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Abstract

The ability of zebrafish to faithfully recapitulate a variety of human cancers 
provides a unique in vivo system for drug identification and validation. Zebrafish 
models of human cancer generated through methodologies such as transgenesis, 
gene inactivation, transplantation, and carcinogenic induction have proven similar 
to their human counterparts both molecularly and pathologically. Suppression 
of cancer-relevant phenotypes provides opportunities to both identify and 
evaluate efficacious compounds using embryonic and adult zebrafish. After 
relevant compounds are selected, preclinical evaluation in mammalian models 
can occur, delivering lead compounds to human trials swiftly and rapidly. The 
advantages of in vivo imaging, large progeny, and rapid development that the 
zebrafish provides make it an attractive model to promote novel cancer drug 
discovery and reduce the hurdles and cost of clinical trials. This review explores 
the current methodologies to model human cancers in zebrafish, and how these 
cancer models have aided in formation of novel therapeutic hypotheses.
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The Advantage of the Zebrafish System in 
Drug Discovery

Zebrafish have emerged as powerful models for drug discovery 
and biosafety studies because they develop most of the organs found 
in mammals including those of the nervous, digestive, reproductive, 
immune, excretory, and cardiovascular systems [4,5]. Zebrafish have 
a number of unique advantages positioning them for rapid drug 
discovery and toxicity testing: (i) zebrafish generate large numbers 
of progeny, offering high confidence in statistical analysis; (ii) 
zebrafish can absorb compounds solubilized in water, making drug 
administration simple and feasible; (iii) zebrafish develop rapidly, 
allowing for assays of drug toxicities on organ development; (iv) the 
maintenance cost for zebrafish is less expensive than for mammals, 
decreasing the cost associated with animal husbandry [6]; (v) zebrafish 
and human share high molecular and genetic homologies, especially 
for enzymes and cell surface receptors [7]; (vi) zebrafish embryos 
are as accessible and proliferative as cell culture systems and thus 
lend themselves to being as applicable as in vitro systems; and (vii) 
multiple cancer models have been generated in zebrafish and proven 
similar to their human counterparts molecularly and pathologically, 
providing excellent tools for anti-cancer drug discovery through 
large-scale screens, candidate drug testing, and target identification 
[8,9]. Taken together, these features indicate that the zebrafish is a 
simple, cost-effective, and faithful model for both drug discovery and 
toxicological studies. 

Zebrafish Models of Human Cancer
Zebrafish cancer models induced by chemicals

While maintaining zebrafish in laboratory conditions, researchers 
observed diseases developing in adult fish, including cancer. Later 
studies clarified that after exposure of certain mutagens, zebrafish 
spontaneously developed almost any tumor type known from humans 
with similar morphology and comparable signaling pathways. The 
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Current Challenges in Drug Discovery
The pharmaceutical industry is experiencing lapses in drug 

