Fp1–C3
EEG channel

Figure 13: Accuracy of the automatic sleep stage classification from 10-fold 
cross validation procedure.
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Figure 14: Accuracy of the automatic sleep stage classification of the new 
examinee signal.

Figure 15:  Example of measurement setup used in experiments on live 
subjects. 

Figure 16: Error statistics for artificial object scanning scenario.
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standard structured light method to de Leva anthropometric tables 
which are widely used in biomechanics research. Here improvement 
was also present but with smaller value of about 17%.

Next, results for all eight subjects (forearm volume estimation) 
are presented in Figure 18. In comparison to baseline measurements. 
Tests performed on live subjects and artificial objects in different 
conditions demonstrated viability of our new approach. However, 
there is still room for improvement such as inclusion of sub-pixel 
accuracy, simultaneous scanning with two units to fully capture 
segment of interest in one swipe and combining these results with 
mass distribution information or human segment density profiles.

Conclusion
Biomedical engineering is a highly interdisciplinary and well 

established discipline spanning  across engineering, medicine and 
biology. Rapid technological developments in the last century have 
brought the field of biomedical engineering into a totally new realm 
[33]. The expansion of biomedical engineering research is markedly 
obvious in the past ten years. As a result, the field of biomedical 
engineering is thriving, with innovations that aim to improve the 
quality of human life and reduce the cost of medical care [33]. This 
paper presents some of recent trends in biomedical engineering, with a 
particular focus on the field of biomechanics (human motion tracking 
based on 3D optical motion capturing systems, and motion detection 
based on inertial sensors, computer vision and image processing), 
biosignal measurement, processing, analysis and classification, and 
human anthropometric parameters estimation. Each section includes 

ideas and guidelines for future work, as well. This wide range of topics 
provide a valuable update to researchers in the multidisciplinary 
area of biomedical engineering and an interesting introduction for 
engineers new to the area.
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