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Abstract

Melatonin is a neurochemical hormone produced by pineal gland and 
has an important role in regulating circadian rhythm in human body. In recent 
years it has revealed some cytoprotection and antimitogenic effect of this 
neurohormone which was explained in relation to its receptors and accordingly 
some intracellular signaling pathways. The Role of melatonin in some important 
cancers as breast and colon cancer has been administrated clearly, and some 
other studies are being conducted for some other important malignancies. This 
paper describes some anticancer aspects of melatonin and its receptors.
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Melatonin’s actions are through its interaction with specific 
membrane bound receptors. As anticonvulsant and vasoconstrictor 
activity with the activation of MT1 receptors, and vasodilatation with 
the activation of MT2 receptors [3]. It has also been revealed that 
melatonin has a protective effect against myocardial infarction, and 
also can inhibit weight gain and reduce the effects of estrogen [4]. 

Moreover, Melatonin can induce some non-receptor mediated 
mechanisms, as scavenger for reactive oxygen and nitrogen [1-5]. 
The reactive species scavenges include hydroxyl radical, hydrogen 
peroxide, nitric oxide and many others [1]. Melatonin acts not only as 
a potent antioxidant, but also as a potent cytoprotective agent [6]. At 
normal concentrations, melatonin antagonizes oxidative stress and 
controls cellular metabolism [7]. 

Melatonin, after being produced in the pineal gland and entering 
blood circulation, plays as an endocrine hormone and a chemical 
transmitter of light and darkness [8]. Some findings have shown 
that in bone marrow, lymphocytes, and the skin, it can produce 
some signals which protect these organs from free radical-mediated 
damage [9].

Since melatonin discovery, some roles of melatonin, such as the 
regulation of circadian rhythms, acting as a neurotransmitter or a 
hormone to regulate numerous organ systems, and as an antioxidant, 
have been recognized [10]. Many of these roles act through G protein 
coupled membrane receptors: (MT1 and MT2) and some of them are 
independent from receptor [11]. 

Introduction 
Melatonin (N-acetyl-5-methoxytrypamine) was discovered 

50 years ago by Lerner et al. who extracted this indolamine from 
the bovine pineal gland and found that it caused the lightening of 
the frog skin known as depigmenting factor by McCord and Allen 
in 1917. Then chemical structure of this compound as N-acetyl-5-
methoxytrypamine was determined and shown to act as an antagonist 
of the a-melanocyte stimulating hormone (a-MSH) [1].

The synthesis of melatonin is in multistep pathways, 
which begins with hydroxylation of aromatic amino acid 
L-tryptophan to 5-hydroxytryptophan catalyzed by tryptophan 
hydroxylase. 5-hydroxytryptophan is then converted to serotonin 
(5-hydroxytryptamine) by the aromatic amino acid decarboxylase. 
Serotonin is subsequently converted to N-acetylserotonin by 
the enzyme arylalkylamine N-acetyltransferase. The final step of 
synthesis is the conversion of N-acetylserotonin to melatonin by 
hydroxyindole-O-methyl transferase [2]. The biosynthetic pathway 
of melatonin is shown in Figure 1.

In mammalians, the role of melatonin consists of controlling 
circadian rhythm and acting as a neuromodulator, hormone, cytokine 
and biological response modifier [1]. It has also some effects on CNS, 
immune, gastrointestinal, cardiovascular, renal, bone and endocrine 
functions, and has some properties as an oncostatic and anti-aging 
compound [1]. 
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Melatonin also affects the retinoic acid family of nuclear receptors 
and produces many effects [1]. More studies are needed to find out 
how it controls these receptors. According to crystal structure of 
ROR receptors, cholesterol sulphate, but not melatonin, was found as 
its natural ligand [10]. Other compounds were also found as potent 
ligands for RORa nuclear receptor including cholesterol derivatives; 
however, melatonin was not among them [11,12]. Some scientists 
guess melatonin indirectly controls nuclear receptors through MT1 
membrane receptor when activated by melatonin [13].