development productivity. The predominant drug discovery 
methodologies for the past 50 years have been target centric. The drug 
development process in its entirety, from compound identification 
through preclinical animal models, takes approximately 10-15 years 
[1]. A high number of compounds are often filtered out during the 
preclinical animal testing stage, due to failure to meet standards of 
Absorption, Distribution, Metabolism, and Excretion (ADME). 
This is because multiple iterations of in vivo studies are performed 
on preclinical animal models in later stages of drug development 
(i.e., prior to compounds being relinquished for human trials). 
Specifically, more than 70% of compounds in oncology fail in phase II 
clinical trials, while 59% of the remaining compounds are discarded 
in phase III due to intolerable toxicities [2]. To increase success rates, 
it is extremely important to test compounds using inexpensive, whole 
organism vertebrate models during early stages of drug development. 
Whole organism testing not only provides information on tissue 
specificity and toxicity, but also determines compound bioavailability 
that may not be accurately accounted for in a small number of murine 
models. The zebrafish has emerged as an ideal complementary 
model system for drug discovery, as it is capable of high throughput 
screening for discoveryof novel therapeutic compounds or testing 
of candidate cancer modulators. Research in the past few years has 
proven the potential of zebrafish to significantly improve the capacity 
of predicting clinical efficacy and reduce the time and money lost in 
pushing ineffective drugs to market [3].
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most common locations for this spontaneous neoplasia to arise 
include gut, thyroid, and liver. Lower levels of spontaneous neoplasia 
occur in blood vessels, brains, and gills. In light of spontaneous 
tumor acquisition, detailed chemical approaches to induce cancer 
have been developed [10]. To chemically induce cancer, zebrafish 
are soaked in water dissolved with carcinogens for varied periods of 
time. Advantageously, zebrafish can endure treatments at a variety 
of chemical concentrations and durations. For instance, smaller 
doses, from 5 mM or less can be applied for up to 24 hours, while 
doses greater than 20 mM are to be applied for 8 hours or less [11]. 
The treatment of zebrafish with the mutagen 7,12-dimethylbenz(a)
anthracene induces the broadest range of tumors, from epithelial 
tumors in intestines to mesenchymal tumors in blood vessels 
and lymphoid malignancies (Table 1) [12]. Treatment with 
N-nitrosodiethylamine is reported to induce pancreatic and liver 
carcinomas, while N-nitrosodimethylamine specifically induces liver 
tumors (Table 1) [13]. 

Zebrafish cancer models resulted from tumor suppressor 
inactivation

Reverse genetics aims to discover the function of a gene 
by characterizing phenotypic changes upon gene inactivation. 
Targeting, and subsequent inactivation of specific tumor suppressor 
genes has led to zebrafish cancer models of Malignant Plural Nerve 
Sheath Tumor (MPNST), ocular, liver, and intestinal cancer [14,15]. 
These cancer types are modeled through silencing of the p53, ptenb, 
apc, or nf1tumor suppressor genes respectively (Table 1) [15-19]. 
Targeted in activation of tumor suppressor genesis done by taking 
advantage of: site-directed mutagenesis, recombination mediated 
by Cre or Flp recombinases, Targeted Induced Local Lesions In 
Genomes (TILLING), Zinc Finger Nucleases (ZFN), Transcription 
Activator-Like Effector Nucleases (TALENs), or Clustered Regularly 

Interspaced Short Palindromic Repeats/CRISPR associated (CRISPR/
Cas) technologies [12]. 

In forward genetic screens, mutations are introduced to the adult 
zebrafish’s genome through chemical, viral, or transposon-based 
mutagenesis. The progeny of these mutagenized adult zebrafish 
are screened for abnormal phenotypes. Genes that harbor genetic 
mutations are then identified through gene mapping, sequence 
analysis, and phenotype validation. Using zebrafish in forward 
genetic screens provides a powerful approach to identify cancer 
susceptible or novel modifier genes in a specific oncogenic cascade 
based on their ability to accelerate or suppress tumor phenotypes 
[20].It has been found that mutations in genes encoding ribosomal 
proteins have led to development of MPNST, as well as mutations 
affecting genomic instability that have also been associatedwith 
MPNST in zebrafish [21,22]. Shephard et al. have discovered that the 
separase and bmybloss-of-function mutants are susceptible to liver 
and testicular cancers respectively, through forward genetic screens 
(Table 1) [23,24]. 

Transgenic zebrafish cancer models
Transgenic zebrafish expressing mammalian oncogenes provide 

a convenient platform for modeling human cancers through the 
misexpression of wild-type or constitutively active form of oncogenes 
under a zebrafish tissue-specific promoter. To generate transgenic 
zebrafish models, exogenous DNA is microinjected into one-cell-stage 
zebrafish embryos. Traditionally, linear or circular DNA plasmids, or 
artificial bacterial chromosomes are injected into fertilized zebrafish 
eggs. A large number of eggs need to be injected and screened to 
compensate for low germline transmission of the transgene of interest 
to the F1 generation. As transgenic lines are passed on through 
generations, repetitive DNA becomes susceptible to methylation, 

Methods for modeling zebrafish cancers Chemicals or genetic alterations Cancer types References

