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killer of multi-drug resistant human CSC-like cells [4-11]. The action 
mechanism of salinomycin in cancer and CSCs has been shown to 
modulate multiple signaling pathways including the Wnt, NF-кB, 
and p38 MAPK pathways [12-14].

MB cells have the potential to differentiate to neuronal and/or glial 
cells [15,16], indicating that MB cells are of stem cell origin. Growing 
evidence points toward the existence of a CSC-like population that 
may contribute to MB therapy resistance [17-19]. Notch signaling 
is critical for cell differentiation and proliferation and plays a 
fundamental role in MB initiation and progression by regulating 
downstream effectors, e.g., MYC [20-22]. The Notch pathway 
inhibitors, e.g., γ-secretase inhibitor MK-0752, suppress the cleavage 
of Notch, eliminate the stem cell like population [23-25], reduce cell 
proliferation and increase apoptosis [23-25], which implicates Notch 
signaling as a target that may constitute an additional promising 
treatment strategy for MB patients. In the present study, for the 
first time, we determined the anticancer effects of salinomycin in 3 
MB cell lines. We also measured the effects of salinomycin on the 
expression of a few genes critical in cell proliferation, survival, and 
differentiation in MB cells. 

Materials and Methods
Cell Culture and Chemicals  

MB cell lines (Daoy and D283) were obtained from ATCC and 
D425 cells were a gift from Dr. Darell D. Bigner [26]. Daoy and 
D283 MB cells were maintained in minimum Essential Medium 
(MEM) (Cellgro) supplemented with 4 mM L-glutamine, 100 units/
ml penicillin, 100 µg/ml streptomycin, 1% sodium pyruvate, 1% non-
essential amino acids, and 10% fetal bovine serum (FBS) at 37°C 
with 5% CO2. D425 cells were maintained in improved MEM (Zinc 
Optioin 1 x) (GIBCO) supplemented with 10% FBS at 37°C with 5% 
CO2. Salinomycin and propidium iodide (PI) were obtained from 
Sigma.  

Abbreviations
PDGFRβ: Beta-type Platelet-Derived Growth Factor Receptor; 

Bcl-2: B-cell Lymphoma 2; DLL1: Delta-Like 1 (Drosophila); Dll3: 
Delta-Like 3 (Drosophila); Hes1: Hairy And Enhancer Of Split 1 
(Drosophila); Hes5: Hairy And Enhancer of Split 5 (Drosophila); 
Hey1: Hairy/Enhancer-of-Split Related with Yrpw Motif 1; Hey2: 
Hairy/Enhancer-of-Split Related with Yrpw Motif 2; Dtx1: Deltex 
Homolog 1 (Drosophila); Dtx2: Deltex Homolog 2 (Drosophila); 
MAML1: Mastermind-Like 1 (Drosophila); MAML2: Mastermind-
Like 2 (Drosophila); MAML3: Mastermind-Like 3 (Drosophila); 
RBPJ: Recombination Signal Binding Protein for Immunoglobulin 
Kappa J Region; MTS: 3-(4, 5-Dimethylthiazol-2-Yl)-5-(3-
Carboxymethoxyphenyl)-2-(4-Sulfophenyl)-2H- Tetrazolium, Inner 
Salt; DMSO: Dimethyl Sulfoxide

Introduction
Medulloblastoma (MB), an embryonal neuroepithelial tumor 

of the cerebellum, is the most common malignant brain tumor in 
children [1]. This highly invasive tumor has a tendency to disseminate 
throughout the central nervous system early in its course. Although, 
the medical treatment outcome for children with MB has improved 
over the past several decades, approximately one-third of patients with 
MB tumors remain incurable. Moreover, current medical treatments 
have associated toxicities that can cause significant disabilities in 
long-term survivors [2]. Thus, more effective drugs are needed for 
treating patients with MB.

