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have been found in mammalian cells [1]. Based on the products of the 
enzymatic reactions, PRMTs can be classified as type I - IV enzymes. 
Type I enzymes catalyze the formation of ω-NG monomethylarginine 
(ωMMA) and asymmetric ω-NG, NG-dimethylarginine (ω-aDMA); 
Type II enzymes catalyze the formation of ωMMA and symmetric 
ω-NG, NG-dimethylarginine (ω-sDMA); Type III enzymes catalyze 
the formation of ωMMA only [2], and Type IV enzymes catalyze 
the formation of δ-NG-MMA [3]. PRMT5 is a typical type II 
methyltransferase (Figure 1). It is localized in both the nucleus and 
the cytoplasm and performs distinct functions by modifying either 
histones or non-histone proteins. For example, a study by Friesen WJ 
et al [4]demonstrated that, in the cytoplasm, PRMT5 is present in the 
‘methylosome’ where it methylates Sm protein and such methylation 
is required for the assembly and biogenesis of snRNP core particles. 
Pal S et al [5]showed that, nuclear PRMT5 forms the complexes with 
the hSWI/SNF chromatin-remodeling proteins to methylate histone 
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Introduction
Arginine methylation is a common post-translational modifica-

tion catalyzed by a family of intracellular enzymes termed protein 
arginine methyltransferases (PRMTs). PRMTs belong to the class of 
AdoMet (S-adenosyl-l-methionine) -dependent methyltransferases. 
PRMTs utilize AdoMet as a ubiquitous cofactor to catalyze highly 
specific methyl group transfers from methyl donor AdoMet, to the 
arginine residues on different biological targets.  To date, ten PRMTs 
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Protein arginine methyltransferases (PRMTs) are a family of enzymes that 
can add one or two methyl groups to the guanidino nitrogen atoms of arginine 
residues on histones and non-histone proteins. The abundant epigenetic 
modifications brought about by PRMTs help them regulate a wide variety 
of cellular functions, including RNA metabolism, transcriptional regulation, 
signal transduction, embryonic development and DNA damage repair, etc. 
Overexpression of different PRMTs has been frequently associated with 
many human cancers. Recently, increasing evidence suggests that PRMT5, 
an important member of the PRMT family, is a potential oncoprotein and is 
involved in tumorigenesis. Thus PRMT5 is an important target for therapeutic 
strategies. In this review, we present and discuss recent developments in our 
understanding of PRMT5 and its role in cancer.
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Figure 1: Chemical reactions catalyzed by PRMT5: PRMT5 is a typical type II 
enzyme. It utilizes AdoMet as methyl donor to add a single methyl on the terminal 
nitrogen atom of arginine to form ωMMA. It further adds an additional methyl 
group on the other terminal nitrogen, forming ω-sDMA. Abbreviations: AdoMet, 
S-adenosyl-l-methionine; ωMMA, ω - NG- monomethylarginine; ω-sDMA, 
symmetric ω - NG, NG- dimethylarginines.
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H3R8, therefore, decreasing the expression of tumor suppressor 
genes and acting as an oncogene. Fabbrizio’s group [6] identified a 
nuclear protein COPR5 (cooperator of PRMT5) which is required 
for nuclear functions of PRMT5. PRMT5 has also been shown to 
translocate from the nucleus to the cytoplasm at the time of extensive 
epigenetic reprogramming of mouse germ cells [7]. Study by Zhao 
Q et al [8] suggested that PRMT5 is predominantly localized in the 
nucleus in the bone marrow progenitors, whereas primarily localized 
in the cytoplasm in the cord blood progenitors and may play a 
developmentally specific role in regulating gene expression at the 
human β-globin locus.

Crystal Structure of PRMT5

substrate recognition [10]. 