Chemical Treatment

N-2-Flurenylacetamide
N-nitrosodiethylamine
N-dimethylnitrosamine

N-methyl-N′-nitro-N-nitrosoguanidine
7,12-dimethylbenz[a]anthracene

Liver
Cholangiolar tumors

Testicular germ cell tumor
Liver, Intestinal

Testis, Germ cell tumor, Vascular

[13]
[91]
[92]
[12]
[23]

Reverse genetics

p53
ptena
ptenb
apc
nf1a
nf1b

MPNST
Ocular

Hemangiosarcoma
Liver, intestinal

Gliomas

[15]
[16]

[16,17]
[18]
[19]

Forward genetics

Ribosomal protein gene
separase

bmyb
Genomic instability mutations

MPNST
Epithelial tumors
Liver, Intestinal
MPNST/others

Testicular germ cell tumor, Vascular tumor

[21]
[23]
[24]
[22]
[12]

Transgenesis

TEL-AML1
Myc
MYC
Akt2

NOTCH1
MY5T3-NCOA2
NUP98-HOXA9

KRASG12D
BRAF-V600E
HRASG12V
HRASG12V

MYCN
Xmrk, kras, Myc

B-ALL
T-ALL
T-ALL
T-ALL
T-ALL
AML
MPN

Rhabdomyosarcoma
Melanoma

Melanoma, liver cancer
Melanoma

Neuroendocrine tumor, Neuroblastoma, MPN
Liver cancer

[27]
[28-30]

[31]
[31]
[32]
[33]
[44]

[34,35]
[36]

[37,38]
[39]

[40-42]
[43]

Table 1: Zebrafish Cancer Models.
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leading to the silencing of transgenes [4,5]. Modifications of 
these early transgenic techniques have led to the development 
of transposon- or I-SceI meganuclease-mediated transgenesis 
approaches that significantly improved germline transmission rates in 
zebrafish [25,26].With these improved techniques, modeling human 
cancers in zebrafish through transgenesis becomes much easier. 
There are multiple types of cancers in zebrafish developed through 
the use of transgenesis (Table 1) [27-44]. MYC-induced T-cell 
Acute Lymphoblastic Leukemia (T-ALL) and melanoma models in 
particular have not only been used extensively to gain mechanistic 
insights into disease pathogenesis, but also in small molecule screens 
to successfully identify candidate therapeutics for human cancers 
(Table 2) [25,29,30,32-37,39,40,45-48]. 

Zebrafish xenograft models of human cancer
An additional methodology to establish cancer models involves 

the transplantation of human cancer cells into zebrafish embryos. 
Zebrafish lack an innate immune system until 72 hours post-
fertilization (hpf) and a mature adaptive immune response until 
4 weeks of life [49]. Therefore, human cancer cell lines, purified 
subpopulations of cancer cells or primary patient cells can be 
directly injected into zebrafish embryos to study many aspects of 
tumor biology, such as vasculature remodeling, cancer invasion, 
and metastasis [50,51]. So far, multiple types of human cancer 
cell lines and primary patient samples, including gastrointestinal, 
neuroendocrine, leukemic, and melanoma clinical tumor samples, 
have been successfully transplanted into 48-hpf zebrafish embryos 
and demonstrated their usefulness in studying cancer pathogenesis 
as well as novel drug screening and therapeutic testing of candidate 
cancer drugs. Invasiveness and micrometastasis of primary human 
tumors occurs within 24 hours of transplantation [52]. These 
zebrafish xenograft models of human cancer are especially useful in 
drug screens allowing for the simultaneous examination of in vivo 
efficacy and toxicity of candidate drugs [53]. Finally, the advent of 
pigmentless Casper adult fish has enabled visualization of tumor cell 
proliferation and dissemination in transplanted recipients beyond 
zebrafish embryonic stages. Adult zebrafish have three distinct classes 
of pigment cells: black melanophores, reflective iridophores, and 

yellow xanothophores. Nacre mutant zebrafish lack melanocytes, 
while roy orbison zebrafish lack iridophores. Casper zebrafish are 
double mutant for nacre and roy lacking both melanocytoes and 
iridophores throughout embryogenesis and adulthood. Casper 
permits all organs to be seen with stereomicroscopy [40].

