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Abstract

Menopause is a crucial event in women’s health, characterized by the 
cessation of ovarian function. The estrogens deficiency exposes women to 
several diseases, including obesity, osteoporosis, cardiovascular diseases 
and cancer. Menopause-related diseases deeply impact on women’s quality 
of life and represent a serious public and economic health burden. The 
Endocannabinoid System (ECS) includes Cannabinoid Type 1 (CB1) and 
Cannabinoid Type 2 (CB2) receptors, endocannabinoids and all the enzymes 
involved in their biosynthesis and degradation. It plays a significant role in energy 
balance, bone metabolism, muscular contractility, vascular tone and cancer 
progression. CB1 activation is responsible for increasing food intake and body 
weight, stimulating osteoclast activity, inhibiting oxidative stress and preventing 
cancer progression. Conversely, the stimulation of CB2 induces a reduction in 
food intake and in body weight, inhibits osteoclast activity, prevents vascular risk 
and reduces cancer cells proliferation. Moreover, several polymorphic variants 
of cannabinoid receptors genes are involved into obesity and osteoporosis. 

In menopause, the alteration of cannabinoid receptors expression and 
endocannabinoids levels as well as their role in hormone-related pathways could 
act a leading role in different pathologies (obesity, osteoporosis, cardiovascular 
diseases and cancer). Therefore, ECS could be considered a possible 
prognostic marker and a therapeutic target to oppose the harmful effects of 
these menopause-related diseases. In this review we aimed to summarize 
the current state-of-knowledge concerning the impact of ECS on major health 
issues of postmenopausal women.
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Introduction
Menopause is a crucial event of women life. The process is 

sustained by a significant decrease of estrogens and progesterone 
production by ovarian tissues due to natural depletion and aging 
of the oocytes [1]. Natural menopause is diagnosed after 12 months 
amenorrhea not related to pathologies, surgery or any kind of therapy 
(chemo- or radiotherapy) and in the majority of cases it occurs after 
the age of 51 [2,3]. Conversely, surgical menopause occurs when the 
cessation of ovarian function is related to surgical removal or medical 
conditions. Among the clinical conditions associated to early-onset 
menopause, premature ovarian failure is the leading cause and 
happens when the cessation of ovarian function happens before the 
age of 40. It could be idiopathic or related to several pathologies (i.e. 
autoimmune disorder, diabetes mellitus, and thyroid diseases [4]. 

Postmenopausal women could experience several symptoms, 
sometimes responsible for strong life quality compromise. Although 
changing in intensity and frequency from a patient to patient, those 
symptoms include Vasomotor Symptoms (VMS), sleep disturbances, 
genitourinary syndrome of menopause (i.e., vulvovaginal atrophy), 
as well as psychologic and emotional disorders [4,5]. Moreover, 
the earlier is the onset of menopause the most elevated is the risk 
of cardiovascular diseases. Other complications especially related 
to reduction in estrogen levels are inflammation, immunological 

dysfunction, anemia, alteration in bone metabolism, cognitive 
disorders, alteration in RAS proteins pathway, frequently altered in 
cancer [6].

The Endocannabinoid System (ECS) is a complex endogenous 
signaling system constituted by: - two 7-transmembrane-domain 
and G protein-coupled receptors, the Cannabinoid Receptor 
Type-1 (CB1) and the Cannabinoid Receptor Type-2 (CB2); their 
ligands (or endocannabinoids), N-arachidonoylethanolamine or 
anandamide (AEA) and 2-arachidonoylglycerol (2-AG); the enzymes 
responsible for endocannabinoid biosynthesis, named N-Acyl 
Phosphatidylethanolamine-Specific Phospholipase D (NAPE-PLD) 
and Diacylglycerol Lipase (DAGL), and, for their inactivation, 
Fatty Acid Amide Hydrolase (FAAH) and Monoacylglycerol Lipase 
(MAGL) [7]. ECS is involved in several biological functions: appetite 
regulation, pain management, organism development, modulation 
of inflammatory processes and immune response [8]. Considering 
the variety of physiological functions in which it is involved and 
also the evidences about its dysregulation in the pathogenesis of 
many diseases, ECS has been often proposed as therapeutic target for 
several conditions, including metabolic disorders [9], osteoporosis 
[10], cardiovascular disease [11] and cancer [12]. Moreover, a 
crosstalk between ECS and sex hormones is well-documented, in 
particular the alteration of estrogens and progesterone production 
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in postmenopausal women is strongly related to alteration in ECS 
activity (Figure 1) [13].

This review provides up-to-date insights on the role of ECS in 
postmenopausal women and the possibility to target it in order to 
oppose the harmful effects of menopause-related diseases.

