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overcome through the targeting of allosteric sites that are topologically 
distinct from the orthosteric sites. Conventional wisdom suggests 
that allosteric sites are less conserved across related receptors due to 
decreased evolutionary pressure that would otherwise be requisite to 
maintain an orthosteric binding pocket capable of accommodating the 
endogenous ligand(s) [11]. In short, allosteric modulation provides an 
opportunity to specifically target receptors that belong to a subfamily 
of similar GPCRs, thereby minimizing off-target effects, a significant 
advantage over typical agonism/antagonism acting at the endogenous 
ligand binding pocket. Moreover, most GPCR therapies are based on 
chronic exposure of the receptor to orthosteric ligands which raises 
the important issue of understanding and investigating the long-
term regulatory processes of the receptors and the implications as 
related to decreased clinical efficacy due to desensitization and up/
down regulation of the target receptor. Allosteric modulators that 
lack intrinsic activity and only modulate the action of the orthosteric 
ligand may overcome the aforementioned issues, another major 
advantage over traditional approaches to receptor targeting. Another 
potential benefit of allosteric modulators is based upon the possibility 
that structural modifications can be designed to result in separate 
control of affinity and efficacy leading to the fine-tuning of GPCR 
activity in a manner that depends on the presence of the endogenous 
ligand [12]. 

The small molecule allosteric modulation of GPCRs can promote 
a conformational change in the receptor that often alone produces no 
noticeable downstream effects, but in the presence of an orthosteric 
ligand there can be several possible outcomes (Figure 1): (i) positive 
allosteric modulators (PAMs) increase the binding affinity and/
or efficacy of orthosteric ligands, (ii) negative allosteric modulators 
(NAMs) are the antithesis of PAMs, decreasing binding affinity and/
or efficacy of the orthosteric ligand, (iii) silent allosteric modulators 
(SAMs) bind to the allosteric site without actuating a change in 
orthosteric binding or efficacy. The fact that allosteric modulators can 
lack intrinsic activity in the absence of the orthosteric ligand confers 
two important benefits: (i) preservation of temporal and spatial 
endogenous tone while fine-tuning the desired biological signaling 
outcome, and (ii) a ceiling effect that can minimize side effects [11]. 
Some allosteric modulators such as ago-PAMs can have intrinsic 
activity which may provide an opportunity to activate or diminish 
GPCR-mediated signaling in the absence of ligands that act at the 
orthosteric site of action. The leveraging of biased signaling (promotion 

The widening gap between the cost of developing new medicines 
and successfully introducing therapeutics into the clinic cannot 
be ignored. The average R&D investment associated with bringing 
a drug development project to fruition is $1.2 billion over a 10-15 
year time span [1].  While the annual amount spent on this endeavor 
has exploded since the 1950s [2], the number of approved drugs per 
billion U.S. dollars has decreased approximately 50-fold over the same 
time period [3].  Most certainly this trend cannot be attributed to a 
lack of technological advances considering the implementation of 
the high throughput capabilities in screening, sequencing and X-ray 
diffraction in addition to combinatorial and computational chemistry 
techniques available to the drug discovery team that collectively 
were once thought to usher in a new era in drug discovery. While 
the causes hampering productivity remain controversial [2-5], and 
the need for new targets is evident, a new paradigm with respect to 
how systems are targeted by small molecules is an intriguing idea that 
has recently gained momentum in the form of allosteric modulation. 
More precisely, the targeting of allosteric sites of GPCRs toward the 
generation of new therapeutics as a means to close the unsustainable 
gap between R&D costs and delivering relevant small molecules to the 
clinic is an exciting prospect.

The GPCRs are seven-transmembrane spanning receptors 
coupled to trimeric G proteins and, as a class, represent therapeutic 
targets for most approved medications marketed across the world 
yet only a small fraction of known GPCRs have been exploited for 
the treatment of diseases [6-8]. Traditionally, receptors of this type 
have been targeted with agonists or antagonists that bind to the 
orthosteric site that usually accommodates the endogenous ligand(s) 
for a given receptor. Targeting in this way can become problematic 
especially when the receptor belongs to a family of subtypes that share 
high sequence homology at the orthosteric site, usually a requisite to 
bind the endogenous ligand across the family of receptors. Notable 
examples include the metabotropic  glutamate receptors (mGluRs) 
and serotonin receptors (5-HTRs) which are comprised of 8 and 
14 receptor subtypes respectively, underscoring the importance for 
subtype selectivity [9,10]. This major limitation can potentially be 
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of one signaling pathway at the expense of another at the same 
receptor) and probe dependence (differing signaling outcomes based 
on the identity of the chosen orthosteric ligand at a given receptor) 
may be exploited as novel modalities toward the treatment of disease. 
Yet another advantage is that so-called “undruggable” GPCRs that are 
actuated by intractable stimuli (i.e., large peptides) can be modulated 
allosterically by synthetically accessible small molecules, opening a 
new avenue toward targets previously unassailable [13]. 