Basic Design of Small Molecule Screens 
using Zebrafish 

The ultimate goal of small molecule library screens utilizing 
zebrafish is to record the greatest number of small molecules that can 
modulate the activity of zebrafish proteins. Thus, the best molecular 
library should include as much chemical diversity as possible with a 
variety of core chemical structures. Moreover, it is of best interest to 
develop a chemical library that has a high percentage of compounds 
with similar and consistent physiochemical properties. Chemical 
treatments can occur at any point during development allowing study 
of gene inactivation effects by small molecule inhibitors throughout 
fish development. Moreover, the chemical dosage can be controlled 
which is advantageous when studying essential functions of tissue 
specificity [54,55]. 

The most common chemical library applied in zebrafish screens 
is the DIVERSet E from Chembridge. This chemical library contains 
50,000 compounds occupying a broad pharmacophore space, while 
excluding non-drug like compounds with undesirable chemical 
groups and structures. Using the DIVERSet E, Peterson et al., 
Sternson et al., and Murphey et al. have evaluated phenotypic changes 
in the central nervous system, cardiovascular system, pigmentation, 
and organogenesis respectively [56-58]. Phenotypic changes in 
hematopoiesis are evaluated after application of the NINDS custom 
collection from the NIH/NINDS, the Spectrum collection from 
Microsource, and the ICCB collection of known bioactive compounds 
from BioMol [59]. Changes in embryogenesis and angiogenesis 
are evaluated through application of 1,3-dioxane library from the 
Schreiber lab, trisubstituted triazines from the Chang lab, and the 
LOPAC1280 chemical library from Sigma Aldrich [60-62]. 

In general, drug screens can be divided into target- or phenotype-
based approaches [54,63]. In target-based approaches, the aim is to 

Cancer Type Zebrafish Model Compound Library Name Small Molecules 
Identified References

Leukemia lck:EGFP ChemBridge DIVERSet Lenaldekar (LDK) [73]

T-ALL rag2:MYC-ER;mitf1a:mitf1a;
rag2:dsRed2

Prestwick Chemical Library
Spectrum Collection Phenothiazine [74]

T-ALL rag2:EGFP-mMyc;CG2 Compounds obtained from Sigma 
Aldrich

Vincristine and 
Cyclophosphamide [75]

AML Xenotransplantation of K562, K562-R, JURKAT, NB4 
human leukemia cell lines into wild-type zebrafish

Imatinib, all-trans retinoic, mafosamide, 
cyclopjosphamide,

4EGI-1
Imatinib [76]

ALDH+ 
myelogenous 

leukemia

Xenotransplantation of ALDH+ and ALDH- leukemia 
cells into 

fli1:EGFP;Casper

imatinib, dasatinib, parthenolide, 
TDZD-8, arsenic trioxide, niclosamide, 

salinomycin, and thioridazine
Imatinib [77]

AML Hsp70:AML1-ETO SPECTRUM library
Microsource Discovery Systems Nimesulide [48]

Melanoma mitfa:BRAF(V600E); p53 -/- SPECTRUM library
Microsource Discovery Systems Leflunomide [46]

Pancreatic   Cancer Morpholinos and chemical screens selective RAR antagonists RAR antagonist Ro-41-
5253 [93]

Human Carcinoma

Xenotransplantation of YD10B and HSC-2 human oral 
squamous carcinoma cell lines; DLD-1 and HCT116 
human colorectal carcinoma cell lines into wild-type 

zebrafish

Tagged triazine molecules BII-B9
Paclitaxel [94]

Table 2: Small Molecule Screens with Zebrafish Cancer Models.
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discover novel probes for defined biological pathways or molecular 
targets. When this approach is imparted in screening, a greater quality 
of hits can be generated instead of quantity. A well-designed screen 
should be able to inform not only the activity of the compounds 
directed against a particular target, but also other properties of the 
compounds, such as their permeability, specificity, and off-target 
effects [55]. Furthermore, target-based chemical screens can either 
be engineered to report the activity of a specific pathway or they 
can be formatted to identify compounds that phenocopy a known 
pathway disruption. Although target-based approaches can lead to 
the discovery of compounds directed against a specific protein or 
its related pathways, compounds identified in this manner may not 
significantly modify the disease of interest [64]. 