Salinomycin is a 751 Da mono carboxylic polyether antibiotic 
which is widely used as an anti-coccidial drug. Recently, salinomycin 
has been found to reduce the proportion of breast cancer stem cells 
(CSC) by more than 100-fold compared to paclitaxel, a common 
drug used for breast cancer [3]. Cumulative findings strongly suggest 
that salinomycin is a selective killer of human CSC and an effective 
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Abstract

Medulloblastoma (MB) is the most common childhood brain tumor. Despite 
improved therapy and management, approximately 30% of patients die of 
the disease. To search for a more effective therapeutic strategy, the effects 
of salinomycin were tested on cell proliferation, cell death, and cell cycle 
progression in human MB cell lines. The results demonstrated that salinomycin 
inhibits cell proliferation, induces cell death , and disrupts cell cycle progression 
in MB cells. Salinomycin was also tested on the expression levels of key genes 
involved in proliferation and survival signaling and revealed that salinomycin 
down-regulates the expression of PDGFRβ, MYC, p21 and Bcl-2 as well as 
up-regulates the expression of cyclin A. In addition, the results reveal that 
salinomycin suppresses the expression of Hes1 and Hes5 in MB cells. Our data 
shed light on the potential of using salinomycin as a novel therapeutic agent for 
patients with MB.
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Cell Proliferation Analysis

MB cells (Daoy 1x104/well, D283 5 x104/well, D425 1 x105/well) 
were placed in 96-well plates overnight. Salinomycin solution or 
identical volume of control (DMSO) was added to the appropriate 
wells. After 48 hours of treatment, a 20-µl of MTS solution (Promega) 
was added to each well. The cell number in each condition was 
determined by measuring the optical densities at 490 nm after 4-hour 
of incubation. The results were expressed as the percentages of control 
cultures.  

Cell Death and Cell Cycle Analysis

MB cells (5 x105 /well) were placed in 6-well plates overnight. 
Salinomycin or identical volume of control was added to the 
appropriate wells. After 24 hours of treatment, the cells were stained 
with PI and analyzed for cell death and cell cycle distribution using 
the Cell Lab Quanta TM SC system (Beckman Coulter) followed by 
Flow Cytometry Analysis (FACS).

Western Blotting Analysis 

MB cells were harvested at the 24-hour time point for protein 
by adding Tris-triton cell lysis buffer (1% Triton, 50 mM Tris-HCl 
pH 7.4, 10% glycerol, 150 mM NaCl) supplemented with protease 

inhibitor cocktail (Roche Applied Science) and phosphates inhibitor 
cocktail 100x (cell signaling). The protein samples were separated 
using a 10%-12% SDS-PAGE gel, and then transferred onto a 
nitrocellulose membrane. Immunoblots were probed with antibodies 
specific for cyclin A, Bcl-2, p-21 (Santa Cruz), PDGFRβ (Epitomic), 
and MYC (Cell signaling). β-actin (Sigma) served as a loading control. 
Signals of the specific proteins were detected by using the Immun-
Star HRP peroxide Luminol/Enhancer kit (BIO–RAD) and recorded 
on KODAK Biomax light film.

RT-PCR Analysis

RNA was isolated from MB cells using the RNeasy Plus (Qiagen) 
by following the manufacturer’s protocol. The quantity and purity of 
RNA were determined using a Nano Drop 1000 spectrophotometer 
(Thermo Scientific). 1 µg of total RNA was used to prepare cDNA 
using Super Script first-strand synthesis system (Invitrogen) by 
following the instructions provided by the manufacturer. Primers 
used in this study are listed in Table 1 and synthesized by Integrated 
DNA Technology. Semi-quantitative PCR was achieved by amplifying 
genes using an equal amount of cDNA and limited number of cycles. 
For detection of basal levels, 35 cycles were used for all genes except 
GAPDH. For detection the effects of salinomycin on gene expression, 
PCR conditions are listed in Table 1. PCR amplification was 

Gene Primer Sequences (5’->3’) Sizes of PCR products (bp) Annealing temperature (°C) Cycle of amplification