With the knowledge improvement, molecular and genetic tools 
are being used to find melatonin receptor expressions and their 
physiological roles in physiology and diseases. These receptors 
can be pharmacological goals for immunomodulation, regulation 
of endocrine functions, anti-cancer activity, circadian activity, 
cardiovascular physiology, skin pigmentation, hair growth and aging. 
Thus, developing the knowledge of expression, regulation, signaling 
and function of melatonin receptors in peripheral cells and tissues 
may contribute to pharmacotherapy of different kinds of diseases [1].

In vitro studies showed that MLT can have a direct and an 
indirect anti-oxidative effect [14]. In the direct way, it inactivates 
hydroxy (.OH) and superoxide (.O2), confirming that it is a potent 
free radical scavenger [14]. Indirectly, melatonin (MLT) has been 
found to alleviate nephro-, cardio- and myelotoxicity of doxorubicin 
(DOX) and other anthracyclines in vivo; yet few data are available to 
show the effects of MLT on the cytotoxicity of antineoplastic drugs 
toward tumor cells in vitro. 

According to numerous reports, MLT may protect cells of various 
organs against the damage from ROS-producing chemicals due to its 

potent anti-oxidative effects [15].

The Role of Melatonin in Cancer
It has been discovered that melatonin has oncostatic efficacy on 

hormone-related mammary cancer [16,17]. Some manipulations 
which activated pineal gland, or taking melatonin from animals, 
diminished the growth rate of chemically mammary tumors in 
rodents, while pinealectomy or decrease of melatonin production 
stimulated mammary cancer [16,17]. Melatonin decreases the 
incidence of breast cancer by down-regulating the synthesis of 
some hormones necessary for normal or pathological growth of the 
mammary gland [16,18] and through direct actions on the tumor 
cells [16,18-20].

Some researches’ findings on animal models and human breast 
cancer cell lines confirm the idea that melatonin anticancer effects 
on hormone-dependent mammary tumors are mainly dependent on 
its efficacy to act through estrogen-signalling pathway of tumor cells 
[18,21]. At the mammary tumor cell level, melatonin interacts with the 
estrogen-response pathway and counteracts the effects of estrogens so 
it can act as a selective estrogen receptor regulator. Melatonin has this 
modulator efficacy due to its anti aromatase activity [16].

Generally, the effects of melatonin on cancer cells have been 
demonstrated by a mechanism not only dependent on its binding to 
receptors (in membrane or nuclei of cells) but also independent from 
receptors (binding to calmodulin or by its antioxidant effects) [22,23].

In mammary cancer cells, aromatase genes consisting of promoters 
controlled by cAMP [12,24-26] and some agents as melatonin has the 
ability to decrease cAMP levels, and can decrease aromatase activity. 
Also, the overexpression of the melatonin receptor (MT1 receptor) 
potentiates the growth-inhibitory effects of melatonin in ER•-positive 
(MCF-7) human breast cancer cells [16].

Breast Cancer
It has been shown that melatonin administration can decrease 

and in some cases increase or have no effect on the progress of the 
mammary gland tumors in mice and rats [1]. Also in the breast tissue, 
melatonin receptors can control estrogen receptor binding [1]. In 
recent years, it has been demonstrated that MT1 receptor is expressed 
in MCF-7 and MDA-MB-231 (human breast cancer cell lines) and 
in the breast cancer tissues [1,27-29]. In MCF-7 cells, melatonin 
reversibly prevents cell proliferation and cell invasion [30]. There is a 
crosslink between MT1 receptor and estrogen receptors’ pathways in 
the breast cancer tissues [31]. The MT1 expression is downregulated 
by exogenous estradiol and melatonin in MCF-7 cells. Moreover, the 
MT1 receptors’ expression is upregulated in the estrogens’ receptors’ 
negative cells (MDA-MB-231) and downregulated in the estrogens’ 
receptors’ positive cells (MCF-7) [32]. 