Phenotype-based approaches possess unique advantages in 
discovering compounds that either elicit a disease phenotype or 
conversely, rescue a disease phenotype. Novel or well-characterized 
pharmacological probes are screened in order to identify compounds 
that induce or modulate a specific phenotype. In their simplest 
forms, phenotype-based screens might involve searching for an 
agent that suppresses a cell cycle defect in embryos or rescues mutant 
phenotype affecting cancer genes. Screens for reversal or prevention 
of disease phenotypes in an organism are powerful because it allows 
for the identification of promising chemotherapeutics without bias 
about which targets are involved in disease pathogenesis. Moreover, 
many potential targets can be assessed in one screen, and bioactive 
compounds identified would be of high quality given that the screen 
output is a suppressor of a disease phenotype in a whole organism 
[65]. 

Throughput assays are another basic design of small 
molecule screens that consist of a small lot of well-characterized 
pharmacological compounds with known bioactivities. This enables 
generation of biological connections and hypotheses to be tested 

quickly since background information about the relevant subset 
of pharmacological compounds is available [66]. Finally, novel 
modifier screens can be employed to either identify or rescue 
disease-related phenotypes. These drug screens involve large libraries 
of uncharacterized compounds followed by significant efforts to 
ascertain the mechanisms of action of the identified hits in order to 
pursue clinical testing [67,68].

Application of Zebrafish in Cancer Drug 
Discovery
Suitability of zebrafish embryos for anti-cancer drug 
screens 

A remarkable range of biological and disease processes can be 
studied in the early stages of zebrafish development, but may be 
limited when using adult zebrafish. Importantly, researchers made 
the connection between abnormal embryonic phenotypes and 
increased cancer susceptibility in adulthood, allowing chemical 
screens to be performed during embryogenesis in order to identify 
potential compounds and targets that could influence carcinogenesis. 
To rapidly estimate the therapeutic efficacy of small molecule 
compounds, wild-type, transgenic, or mutant zebrafish embryos 
are incubated with the compounds of interest in water (Figure 1). 
Because the embryos are optically transparent, it is possible to detect 
functional and morphological changes in internal organs without 
having to kill and dissect the organism post-compound treatment, 
a significant advantage over the use of other vertebrate models. 
Quantitative analysis using microplates can also facilitate comparisons 
between zebrafish embryos incubated with compounds and vehicles. 
Microplate analysis of embryos is similar to cell based assays, and is 
used for primary compound screening at high throughput cores. The 
small size of zebrafish embryos enables them to be arrayed in a variety 
of plate formats (12, 24, or 96-wells) and bathed in water containing 
the compound of interest (Figure 1) [65]. 

Figure 1: Integrating zebrafish into the cancer drug discovery platform. Zebrafish embryos from wild-type, transgenic, or mutant fish are arrayed into a plate 
with candidate agents or compound library to screen for small molecules that elicit desired phenotypes in embryos.  Prior to drug treatment, embryos can also 
be transplanted with either zebrafish or human cancer cells to determine a compound’s effect in killing tumor cells or inhibiting their migration properties.  Adult 
zebrafish with cancer can be treated with identified or modified compounds to validate and prioritize the lead compounds for preclinical and clinical testing. Anti-
cancer agents of unknown biological properties must undergo a toxicological and pre-clinical evaluation prior to clinical tests, while FDA-approved drugs can directly 
enter human clinical trials.
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The use of multiple transgenic lines with fluorescent reporter 
molecules further enables detailed analysis of functional and 
morphological changes [69]. For instance, when compounds are 
fluorescently-labeled, it facilitates direct visualization of absorption 
into transparent embryos. Compound excretion following treatment 
can be observed and measured based on fluorescence properties as 
well [40]. In the early 2000s, forward chemical screens using zebrafish 
embryos led to the identification of compounds affecting vertebrate 
development. These embryo screens narrowed down the number of 
molecules for future testing in adult zebrafish models of tumor and 
mammals (Figure 1) [51]. As multiple zebrafish xenograft models of 
cancer are established, researchers have demonstrated their efficacy in 
small molecule screens. This is accomplished by soaking xenografted 
embryos in a compound solution or treating cancer cells with small 
molecules before implantation into transparent embryos (Figure 1) 
[45]. 

