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maladaptation occurs gradually as muscle fibers are encased in 
extracellular matrix, leading to ventricular wall stiffening and 
ultimately decompensation which manifests as diastolic dysfunction 
[26].  Over-production of extracellular matrix has physical effects on 
the microstructure as well as changes in physiological environment 
through the release of factors such as transforming growth factor-
β(TGF-β) [27]. The most notable change in cellular physiology is 
the transformation of fibroblasts to myofibroblasts.  Myofibroblasts 
are crucial in the normal response to injury and there is evidence 
to suggest the processes that trigger this transformation are tissue 
dependent [28,29].  Myofibroblasts are highly specialized for the 
secretion of extracellular matrix.  Furthermore, they are more 
responsive to stimulation by factors such cytokines [30].  In certain 
patients this transition in phenotype to a myofibroblast- predominant 
population of cells may increase risk of adverse cardiac events [31-
33].  For example, since fibrotic tissue lacks electrical conductivity 
it has been proposed that this change in phenotype may directly 
account for increased risk of ventricular arrhythmias. Studies 
show that hyperglycemia/ insulin resistance promotes fibroblast - 
myofibroblasts transformation [29]. Furthermore in the context of 
lipid peroxidation it is intriguing that in vitro treatment of human 
fibroblasts with carbonyl modified proteins produces a similar 
phenotype transition [24]. This effect may be mitigated by carbonyl 
scavengers such as carnosine (Box 1)  and it is postulated that 
inhibition of the TGF-β pathway may serve as a potential mechanism 
[34]. These observations are not confined to patients with metabolic 
syndrome, in fact in a subset of ‘healthy’ obese patients with a relatively 
normal cardiometabolic profile (normotensive, euglycemic), the early 
stages of irreversible fibrotic cardiac remodeling have been observed 
[35].

Advanced Glycation End-products, a unique type of 
carbonyl stress with therapeutic potential

The receptor for advanced glycation end-products (RAGE) is 
a 35KDa receptor that belongs to the immunoglobulin G family of 
receptors [36,37]. RAGE does not recognize a primary amino acid 
sequence nor arrangement. It is essentially a pattern recognition 
receptor (PRR) that displays affinity to a wide variety of glycated 
proteins [38]. Since in many cases lipid peroxidation end-products 
(LPPs) and Advanced Glycation End Products (AGE) often share 
structural homology, proteins modified with LPPs (e.g., HNE, MDA) 
may serve as candidate ligands for RAGE. The importance of RAGE 
in diabetic pathologies (retinopathy, neuropathy) is an established 
and active area of study.  In the context of carbonyl stress, RAGE may 
serve as a key mediator of carbonyl stress in cardiometabolic disease.  
Formation of AGE occurs through the Maillard reaction.  PUFA-
derived aldehydes contribute in the conversion of the unstable Schiff 
Base intermediate in an irreversible rearrangement reaction to a 
stable Amadori product [39-41].  Therefore in conditions of elevated 
carbonyl stress, it is plausible that increased cross-linking of Amadori 
products would shift the dynamic equilibrium even more in favor of 
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As cardiometabolic diseases associated with obesity (i.e. 

hyperglycemia/ insulin resistance, hypertension and dyslipidemia) 
become increasingly pervasive in the modern world [1], it is 
evident that the demand for novel therapeutic agents will increase 
in the coming years. One avenue that continues to show promise is 
targeted disruption of reactive oxygen species (ROS) production and 
its consequent deleterious effects. Numerous studies have reported 
increased oxidative damage in muscle [2-4], adipose [5-7] and 
livers [8] with obesity, the collective implication being that there is 
likely to be a causal link between ROS and cardiometabolic diseases 
associated with obesity.  Lipid peroxidation of polyunsaturated 
fatty acids (PUFAs) is a well-documented consequence of oxidative 
stress, particularly in the cardiovascular system [9-14].  Formation 
of α, β unsaturated aldehydes occurs as PUFA-derived lipid 
peroxides accumulate during periods of persistent oxidative stress. 
The biochemistry of this reaction is well described in the literature 
and lipid peroxidation end products such as Thiobarbituric acid 
reactive substances (TBARS), 4-hydroxy-2-nonenal (HNE) and 
Malondialdehyde (MDA) are common biomarkers of cellular stress 
and toxicity [15,16].

However, the biological significance of these species as 
physiological signaling molecules, or their role in etiology of 
cardiomyopathy is unclear [17-20].  Here, we shall discuss the 
potential pathways that link carbonyl stress to the cardiac remodeling 
known to occur with obesity and its associated pathologies (i.e., Type 
II diabetes).  A brief outline of prototypical and novel therapeutic 
compounds that mitigate carbonyl stress is also included.