NOTCH1 Forward:  GACAGCCTCAACGGGTACAA
Reverse:  CACACGTAGCCACTGGTCAT 137 55 40

NOTCH2 Forward:  GGAGCTACTGTGAGGAGCAA
Reverse:  GATTTCATACCCCGAGTGCC 238 55 35

NOTCH3 Forward:  TGTCAACGAGTGTCTGTCGG
Reverse:  TTGACTCGGTCCTTGCAGAC 174 55 35

NOTCH4 Forward:  AGTGAGAGCTCTGAGGGTCC
Reverse:  TGGGTCTGACCACTGAGACA 137 55 35

JAG1 Forward:  GGCTGCAATAAGTTCTGCCG
Reverse:  CAGCCTTGTCGGCAAATAGC 131 55 35

JAG2 Forward:  TGCAAAAACCTGATTGGCGG
Reverse:  CACACACTGGTACCCGTTCA 144 60 35

DLL1 Forward:  ACCTCGCAACAGAAAACCCA
Reverse:  GTGTTCGTCACACACGAAGC 146 55 35

DLL3 Forward:  CCGAGCTCGTCCGTAGATTG
Reverse: AGGGTAGGGAAAAAGCAGGTG 165 55 35

DLL4 Forward:  TTAAGCACTTCCAGGCGGTC
Reverse:  GATGAGCGAGAAGGTACCCG 170 55 35

HES1 Forward:  AAGAAAGATAGCTCGCGGCA
Reverse:  CCTCGGTATTAACGCCCTCG 208 55 40

HES5 Forward:  GAGAAAAACCGACTGCGGAA
Reverse:  TAGTCCTGGTGCAGGCTCTT 221 60 35

HEY1 Forward:  TAATTGAGAAGCGCCGACGA
Reverse:  GCTTAGCAGATCCTTGCTCCA 108 60 35

HEY2 Forward:  AGATGCTTCAGGCAACAGGG
Reverse:  GCGCAACTTCTGTTAGGCAC 102 55 35

DTX1 Forward:  ACTTGAATGGTACTGGGCCG
Reverse: CACATCCTCGGGATTCTTACTCTT 221 55 35

DTX2 Forward:  AGATTTGCCCGGTTTTTGTTG
Reverse:  TCCGGCAGATCTTTTCTCTCTG 136 55 35

MAML1 Forward:  CACGAGCAGAACTCCCTGTT
Reverse:  CAGGGACACTGGAAGGGTTC 103 55 40

MAML2 Forward:  ACAACCCTATGATGCCACGG
Reverse:  CCCAGTTTGGTGCAGTTGTG 189 55 40

MAML3 Forward:  ATAGGACCCTCCCAGAACCC
Reverse:  CCCTGGGCTTGGTTATGTGT 185 55 35

RBPJ Forward:  CAGTGCTGGATCTGGGAATCT
Reverse:  AATTTCCCAGGCGATGGAGC 188 61 35

NRARP Forward:  CACCAGGACATCGTGCTCTA
Reverse:  GTAGTTGGCGGGAAGGTACA 128 55 35

GAPDH Forward:  GAGTCAACGGATTTGGTCGT
Reverse:  TTGATTTTGGAGGGATCTCG 237 57 25

Table 1: Primers and conditions used for the semi-quantitative RT-PCR analysis.
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performed using GoTaq Hot Start Colorless Master Mix (Promega) 
and MJ Mini Personal Thermal Cycler (Bio-Rad). The results were 
visualized by analyzing the samples using DNA gel.

Statistical Analysis

All quantitative data are represented as mean ± standard 
deviation (SD). Statistical tests were performed using the Minitab 
16.1.1 software package. Comparisons between two groups were 
carried out using paired student’s t test and p < 0.05 was considered 
as statistical significance.

Results
Salinomycin suppresses cell proliferation, and induces 
cell death and S/G2 cell cycle arrest in MB cells

To assess the cytotoxicity of salinomycin on MB cells, Daoy, 
D425, and D283 cells were treated with salinomycin for 48 hours at 
indicated concentrations and then, the rates of cell proliferation were 
determined by using a MTS assay. As shown in Figure. 1, salinomycin 
suppressed MB cell proliferation in a dose-dependent manner. The 

IC50 of salinomycin are 0.1 µM, 0.25 µM, and 2 µM for Daoy, D425, 
and D283 cells, respectively (Figure. 1).