Fortunately, many toxic responses have been conserved between 
zebrafish and human toxicological studies.Therefore, zebrafish 
embryos are valuable in the assessment of system toxicity, which 
can be evaluated using overall embryonic mortality as a metric 
from which the working range of a compound can be determined. 
To do this, embryos are arrayed in a multi-well plate and exposed 
to drugs with a dose gradient to determine the maximum tolerable 
dose. Preliminary hits from screening can all be tested for toxicity as 
a means of prioritizing compounds [70,71]. 

Adult zebrafish for cancer drug validation 
Adult zebrafish are often limited in their capacity to aid in drug 

screenings as adult zebrafish are relatively larger and less transparent. 
With the availability of multiple zebrafish models of cancer (Table 
1), investigators can treat adult fish with tumors to validate the 
antineoplastic efficacy of candidate agents. Dissemination of tumors 
throughout the zebrafish can occur at varying rates, typically from 
5 to 10 days post transplantation. Moreover, the appearance of 
these disseminated tumor cells may not occur until 2-3 weeks post 
transplantation. The innovation of the transparent Casper zebrafish 
has improved opacity in adult zebrafish [72], and provided a tool 
for exploration of tumor dissemination mechanism and subsequent 
metastatic growth throughout fish development. Advantages of using 
the Casper fish, in combination with syngeneic transplantation, 
include in vivo monitoring of tumor engraftment and migration 
following transplantation. 

Advances using zebrafish in cancer drug discovery
Collectively, the use of embryo screens and drug validation in 

adult zebrafish models of cancer represents the ideal means to identify 
and prioritize candidate agents for further testing in mammals 
(Figure 1). Researchers have taken advantage of the zebrafish cancer 
paradigm and have successfully identified candidate compounds for 
cancer treatment. A novel high-content in vivo screen was conducted 
by Ridges et al. using genetically engineered T-cell reporting zebrafish 
larvae (lck:EGFP) (Table 2) [68]. By exploiting the developmental 
similarities between immature and malignant T-cells, the activity of 
small molecule libraries was assayed against immature T-cells with 
a corresponding visual readout in zebrafish larvae. It was found that 
the compound, Lehaldekar, was able to abolish immature T-cells in 
developing zebrafish without affecting cell cycle in other cell variants. 

Moreover, Lehaldekar was tolerated in murine models. Notably, 
Myc-driven T-ALL in adult zebrafish was induced into remission 
upon Lehaldekar treatment [73].

Gutierrez et al. designed a fluorescence-based small molecule 
screen to identify compounds that were selectively cytotoxic to 
MYC-overexpressing thymocytes in a MYC-induced (activated 
by tamoxifen) T-ALL background (Table 2) [74]. At three days 
post fertilization, FDA-approved drugs were added to embryos. 
Four days later, dsRed2 fluorescence expression in thymocytes 
was imaged via microscopy. Screening for the decreased dsRed2 
expression in thymocytes lead to the identification of perphenazine, 
an antipsychotic drug, with antileukemic activity. Importantly, 
perphenazine was also found as an antileukemic agent in a parallel 
cell-based screen, and validated to induce apoptosis in fish, mouse 
and human T-ALL cells [74].