The case for an allosteric approach for the targeting of GPCRs is 
building. A literature analysis of GPCR allosteric modulation provides 
a glimpse into the recent flurry of research in this area. Within the 
last decade, a steep upward trend in publications is evident (Figure 
2) and will ideally translate to future therapies reaching patients. 
While an increase in recent interest is evident, only two allosteric 
modulators of GPCRs have been introduced in the clinic (Figure 3). 
Cinacalcet (Sensipar, Amgen, FDA-approved 2004) is a PAM that acts 
as a calcimimetic at the calcium-sensing receptor as a treatment for 
hyperparathyroidism that was designed using a homology modeling 
of the GPCR [14,15]. Maraviroc (Selzentry, Pfizer, FDA-approved 
2007), a NAM of the Chemokine Receptor 5 (CCR5), is used to treat 
patients infected with HIV and was the result of a high throughput 
screening/medicinal chemistry program [16]. Recently the co-crystal 
of Maraviroc and CCR5 was solved, generating much excitement due 
to the disclosure of high resolution details with regard to Maraviroc 
binding and the resulting conformation shifts in the receptor along 
with the purported impact related to the HIV cell-entry mechanism 
[17]. While generating high resolution crystal structures of GPCRs 
remains a challenge, significant structural biology efforts led by Drs. 

R. Stevens and P. Kuhn at the Scripps Research Institute have afforded 
the scientific community with solved GPCR structures that provide 
key insights into structure-function relationships, ligand binding 
considerations, and the framework for molecular docking efforts as 
well as templates for homology modeling (www.gpcr.scripps.edu). On 
the pharmacology and medicinal chemistry fronts, gaps in knowledge 
with regard to allosteric modulators and GPCRs have been filled 
by efforts led by Drs. J. Conn, C. Lindsley and collaborators at the 
Vanderbilt Center for Neuroscience Drug Discovery with a major 
focus on mGluR and muscarinic receptor allosteric modulators 
[18].  In addition to impactful work on these specific receptors, 
their collaborative efforts have provided key insights on how to 

 

Figure 1: Schematic of GPCR signal transduction: allosteric ligands (spheres; shading represents structural diversity of different allosteric modulators that can act 
at same site) bind to a site (yellow sphere) that is distinctly different than the orthosteric site (yellow triangle) which accommodates an orthosteric ligand (triangles; 
shading represents structural diversity of different ligands that can act at the same site). Actual binding site locations are generally dictated by GPCR family type. 
Allosteric modulators can modulate binding affinity (a) and/or efficacy (b) of orthosteric ligands in a positive (PAM) or negative manner (NAM), or simply occupy the site 
(SAM). This modulation is often affected by the specific orthosteric ligand present (probe dependence) and can potentially alter receptor activation of certain signaling 
pathways at the expense of others (biased signaling).

 

Figure 2: Number of papers published between 1990 and 2013 according to 
recent SciFinder search using phrase “allosteric receptor modulators”
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approach the development of GPCR allosteric modulators from the 
pharmacologist’s and medicinal chemist’s perspectives in general, 
laying the groundwork for the exploration of allosteric modulation 
at other GPCRs, including our own efforts to develop allosteric 
modulators for the serotonin 5-HT2C receptor [19].

While allosteric modulators provide new opportunities in 
drug design, the very advantages that have propelled this strategy 
into the mainstream present a set of challenges as described in the 
comprehensive review by an additional lead group of scientists 
pushing the field forward and directed by Drs. A. Christopoulos 
and P. Sexton at the Monash Institute of Pharmaceutical Science 
[13]. For instance, it is conceivable that less-conserved allosteric 
sites across a sub-family of receptors due to decreased evolutionary 
pressure at these sites, while advantageous for selectively targeting a 
receptor sub type, can lead to differences in the allosteric site of the 
same receptor between species. The potential of probe dependence 
of allosteric modulators necessitates careful selection of orthosteric 
ligands for assays. Allosteric modulator design may suffer from flat 
structure-activity relationships if only binding affinity and efficacy are 
considered without full appreciation of other key parameters such as 
the impact of cooperativity between allosteric and orthosteric ligand’s 
binding affinity and efficacy.

Despite the challenges in developing allosteric modulators, a 
growing body of research has emerged illuminating the advantages and 
methodological considerations with respect to targeting GPCRs by 
allosteric modulation. To date, in addition to the two marketed GPCR 
allosteric modulators, there are allosteric modulator compounds in 
clinical trials including Johnson & Johnson’s JNJ-40411813 (mGluR2 
PAM, phase I) and Addex Pharma’s ADX10059 (mGluR5 NAM, phase 
II), demonstrating the potential of targeting the allosteric sites (www.
clinicaltrials.gov). As nuanced strategies regarding pharmacological 
characterization and optimization of allosteric modulators continue 
to benefit from aggressive efforts of those in the field, future research 
will clarify the extent to which allosteric modulation of GPCRs – and 
other targets –represents a true paradigm shift in drug development. 
Nevertheless, allosteric modulation as a means to improve lives 
presents a promising approach that will ideally lead to new drugs in 
the years to come.
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Figure 3: Structures of FDA-approved GPCR allosteric modulators.
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