To further determine the effects of salinomycin on MB cells, 
Daoy, D425, and D283, cells were treated with salinomycin at the 
concentrations indicated in Figure. 2. After 24 hours of treatment, 
cells were analyzed for cell viability and cell cycle progression using 
PI staining followed by FACS analysis. As shown in Figure. 2, an 
increase in cell death (sub-G0) was observed in all three cell lines in 
response to salinomycin treatment. In addition, salinomycin induced 
Daoy cells arrest at S/G2 phases and D425 and D283 cells at G2 phase 
under low concentration. Under high concentration, with exception 
of D425 which showed little change, Daoy and D283 cells were both 
arrested at S phase (Figure. 2).

Salinomycin suppresses the expression of genes involved 
in MB proliferation and metastasis 

MYC and PDGFRβ were previously reported to be involved 
in MB growth and metastasis [27-30]. To understand the action 
mechanism of salinomycin on MB, the effects of salinomycin were 
examined on the expression of MYC and PDGFRβ in MB cells. Our 
results showed that all three MB cell lines, Daoy, D283, and D425, 
expressed high levels of PDGFRβ and MYC. Notably, after treatment 
with salinomycin at the concentration indicated in Figure. 3 for 24 
hours, we observed a markedly down-regulation of both MYC and 
PDGFRβ in all 3 tested MB cell lines (Figure. 3A).

Salinomycin treatment has differential effects on the 
expression levels of cyclin A, p21, and Bcl-2 

To further elucidate the mechanism of salinomycin’s action, 
the expression levels of key regulators of cell cycle progression and 
apoptosis were examined in response to salinomycin treatment by 
western blotting. The results showed that salinomycin treatment 
markedly increased cyclin A expression (Figure 3A). This effect 
could be due to the prolonged S/G2 phases. In addition, reduced 
anti-apoptotic protein p21 and the survival protein Bcl-2 in MB cells 
were observed in response to salinomycin treatment (Figure. 3B).
The modulation of cyclin A and p21 may contribute to a reduction 
in cell proliferation and the down regulation of Bcl-2 and p21 may 
contribute to salinomycin induced cell death.

Suppression of Notch signaling by salinomycin in MB cells

To evaluate the effects of salinomycin on the expression levels of 
genes in Notch signaling in MB cells, we first determined the basal 
levels of genes in Notch signaling using RT-PCR analysis. As shown 
in Figure. 4A, all 3 cell lines expressed relatively high levels of Notch 
2, JAG1, MAML1-3, DLL3, Hes1, RBPJ1, NRARP. The effects of 
salinomycin on the transcription of key genes in Notch signaling such 
as Notch receptors (e.g., Notch 1 and 2), Notch ligands (e.g., JAG1 and 
DLL1), transcriptional co-activators for Notch signaling (e.g., MAML 
1-3), and Notch signaling effectors (e.g., Hes1, Hes5, and HEY1) 
[31,32], were assessed. We observed an inhibition of Notch signaling 
by salinomycin in all tested cell lines that manifested suppression on 
transcription of DLL1, MAML1, Hey1, Hes1, and Hes5 genes (Figure. 
4B). 

Discussion
In this study, we found that salinomycin at the concentration 

 

Figure 1: Effects of salinomycin on MB cell proliferation. Cells in complete 
medium were treated with salinomycin. After 48 hours, the number of viable 
cells in each well was determined using an MTS assay (Promega). The 
optical densities were measured at 490 nm. The results were calculated as 
the percentage against control cultures and presented as mean ± SD. The 
statistical differences were determined using paired student’s t-test and 
performed using Minitab. * p<0.05, **p<0.01, and ***p<0.001.
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range of 0.25-4 μM significantly inhibits cell proliferation and 
induces cell death and cell cycle arrest. Through analyzing of changes 
in expression of genes and/or proteins that are involved in cell 
proliferation, cell death, and the Notch signaling pathway in response 
to salinomycin treatment, we reveal that salinomycin suppresses the 
expression of PDGFRβ, MYC, Bcl-2, p21 and some key effectors in 
the Notch signaling pathway (e.g., Hes1).