Mizgrev et al. aimed to validate the efficacy and faithfulness of 
zebrafish embryos in drug discovery. T-ALL was induced in zebrafish 
by mosaic expression of EGFP-fused mMYC transgene under a 
lymphocyte-specific promoter rag2 (Table 2) [75]. Subsequently, 
primary tumor cells were transplanted into recipient zebrafish larvae 
that were treated with vincristine and cyclophosphamide five days 
post leukemia engraftment. Drug efficacy and relevance toembryonic 
development was determined based on a compound’s ability to 
increase larvae lifespan [75].

Pruvot et al. injected human leukemia cell lines or blasts from 
patients with acute myelogenous leukemia into zebrafish embryos at 
48 hpf (Table 2). Compounds that demonstrated no toxicity in normal 
zebrafish embryos and decreased leukemia burdens in xenografted 
zebrafish were ideal, ultimately validating anti-leukemic efficacy of 
imatinib and oxaphorines [76]. Similarly, Zhang et al. injected purified 
human leukemic stem cells into zebrafish embryos based on kusabria-
orange fluorescence [77]. Post-transplanted fish were treated with 
selected therapeutic agents (e.g. imatinib, dasatinib, parthenolide, 
etc.).  Cell proliferation and migration were subsequently evaluated 
using high-content imaging, and recapitulated the ability of the drugs’ 
to inhibit LSCs in both in vitro and murine studies – thus validating 
their methodology for future anti-LSC drug discovery (Table 2) [77]. 

Yeh et al. created an assay with zebrafish embryos that faithfully 
recapitulated the effects of the oncogene AML1-ETO to block cell 
differentiation in multipotent progenitor cells (Tables 1 and 2). A 
chemical screen of 200 bioactive chemicals was then performed in 
an effort to find a compound that would suppress the differentiation 
blockade of oncogenic AML1-ETO on hematopoietic progenitor 
cells. The Cox2 inhibitor nimesulide was identified as the lead hit 
of the screen. Their follow-up study demonstrated a previously 
unknown role for COX-2 and β-catenin in AML1-ETO-mediated 
hematopoietic differentiation [48].

Recently, White et al. preformed a small molecule screen that 
identified an inhibitor of Dihydroorotate Dehydrogenase (DHODH), 
leflunomide, which diminished the self-renewal of mammalian 
neural crest stem cells (Table 2) [46]. This chemical screen was 
performed using transgenic mitfa:BRAF(V600E) zebrafish embryos 
that had defective p53 activity. The inhibition of DHODH through 
leflunomide alone or in combination with an oncogenic inhibitor of 
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BRAF (V600E) was able to successfully suppress melanoma growth in 
vitro and in murine models [46].

The Zebrafish as a Model for Studying 
Tumor Metastasis

Tumor metastasis is an extremely complex, multistep cascade 
[78]. In total, there are at least four major steps involved: the local 
invasion and intravasation; the survival of tumor cells in circulation; 
the extravasation (the exit of the tumor cells from vasculature); and 
the distant proliferation and colonization [79]. By coupling optical 
transparency with the differential fluorescent labeling of tumor cells, 
inflammatory cells, and vasculature, zebrafish enable noninvasive, 
real-time visualization of metastatic events in vivo, distinguishing 
among each of the cell types and their dynamic interactions leading 
to intravasation and metastasis [80]. In particular, zebrafish xenograft 
models of cancer faithfully recapitulate the metastatic potentials of 
human cancer cells as in xenografted mouse models and in patients 
[81,82]. As such the zebrafish is particularly well suited for real-
time monitoring of metastatic events in vivo [80]. The generation of 
fli1:EGFP and flk1:mCherry fish, in which the vasculature expresses 
EGFP or mCherry fluorescent protein, provides unprecedented 
high-resolution imaging of complex intravasation and extravasation 
processes [83,84].