Role of PRMT5 in Cancer Signaling
PRMT5 was initially identified as Janus kinase (JAK) - binding 

protein 1 (JBP1). It can symmetrically methylate histones H2AR3, 
H3R2, H3R8 and H4R3 [1,11]. Recent studies reveal that PRMT5 
can also methylate many non-histone proteins (Table 1), and many 
of these events are involved in tumorigenesis. For example, Pal et 
al (2004) showed that, in mouse embryonic fibroblast cell lines, 
PRMT5 acts as an oncogene by decreasing the expression of tumor 
suppressor genes like the suppressor of tumorigenicity 7  (ST7) 
and nonmetastatic 23  (NM23)  [12]. Chung J et al [13] showed that 
inhibition of PRMT5 in non-Hodgkin lymphoma cell lines induces 
lymphoma cell death through reactivation of the Retinoblastoma 
(Rb) tumor suppressor pathway and Polycomb Repressor Complex 2 
(PRC2) silencing, suggesting that inhibition of PRMT5 could be used 
as a promising therapeutic strategy for lymphoma. PRMT5 also plays 
a very important role in cell cycle progression and the DNA repair 
process. In human osteogenic sarcoma SAOS2 cells, PRMT5 increases 
sensitivity to DNA repair by methylating p53 at R333, R335, and R337 
[14]. PRMT5 knockout in these cells induces the expression of p53 
and causes p53-dependent apoptosis by triggering cell cycle arrest in 
the G1phase, further confirming the role of PRMT5 in tumorigenesis 
in these cells. Moreover, PRMT5 has also been proven to function 
as an essential component of the hypoxia-inducible factor 1 (HIF-1) 
signaling pathway (15). HIF-1 is a key player in hypoxic response. A 
study by Lim et al [15] showed that, of the siRNAs targeting from 
PRMT1 to PRMT8, only the siRNA of PRMT5 attenuated the hypoxic 
induction of HIF-1α in human lung adenocarcinoma, fibrosarcoma, 
and mammary carcinoma cell lines, suggesting the uniquely 
important role of PRMT5 in these tumor cells. It is well known that 
both cyclin-dependent kinases (CDKs) and the phosphoinositide 
3-kinase (PI3K)/AKT are the key players in cancer. PRMT5 is seen to 
upregulate CDKs and the PI3K/AKT signaling cascade, emphasizing 
its role as a potential oncoprotein [16]. Besides mouse and human 
cells, researchers also found that in C. elegans, PRMT5 methylates 
CREB-binding protein-1 (CBP-1) at R234 and leads to the inhibition 
of DNA damage-induced apoptosis [17]. Recently, our lab discovered 
that PRMT5  dimethylates R30 of the p65 subunit to activate the 
nuclear factor κB (NF-κB) [18]. Over expression of PRMT5 increases 
NF-κB activity, while knockdown of PRMT5 greatly reduces NF-κB 
transactivation. Since NF-κB is a family of transcription factors that 
regulate a variety of cellular processes and its aberrant activation is 
frequently seen in diverse human cancers, data from our lab strongly 
suggest that PRMT5 is a tumor promoter possibly through the 
activation of NF-κB signaling [18]. 

In addition to in vitro cell systems, the importance of PRMT5 in 
cancer has recently been realized in in vivo models and patient samples. 
Gu et al showed that knocking down PRMT5 in lung adenocarcinoma 
A549 cells partially down regulates the fibroblast growth factor 
receptor signaling pathway (FGFR), which reduces the cell growth 
and tumor xenografts in nude mice [19].  In an orthotopic model of 
breast cancer, Powers et al showed that tumor suppressor programmed 
cell death 4 (PDCD4) is methylated by PRMT5 at R110 [20]. Also, 
Ash2L (absent, small, or homeotic) like (Drosophila), a component 
of mammalian histone H3K4 methyltransferase complexes associated 

Name Site Reference
MBP R107 31
LSm4 No Specific sites 32
Sm D1 GAR motif 32
Sm D3 GAR motif 32
EBNA-2 R325-376 33
SPT5 R698 34