Since the discovery that salinomycin has anti-CSC activity in 
breast cancer [3], several recent studies have shown that salinomycin 
possesses profound anti-cancer and anti-CSC activities in other 
cancer types in vitro, and in vivo xenografted mouse models, as well 
as pilot clinical studies in patients [33-35]. Nevertheless, the effects 
of salinomycin on MB cells have not been previously studied. In 
the present study, we demonstrate that salinomycin has profound 
cytotoxicity against human MB cells. This conclusion was supported 
by a dose-dependent increase of cell death (the sub-G0 population)
and a significant reduction of cell proliferation upon salinomycin 
treatment. Cyclin A is required for DNA replication in both S and 
G2 phases [36], the up-regulated cyclin A levels might be due to the 
prolonged S/G2 phases by salinomycin treatment. In addition, the cell 
cycle arrest at S/G2 phases and up-regulation of cyclin A expression 
were well correlated with cell proliferation data.

Hes1 and Hes 5 are critical effectors of the Notch signaling pathway 
which plays an important role in MB disease progression and patient 
survival. Fan et al. have reported that the Hes1 expression activated 
by Notch signaling is associated with significantly lower survival in 
MB patients [24]. Research from the same group also revealed that 
the blockade of the Notch pathway suppressed Hes1 expression and 
can cause cell apoptosis, cell cycle exit, and differentiation in MB 

cells [23]. This research suggested a role of Notch signaling in MB 
CSC maintenance. Our data show that salinomycin downregulated 
the transcription of both Hes1 and DLL1. This partially explained the 
effects of salinomycin on MB cell survial and indicated its role on MB 
CSC maintenance. In addition, MAML1 which was previously shown 
as a coactivator to amplify the Notch induced transcription of Hes1 
was also inhibited by salinomycin in MB cells [37]. The suppression 
of the gene expression in Notch signaling may also partially explain 
the downregulated protein levels of p21 which is also a target gene of 
Notch signaling [38].

It has been noticed that MYC is a downstream target of canonical 
Wnt signaling [39]. Indeed, salinomycin blocks the phosphorylation 
of the Wnt co-receptor lipoprotein receptor related protein 6 (LRP6) 
and induces its degradation in Wnt-transfected HEK293 cells [13]. It 
is possible that the down-regulated MYC might be partially caused 
by salinomycin’s impact on Wnt signaling. In this study, we have 
observed the suppression on Notch signaling by salinomycin in MB 
cells and MYC is also a target molecule of Notch signaling [40,41]. 
The possibility exists that salinomycin down-regulates MYC at least 
partially via Notch signaling. In addition, MYC is a downstream 
of PDGFR signaling [42,43]. Therefore, targeting these pathways 
simultaneously for MB should provide an effective strategy for the 
treatment of MB.

MYC is commonly deregulated in MB [44-46] and modulates 
multiple cellular events through alteration of the expression of 
a number of functionally important target genes [47]. Recent 
studies show that among the four subtypes of MB, the Group 3 MB 
chracterized with MYC overexpression indicates aggressive disease 
and poor prognosis [48]. Moreover, blocking MYC significantly 

Figure 2: Salinomycin induces apoptosis and affects cell cycle progression in MB cell lines. Cells were treated with salinomycin for 24 hours and analyzed for 
cell cycle distribution and cell death. Cell cycle and cell death are analyzed independently using FlowJo. The cell death percentage is calculated against all cell 
population including apoptotic cells and live cells in cell cycle phases.
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reduces MB cell growth [49]. In addition to MYC, high levels of 
PDGFRβ have also been correlated with an aggressive phenotype of 
MB [50]. In this study, by showing that salinomycin could suppress 
the expression of MYC and PDGFRβ at the same time, our results 
uncover a new mechanistic aspect of salinomycin’s potent anti-cancer 
effects and highlight the value of salinomycin as a very promising 
drug for treating MB [51].

Conclusion
Our study demonstrates that salinomycin exhibits cytotoxic 

effects in human MB cells. Our data reveal that the treatment with 
salinomycin is effective in inhibiting MB cell proliferation and cell 
cycle progression and inducing cell death. We also show that MB cells 
have altered multiple signaling pathways after salinomycin treatment. 
The down-regulation of PDGFRβ and MYC and the suppression 
of Notch signaling pathway are likely the contributing factors to 
salinomycin’s cytotoxic effects. Taken together, this study suggests 
that salinomycin is a potential effective therapeutical agent for MB 
and warrants further investigation.
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analyzed by RT-PCR analysis (β-actin was used as an internal loading control).
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