The role of melatonin in breast cancer etiology has been found 
in 1970s; other studies have provided some evidence that melatonin 
could inhibit breast tumor progress [33]. Melatonin plays its role in 
etiology and progression of cancer through a number of mechanisms, 
including direct anti-proliferative effects on breast cancer cells, 
interaction with the estrogen pathway, activating immune system 
and interactions with estrogen and insulin pathway members [33]. 
The melatonin receptors 1a and 1b (MTNR1a and MTNR1b) are, 

Figure 1: The biosynthetic pathway of melatonin. Melatonin is synthesized 
from tryptophan in a multistep process [1].
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respectively, largely responsible for mediating the downstream effects 
of melatonin, while Aryl-Alkyl amine-Nacetyltransferase (AANAT), 
which is the important enzyme in melatonin synthesis and regulates 
the day/night rhythm of producing melatonin in the pineal gland, can 
have a similar role [33]. It was demonstrated that these three genes or 
proteins are potentially important agents in making the risk of breast 
cancer [33].

According to some studies, physiological concentrations of 
melatonin inhibit  in vitro growth of estrogen receptor, a (ERa)- 
positive breast cancer cells as MCF-7 cells [34] In vivo studies, 
revealed that experimental manipulations activating the pineal gland 
or exogenous administration of melatonin reduced the incidence 
and the growth of carcinogen-induced mammary tumors in rats and 
mice [34-36] but pinealectomy or other ways which reduced systemic 
melatonin levels in animals increased mammary tumor incidence 
[34, 37]. Generally, melatonin produced by mechanisms dependent 
upon receptor activation or receptor-independent as antioxidant 
effects and calmodulin-mediated can prevent the progress of cancer 
in mammary tumors [34]. Besides, some of melatonin receptor-
related mechanisms may have the same result as its metabolites [34]. 
The activation of the MT1 melatonin receptor by melatonin can 
affect a variety of G proteins which activate some down-stream signal 
transduction pathways.

Yuan L. and his colleagues have reported [34,38,39] that the 
majority of the growth-inhibitory actions of melatonin on breast 
cancer cells appear to be mediated through the MT1 G protein-
coupled membrane melatonin receptor. They reported that in MCF-7 
breast cancer cells, melatonin inhibits estrogen, forskolin or Pituitary 
Adenylate Cyclase-Activating Polypeptide (PACAP) which increases 
cAMP levels through activation of the membrane G protein-coupled 
MT1 receptor [39]. So it was found that melatonin can regulate the 
transcriptional activity of a number of steroid receptors, including 
ERa, which can play an important role in progression of breast cancer 
[40]. The antiproliferative effect of melatonin appears to be partially 
mediated through mechanisms involving modulation of the ERa 
signaling pathway, such as down-regulation of ERa expression [41] 
and increase in estrogen-induced ERa transcriptional activity which 
affect the expression of growth-modulatory, estrogen-regulated genes 
[34]. 

In contrast, many pineal indolamines that are precursors 
(serotonin, N-acetylserotonin) or enzymatic degradation products of 
melatonin have not been found to inhibit the proliferation of breast 
cancer cells [34].

Abd El-Aziz et al. [42] has shown that the co-treatment of 
melatonin and 9-cis Retinoic Acid (9cRA) can inhibit the development, 
delay the onset and induce the regression of mammary tumors; based 
on the fact that the combination of S23478-1 (a new non-selective 
MT1 and MT2 agonist) and antRA (retinoic acid antagonist) can 
induce apoptosis in human breast tumor cell lines [42]. 