Stoletov et al. combined the use of fli1:EGFP transgenic fish and 
fluorescently-labeled human cancer cellsin high-resolution confocal 
microscopy studies, demonstrating the role of RhoC and VEGF in 
intravasation [85]. Using a similar methodology, they subsequently 
visualized extravasation dynamics of metastatic tumor cells in 
zebrafish [86]. Their findings show that different from intravasation, 
extravasation does not require damaged vessels or vascular leakage, 
but instead is induced by local vessel remodeling (i.e., clustering of 
endothelial cells and cell-cell junctions). The availability of transparent 
Casper fish makes it feasible to study tumor cell intravasation and 
metastasis in adult fish. Using Casper; fli1:EGFP fish, Feng et al. 
demonstrated that elevated S1P1 levels inhibit lymphoma cell 
intravasation, whereas AKT activation or an S1P1 antagonist can 
overcome this blockade [87]. Ignatius et al. showed that in embryonal 
rhabdomyosarcoma (ERMS), myf5+ ERMS-propagating cells do not 
intravasate, while the more differentiated myogenin+ ERMS cells can 
readily invade the vasculature [88]. The ability of studying metastatic 
events in zebrafish coupled with the high fecundity of zebrafish suit this 
organism for small molecule screens to identify novel antimetastatic 
agents, especially repurposing the FDA-approved drugs. 

The Future Perspectives
Due to their genetic similarities to humans, the zebrafish serve 

as a relevant in vivo system to complement mammalian systems. 
The optical clarity of zebrafish embryos and mutant Casper adult 
zebrafish has provided a foundation for assessment and imaging 
of tumor phenotypes through application of novel or known 
compounds. The embryonic zebrafish serves as the jumping off 
point for lead compound identification, while validation in adult 
zebrafish allows for longitudinal observation of compound impact on 
tumor cell growth, dissemination, and metastasis in an anatomically 
relevant system. Additionally, zebrafish allow for the assessment 
of absorption, distribution, metabolism, excretion, and toxicology 
properties of thousands of chemical compounds. These assessments 

are done at much quicker speeds, lower costs, and greater scale and 
efficiency. Although only being applied in small molecule screens for 
a few years, zebrafish have already demonstrated their great potential 
in cancer drug screens and novel compound identification. 

The establishment of zebrafish cancer cell lines, especially for the 
ones with known and relevant oncogenes,would be advantageous 
for functional cell-based studies and would also enable the pre-
screening genetic and chemical modifiers of cancer. Without a doubt, 
anti-cancer screens in zebrafish will be rapidly improved as robots 
and more readout automation are implemented in the procedures. 
An automated micro-injector allows a greater number of fish to be 
xenografted with high accuracy, improving the standardization of the 
screens and allow a large-scale screen to be performed in a shorter 
time frame [89]. Furthermore, automated imaging system (or an 
ImageJ plugin) optimized to detect or quantify a specific phenotypic 
feature of interest will drastically improve the readout quality and 
lower extensive labor necessary to perform such screens and identify 
candidates molecules [90]. With automation and standardization of 
these procedures, zebrafish can contribute to personalized medicine. 
For instance, ex vivo screening of cancer cells from an individual 
patient’s could be conducted in a zebrafish xenograft model for the 
testing of multiple drugs and drug combinations, and the readout 
would inform clinicians on measures of both drug potency and 
toxicity, improving therapy selection on a case-by-case basis.

While we continue to maximize the use of zebrafish in high-
throughput screens, we must keep in mind that the anatomical 
and molecular differences of zebrafish with humans may cause the 
elimination of a fraction of the hits generated. Thus, the human 
relevancy of compounds identified through the use of the zebrafish 
models must be carefully investigated. Because it still remains unclear 
to what degree the molecules discovered in zebrafish screens impart 
similar effects in humans, the predictive toxicity in zebrafish may 
not equate to that of human toxicity. Fortunately, so far, tested 
compounds (e.g., ones in regards to cell cycle affecters) showed a 50-
70% similarity in effect between mammalian and zebrafish cells [3]. 
An even greater degree of drug conservation of 95% was observed in 
treating zebrafish and human with cardiac modulators [4]. The high 
degree of conservation between fish and man further establishes the 
usefulness of the zebrafish as an important tool to human cancer drug 
discovery. 
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