Carbonyl stress, chronic Inflammation and profibrotic 
signaling in the obese/diabetic heart

The most prominent histopathologic finding in the hearts 
of obese/diabetic patients is fibrosis, as damaged myocardium is 
infiltrated by fibroblasts [21-23]. Myocyte death, collagen deposition 
and development of fibrotic lesions are visible even before decreased 
cardiac performance is observed [24,25]. Upon initial onset, fibrosis 
is a compensatory response that adds increased tensile strength 
to counteract pressure overload in the heart.  The transition to 
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the formation AGE according to Le Chatelier’s principle.  This would, 
in theory, increase the concentration of RAGE ligand.

RAGE signaling activates two key pathways relevant to cardiac 
remodeling [42,43], and increased localized RAGE tissue expression 
and activation may be viewed as a form of localized ‘metabolic 
memory’ through which previous insults are sustained through 
lingering signals [36]. RAGE gene expression is regulated by the 
nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) 
transcription factor [36].  Conversely, NFκB is also activated by 
RAGE signaling.  The RAGE/ NFκB axis is unique in that it typically 
overwhelms endogenous auto- regulatory feedback inhibition 
loops.  In other words, once RAGE switches NFκB on, it is difficult 
to switch off.  Carbonyl stress may contribute to chronic low grade 
inflammation through this mechanism [44].  Chronic low grade 
inflammation is a mechanism that underlies many diseases associated 
with metabolic syndrome [45]. The cyclic pattern of RAGE/ NF-κB 
activation is consistent with these observations.  This may explain, 
in part, why deterioration of cardiac function persists even after 
onset of anti-hyperglycemic therapy.  Interestingly, treatment with 
the antioxidant selenium, which induces the expression of many 
glutathione-dependent antioxidant enzymes, has been shown to 
reduce both RAGE expression and NF-κB activation in diabetic rats 
[46].

RAGE is also a well-known activator of the TGF-β pathway 
[39,45,47-49].  The TGF-β proteins are pleiotropic and have been 
implicated in diverse mechanisms which include cell differentiation 
and proliferation.  TGF-β receptors type I and II (TGFβRI and 
TGFβRII) are present in virtually all mammalian cells. TGF-β1, the 
major isoform in heart, is expressed in cardiac fibroblasts and cardiac 
myocytes (CMs) and stimulates transformation to myofibroblasts 
and proliferation, as well as ECM production. Active TGF-β1 binds 
membrane receptors that activate downstream signaling molecules 
Smad2 and Smad3, which are phosphorylated on the C-terminal serine 
residues.  Phosphorylated Smad2 and Smad3 (pSmad2 and pSmad3) 
bind to Smad4 and translocate to the nucleus. The Smad complex 
then binds to response elements in the promoter regions of the ECM 
genes and activates pro-fibrogenic factors by up-regulating gene 
transcription [50].  TGF-β increases the abundance of mRNA for 
collagen types I and III in the whole heart and enhances collagen type 
I.  Models of TGFβ1 overexpression in mice suggest that Smad2 is the 
isoform involved in cardiac remodeling involving hypertrophy and 

fibrosis [45,47,48].  In human fibroblasts, HNE suppresses the TGF- 
β mediated production of elastin which compromises ventricular 
elasticity [51].

Current pharmacologic therapies and future directions

Relatively few studies have tested compounds that target lipid 
peroxidation and or neutralize LPPs. From a pharmco-chemical 
standpoint, viable drugs need to be sufficiently lipophilic in order 
to enter cellular compartments, as well as nucleophilic enough for 
carbonyl species to preferentially react with it, or alternatively break 
the covalent bond formed.  It is imperative that the drug is only 
moderately reactive (which would be selectively beneficial in obese/
diabetic patients) since many groups have demonstrated that ‘over-
scavenging’ can potentially interrupt the normal redox cell signaling 
pathways and can be detrimental to health. A brief description of 
drugs that have been explored in this capacity is provided below 
in Box 1 with information pertinent to cardiometabolic disease 
included where available. In addition, other compounds relevant to 
this discussion but not included in this table include Angiotensin 
converting enzyme inhibitors, AT1 angiotensin receptor inhibitors, 
N-acetyl cysteine and antioxidants such as Tocopherol-α and 
resveratrol [52].

In conclusion, the available data on the role of carbonyl species in 
the type of cardiac remodeling known to occur with obesity/diabetes 
is limited but rapidly growing. An increase in knowledge of the 
underlying mechanisms of LPP formation and the consequences of 
increased protein carbonylation in the heart will be greatly beneficial 
to healthcare providers as this would lead to improvements in 
preventative and current treatment strategies for this condition, and 
accelerate the development of novel therapeutics.
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