EBNA-1 R325-376 35
p53 R333, 335, 337 14

CBP-1 R234 17
CF Im68 GAR motif 36
Ash2L R296 21
CRAF R563 37
EGFR R1175 38

PDCD4 R110 20
Rad9 R172, 174, 175 39
SHP R57 40
HoxA R140 41
NF-kB R30 18

Table 1. Known non-histone protein substrates of PRMT5

The crystal structure of full-length PRMT5 was initially 
determined by Sun et al from Caenorhabditis elegans [9]. This structure 
reveals that PRMT5 is composed of four domains: a TIM - barrel 
domain at the N-terminal end, a middle Rossmann-fold domain, 
a dimerization domain, and a C-terminal β-barrel domain [9]. The 
dimerization domain is inserted between β1 and β2 of the β-barrel 
domain [9]. The TIM - barrel, Rossmann-fold and β-barrel domains 
are packed together in a triangular manner with direct contacts 
between sequential domains [9]. In humans, PRMT5 functions as part 
of various high-molecular weight protein complexes that regulate its 
function and specificity [10]. These high-molecular weight complexes 
invariably contain the WD repeat-containing protein MEP50 
(methylosome protein 50) [10]. Antonysamy et al (2012), reported the 
crystal structure of human PRMT5 in complex with MEP50 bound to 
an AdoMet analog and a peptide substrate derived from histone H4. 
The crystal structure of the hetero-octameric complex shows that the 
N-terminal domain of PRMT5 interacts very closely with the seven-
bladed β-propeller MEP50, and delineates the structural elements of 
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with the transformation of human tumors, is methylated by PRMT5 
at R296 [21]. A study by Cho et al [22] further demonstrated that 
arginine methylation controls growth regulation by E2F-1. Analysis 
of a subgroup of colorectal cells showed that high levels of PRMT5 
coincided with low levels of E2F-1 and poor prognosis [22]. As 
PRMT5 was initially identified as JBP1, it is striking to see that most 
patients with myeloproliferative neoplasms express a constitutively 
activated form of JAK2: JAK2-V617F [23]. This JAK2 mutant interacts 
with PRMT5 more strongly than the wild-type form, down regulates 
its methyltransferase activity, and promotes myeloproliferation [23]. 
Recently, an interesting study by Hua’s group [24] in mice with excised 
Men1 gene (multiple endocrine neoplasia type 1) demonstrated that 
PRMT5 can interact with menin and suppress the Hedgehog signaling 
by dimethylating histone H4R3. This further potentiates PRMT5 as 
a therapeutic target in treating MEN1 tumors. Very recently, our lab 
reported findings from Oncomine data suggesting that PRMT5 is 
highly over expressed in many human cancers such as liver, pancreas, 
skin, breast, cervix, prostate, kidney, ovary, bladder, and lung, with 
strikingly elevated expression in colon cancer [18]. PRMT5 is a house 
keeping gene and complete loss of PRMT5 enzyme is not compatible 
with mouse or cell viability. Surani’s group [25] examined PRMT5 
knockout blastocysts cultured in vitro and demonstrated that PRMT5 
is required for embryonic epiblast cell differentiation and loss of 
PRMT5 leads to early embryonic lethality of mice.

Perspective: PRMT5 as a Cancer Therapeutic 
Target

Since over-expression of PRMTs is associated with many human 
cancers, this makes PRMTs an ideal prognostic biomarker and 
potential therapeutic target for cancer treatment. To date, there are 
very few PRMT inhibitors that have been identified. For example 
S-adenosyl homocysteine (AdoHyc) is an isotype nonspecific PRMT 
inhibitor, which competes with products of methyltransferase reaction 
to bind to the active site of the enzyme [26]. Recently, small molecules 
have been identified that are specific to PRMTs with high potency in 
vitro. AMI-1 (protein arginine N-methyltransferases inhibitor 1) is a 
small molecule inhibitor which inhibits the methyltransferase activity 
of only arginine but not lysine without competing for the AdoMet 
binding site [27]. Another small molecule inhibitor which has been 
synthesized and acts as an irreversible inhibitor of PRMT1 is C21. 
C21 is a chloroacetamidine bearing histone H4 tail analog [28]. Some 
pyrazole-based highly selective and potent inhibitors for PRMT4 have 
also been identified. Baiocchi’s group recently identified CPD5 as a 
novel specific inhibitor of PRMT5. CPD5 can inhibit proliferation and 
induce cell cycle regulation and apoptosis in lung cancer model [29]. 
Very recently, Folk et al identified small molecule inhibitors of PRMT5 
with 100-fold greater inhibition of PRMT5 methylation and improved 
physicochemical properties. They used robust non-radiometric assay 
of peptide substrate methylation based on Transcreener EPIGEN 
technology and the compounds identified display on-target activity 
in cell lines and reduce proliferation of cancer cells [30]. Like other 
therapeutic targets in cancer, targeting PRMT5 will surely have its 
own side effect. However, this could only be further tested in clinical 
trials. Given the especially important role of PRMT5 in cancer, 
it is not surprising that more inhibitors will be identified for this 
important enzyme. As we described above, the crystal structure of 
human PRMT5:MEP50 complex has been recently reported (10). 

This information is of extreme importance, as it will surely accelerate 
the progress toward the synthesis of novel inhibitors of PRMT5 and 
treatment of cancer. 
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