Recently, Cucina et al. has shown that with administration of 
melatonin and MT agonist, the highest expression of Bcl-2 and Bax 
and the lowest level of MT1 receptor expression can be observed. 
According to their study, the pro-apoptotic effect of melatonin in 
MCF-7 cells can explain the biphasic apoptotic event triggered by 

melatonin: an early (24hr) TGFb1 and caspase-independent apoptotic 
response associated with an increased Bcl-2/Bax ratio, and a late 
(96 hr) TGFb1 and caspase-dependent process with a concomitant 
decrease in Bcl-2/Bax ratio [43]. He observed decreased Bcl-2 and 
increased Bax levels in the mammary tumors treated with melatonin 
or melatonin agonist S23478-1 which may have the same result as the 
late apoptotic process activated by melatonin [34,43].

Melatonin receptors in the gastrointestinal tract
The first finding about melatonin activity in the GI tract by 

Quastel and Rahamimoff demonstrated that melatonin diminished 
the spontaneous contraction of the intestine [1,44]. Now it is clear 
that melatonin, not only exists in the GI tract but also, based on 
some findings, it is produced locally by intestine with two enzymes, 
AANAT and HIOMT, which are expressed in the intestine epithelial. 
Moreover, it has been shown that its concentrations can be 10 to 100 
times more in the intestine than in the serum [1,44].

Melatonin may have many important effects on the gut. It can 
act as a physiological antagonist of serotonin [1]. Although this 
mechanism has not been completely cleared, there exist two theories: 
the blockade of serotonin through the CCK2, 5HT3 and MT2 
receptors, through which melatonin can inhibit serotonin’s action 
[1]. Also, it has been found that melatonin’s secretion is increased 
in the intestine during fasting [1]. Melatonin can also activate the 
secretion of mucosal bicarbonate by inducing calcium release in the 
enterochromaffin cells [45]; this effect seems to be mediated by the 
MT2 receptor [1,45]. Melatonin has also been shown to activate the 
pancreatic secretion of amylase and cholecystokinin via activating 
MT2 receptors [45,46]. Moreover, melatonin can have considerable 
receptor-independent activities in the GI tract as a free radical 
scavenger [47]. Recently, the preventive role of melatonin against 
ulcer formation and its curing has become well known [1,48].

Melatonin receptors in the gut
Melatonin receptors are distributed along gastrointestinal tract 

and have some physiological effects by activating some specific 
membrane receptors (Mel1A, Mel1B and Mel1C) [49]. Mel1A and 
Mel1B were recently renamed as melato¬nin-1 receptor (MT1) and 
MT2 receptor [49]. 

Besides, there are a number of nuclear melatonin receptors 
belonging to the Retinoid Z Receptor (RZR) or Retinoid Orphan 
Receptor (ROR) subfamilies with three subtypes (α, β, γ) [49]. There is 
an interaction between membrane and nuclear melatonin receptors; 
this finding has confirmed that the expression of ROR/RZR mRNA is 
decreased in blood mononuclear cells with a reduced MT1 receptor 
expression. Also, melatonin can directly interact with intracellular 
proteins such as calmodulin, calreticulin or tubulin [49].

According to one research using tissues from rat pancreas, 
stomach, duodenum and colon, it was recognized that there were some 
high levels of MT2 receptors in the colon which shown by western 
blot analysis [50]. In the same study, the most MT2 immunoreactivity 
became known in the muscularis mucosae and in circular and 
longitudinal muscle layers of animal gut [49]. With investigation 
of MT2 receptors in the intestinal muscle layers, Involvement [50]. 
Compared to MT1, the expression of MT2 receptors has not been 
affected by food intake. 
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Some pharmacological animal studies also indicated the presence 
of the melatonin MT3 receptors in colon [51,52]. 

In addition, in blood vessels of both rodent and human colon, 
a high density of melatonin-binding sites was reported. In vitro 
preparations of arterial smooth muscle of the porcine colon relaxes 
in response to melatonin and melatonin receptor agonists; however 
these effects were observed at rather high concentrations of melatonin 
[53]. 

