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by epileptic seizures. Epilepsy cannot be cured, but seizures can be 
controlled with medication. The seizures are episodes that vary from 
brief or almost undetectable to a long period of vigorous shaking.   
Seizure is the clinical manifestation of a hyperexcitable network, in 
which the electrical balance underlying normal neuronal activity is 
pathologically altered.

There are many types of Anti-Epileptic Drugs (AEDs) to 
different targets. Generally speaking, there are ten classes of targets 
[6].  A. Voltage-gated ion channels, such as voltage-gated sodium 
channel, voltage-gated calcium channel, voltage-gated potassium 
channel, the Hyperpolarization-activated Cyclic Nucleotide-gated 
cation (HCN) channel, voltage-gated chloride channel. B. Ligand-
gated ion channels, such as GABAA receptor, nicotinic cholinergic 
receptor, glycine receptor. C. Ionotropic glutamate receptors, such 
as NMDA receptor, AMPA receptor. D. Acid-sensing ion channels. 
E. G-Protein-Coupled Receptors (GPCRs). F. The metabotropic 
glutamate metabotropic receptors, such as GABAB receptor. G. 
Neurotransmitter transporters, such as plasma membrane GABA 
transporter, plasma membrane glutamate transporters, vesicular 
glutamate transporters. H. Presynaptic proteins which influence 
synaptic function, such as synaptic vesicle protein, synaptic 
anchoring proteins. I. Enzymes, such as GABA-transaminase, 
carbonic anhydrase, protein kinases and phosphatases. J. Gap 
junctions (connexins). So far the most important classes of targets 
for currently marketed AEDs are voltage-gated and ligand-gated ion 
channels. Other targets have been investigated, recently, it is reported 
that hydrogen sulfide aggravates Seizure-Like Events (SLEs) of rats 
in vivo and in vitro, which may be due to an increase in neuronal 
excitation [7]. Enzymes that control hydrogen sulfide biosynthesis 
are potential new targets for the treatment of epilepsy. Although lots 
of AEDs are available, effective symptomatic relief is achieved only 
in about two thirds of the patients [8]. Surgery, neurostimulation or 
dietary changes may be considered for seizures that do not respond 
to medication.

As hyperexcitable network is the key factor underline seizure 
generation, reducing the excitability of network is the goal for treating 
epilepsy. As mentioned above, the new class of ChR enables fast 
optical inhibition of action potentials. This new opsin is supposed to 
directly and completely terminate epileptic discharge by light pulses.

The vast majority of optogenetic study to today has been carried 
out in mouse or rats. Viral vector delivery, which introduced the 
opsin to cells, to the primate brain has been well established and used 
for limited forms of neuromodulation [9] . Two optogenetic works 
on primate have been performed, demonstrating for the first time 
that optogenetics can be used in rhesus macaques [10,11] . Given 
that mammalian optogenetics is just at the beginning, it still has a 
lot of progress made in non-human primate and toward human use. 
However, significant technical obstacles are still remained, requiring 
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Optogenetics, as the term has been commonly used, refers to 

the technology to use light to control neuron or neuronal network 
that has been specially sensitized to light [1]. The peak activation 
wavelength of light is mostly between 400 to 650 nm [2]. It has been 
firstly introduced into neuroscience since 2005 [3]. It is an integration 
of opics and genetics to control the activity of special neurons in living 
tissue. For example microbial opsin genes can be introduced in to a 
specific targeted neuron or neuronal population, then the effects of 
those manipulations can be precisely measured in real-time. The key 
factor used in optogenetisc is light-sensitive protein, usually referred 
to opsin. We can achieve gain-or loss-of function of the targeted 
neuron or neuronal network using different microbial opsins.

According to the function of opsins, there are three major types. 
A type such as Channelrhodopsin 2 (ChR2) induces the targeted to 
be depolarization and enables action potential elicited to light pulses. 
B type such as halorhodopsin (NpHR) and proton pumps enable 
the targeted to be hyperpolarization to prevent the induction of 
action potentials. C type such as light-activated membrane-bound 
G protein-coupled (OptoXR) or soluble (bacterial cyclase) receptors 
that minic various signaling cascades. The cascade is usually Gq, Gs or 
Gi signaling.

Apart from A type of opsins, B type is used to light to silence 
electrical activity in targeted cells. Available B type such as NpHR that 
directly move ions to achieve silencing is inefficient. Only a single ion 
per photon across the cell membrane is pumped rather than many 
ions per photon are allowed to flow through a channel pore. Recently, 
a class of ChR, which is originally cation-conducting, has been 
converted into chloride-conducting anion channels [4]. The new class 
of ChR enables fast optical inhibition of action potentials and displays 
step-function kinetics for stable inhibition of targeted neuron. 
Moreover, it is more sensitive to light than NpHR. An approach that 
is more physiological, efficient, and sensitive optogenetic inhibition 
has come to us.

Nearly 1% of people worldwide (70  million) have epilepsy 
[5]. Epilepsy  is a common  neurological disorders  characterized 
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advances in opsin engineering, vector delivery, and light pulse among 
other fields. For example, the brain of rhesus is approximately 250 
times larger than rat while the brain of human is approximately 10 
times larger than rhesus [12]. Thorough safety studies will be required 
prior to any human use. Moreover, the safety of the expression of 
opsin and delivery devices of light will need to be tested. Just now, 
the histological data available from the non-human primate work 
described above are conducted for several months, in this short time 
frame, no large-scale neuronal damage is reported [10,11,13].

It is thoughtful that optogenetics with the new class of ChR will be 
used in the treatment of epilepsy in the foreseeable future.
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