Although there are some data showing the localization and 
expression of MT receptors in GI tract, the presence of nuclear 
melatonin binding sites has not been completely observed yet. Some 
studies suggest that these nuclear receptors are present in murine 
colon cancer cells, but the details of this thesis and the precise 
localization of these receptors remain unclear [49,54].

Colon Cancer
With identification of melatonin binding sites among the 

patients with carcinoma in human colon and rectum, the possible 
role of melatonin in colorectal cancer was identified through several 
studies [49]. Melatonin binding sites were identified in the mucosa 
and submucosa of the human colon and radioimmunoassays have 
shown that melatonin’s concentrations of tissue in non-cancer 
control patients are lower than melatonin concentrations in the colon 
of patients with colorectal carcinoma [55]. Colorectal carcinoma 
patients shown significant decline in the peak level of melatonin 
secretion, as well as a reduction in overall melatonin output [56]. 
Some researchers have demonstrated that melatonin can be involved 
in colon cancer risk or preventing the progress of this kind of cancer 
[49,57].

It was surprisingly found that pinealectomy can enhance the 
colonic crypt cell proliferation in rats, suggesting that melatonin 
pathways can be involved in carcinogenesis in colon [49].

Controlling mechanism of melatonin in colon involves inhibition 
of tumour angiogenesis, the modulation of the mitotic and apoptotic 
activity, and regulating cellular concentrations of glutathione [49,58-
60]. Another suggestion for melatonin effects is according to the 
regulation of estrogen receptors. Also direct effects on the cell cycle, 
influencing several growth factors and enhancing gap junctions 
and increasing intracellular concentrations of anti-oxidants can be 
considered for its protective mechanism [49,61,62]. Some researches 
indicate that, in colon adenocarcinoma, membrane-bound and 
nuclear melatonin receptors are involved in their oncostatic properties 
[16, 63]. Also melatonin can regulate immune reactivity by binding to 
receptors on T helper cells and monocytes and therefore stimulate the 
production of INFγ and interleukins 1, 2, 6 and 12 [64]. Melatonin 
in this way can also regulate the expression of NF-κB, TNF-α, IL-
1β and STAT3 [65,66]. Melatonin, also in other routes, can activate 
lymphocytes and monocytes/macrophage system in which it can act 
as an immunosurveillant to prevent tumor progression [49,67,68]. 

In clinical trials, melatonin was shown to have cytoprotective 
effects that may be involved in increasing the efficacy of cancer 
chemotherapy and improving survival [49]. Also, according to many 
studies, adding melatonin to chemotherapy treatment can reduce 
the toxicities of chemotherapy and radiotherapy in patients with 
colorectal carcinoma [49].

Also, based on our recent researches, we have found that 
serotonergic receptors (5H1A,1B,3,4) are expressed clearly in 
colorectal cancer cells [69-71]; moreover, we have had some new 
researches to study melatoninergic receptors (MT1 ,MT2 and ROR) 
expression in adenoma carcinoma tissues. In our recent study, 
we have shown that MT2 receptor has been expressed in gastric 
adenocarcinoma human tissues significantly [72,73]. Also in another 
study we have shown that melatonin could have inhibitory effect on 
cell proliferation of AGS and MKN49 gastric adenocarcinoma cell 
lines [74]. Some results from our other studies, especially related to 
MT1 receptor expression are under reviewing or publishing.

Conclusion
According to several studies, melatonin can have anti-cancer 

effect, especially in breast and colon cancer and recently there are 
some evidences about its’ role in gastric cancer. Melatonin can 
induce this effect through its membrane or nuclear receptor and 
the subsequent intracellular signalling pathways. Melatonin plays 
its role in the etiology and progression of breast cancer by a number 
of mechanisms, including direct anti-proliferative effects on breast 
cancer cells, interaction with the estrogen pathway and activating 
immune system. In GI tract, melatonin concentration in the ileum 
and the colon depends on food intake and digestion. Melatonin is 
also involved in immunomodulatory functions in the gut. It can also 
inhibit or regulate serotonin receptors in GI tract.
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