Obesity in Menopause: Role of 
Endocannabinoids System

During menopause, the reduction of circulating estrogens and 
the increase of androgens play a role on the onset of metabolic 
syndrome, dysregulation of lipid metabolism and obesity [14], with 
a strong elevation of total body fat mass and fat percentage [15-17]. 
Since androgen and estrogen receptors are expressed in visceral and 
subcutaneous adipocytes, changes in these hormones levels induce 
an accumulation of visceral abdominal fat [18]. This accumulation 
determines alterations in fatty acid metabolism, causing a significant 
lipolysis which results in an increased Free Fatty Acids (FFAs) 
translocation in the liver, development of hyperinsulinemia and 
hepatic insulin resistance responsible of for dyslipidemia, obesity, 
metabolic syndrome and type 2 diabetes [14,19]. In particular, in 
postmenopausal women the Adipose Tissue Lipoprotein Lipase (AT-
LPL) is more active than in premenopausal women, determining an 
increase of FFAs synthesis in gluteal and abdominal adipose tissue 
[20]. Furthermore, postmenopausal women also show a reduction 
of Fat-Free Mass (FFM) which led to a reduction of Basal Metabolic 
Rate (BMR), the energy necessary for the maintenance of biological 
functions, decreasing energy expenditure and altering energy 
metabolism [17,21]. Estrogens reduction and deregulation of lipid 
metabolism predispose postmenopausal women to Cardiovascular 
Diseases (CVDs) [22]. Indeed, in menopause it is reported an 
increase of total cholesterol, triglycerides, Low Density Lipoprotein 
(LDL) levels and of total cholesterol/High Density Lipoprotein 
(HDL) ratio, which lead to CVDs [23,24]. Estrogen Receptor alpha 

(ER-α) regulates adipocytes activity and body fat distribution. It has 
been demonstrated by Davis et al. that the knockdown of adipocyte-
specific ER in adult mice led to an increase of the body weight, adipose 
tissue mass and adipocyte size in female subjects [25]. Alongside, 
adipokines that modulates fat mass, lipoprotein metabolism, size 
and number of adipocytes [26,27], are involved in the pathogenesis 
of hypertension, CVD and osteoporosis [28,29]. High levels of leptin 
and low levels of adiponectin are associated to insulin resistance in 
post-menopausal women [29]. 

The ECS is involved in modulating food intake, energy balance, 
thermogenesis and fat accumulation [9,30-34]. In particular, CB1 
and CB2 receptors directly regulate lipid metabolism in adipose 
tissues [9,32,33]. CB1 expression levels are very high in obesity 
and its genetic ablation or its blockade with a selective antagonist 
determines a decrease in body weight and in food intake in mice 
[9,35]. In contrast, CB2 stimulation with its selective agonists 
induces a reduction in food intake and improves both body weight 
and obesity-associated inflammation in diet-induced obese mice. Its 
genetic ablation and its non-functional variant, Q63R, cause adiposity 
accumulation and eating disorders in humans [9,35]. Moreover, it 
has been demonstrated that CB2 stimulation with its selective agonist 
JWH-133 is able to reduce the obesity-related inflammatory state and 
to induce browning through the up regulation of the Uncoupling 
Protein 1 (UCP1). These findings suggest CB2 as a possible anti-
obesity pharmacological target [35]. Backhouse et al. demonstrated 
for the first time that the administration of rimonabant, an antagonist 
of CB1 receptor, for 12 weeks in obese Caucasian post-menopausal 
women promoted lipolysis and fatty acids oxidation, determining 
energy expenditure [36]. Several polymorphic variants of CB1 gene 
are associated to obesity, alteration in body fat distribution and 
metabolic disorders in men [37-39]. On this evidence Milewicz et 
al. demonstrated that CB1 gene variants influenced adiposity, fat 
distribution and metabolic disorders also in postmenopausal women; 
in detail, the A3813G polymorphism was associated with higher body 
mass, BMI, waist circumference, total fat and fat percentage [37].

Obesity has an impact on the relationship between CB2 gene 
SNPs and Osteoporosis (OP) risk [40,41]. It has been demonstrated 
that the CB2 variant rs3003336 is associated to abdominal obesity 
in obese post-menopausal women which showed an increased 
risk of OP onset [30]. In addition, endocannabinoids are involved 
in obesity, regulating metabolism, body composition and energy 
homeostasis [42,43]. Indeed, it has been reported that Anandamide 
(AEA) and 2-Arachydonoil Glycerol (2-AG) levels were retrieved 
extremely high in both obese men and women [42,44,45], but with 
a higher concentration in women [32]. Engeli et al. demonstrated 
that AEA and 2-Arachydonoil 2-AG were present at very high level 
in obese post-menopausal women [43]. These increased levels were 
related to decreased levels and activity of FAAH, responsible for 
endocannabinoids degradation, in adipose tissue of obese women 
[43]. Taken together, these data highlight the important role of ECS 
in menopause-associated obesity; in particular, several variants of 
both cannabinoids receptors and endocannabinoids are involved in 
inducing metabolic disorders and obesity.

Osteoporosis in Menopause: Role of 
Endocannabinoid System

Osteopenia and Osteoporosis (OP) are experienced by 

Figure 1: Crosstalk between ECS and sex hormones in menopause. Sex 
hormones alteration is associated to several disorders in post-menopausal 
women (obesity, osteoporosis, cardiovascular diseases and cancer). ECS 
could represent a good therapeutic target to contain the risk to develop these 
pathologies.
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postmenopausal women due to the interruption of gonad function 
[46,47]. Estrogen deficiency induces osteoclasts apoptosis, reducing 
the bone mass density and increasing bone fragility as well as the 
risk of fractures [48]. Osteoporotic fractures cause loss of mobility 
and several complications, deeply harming the quality of life of these 
women [49]. Hormone Replacement Therapy (HRT) is considered 
the first-line choice for the prevention and treatment of OP-related 
fractures in postmenopausal women at risk of fracture and younger 
than 60 years [50,51]. Conversely, standard HRT in women older than 
60 years is not recommended due to the potential risk of long-term 
complications, including breast cancer, stroke and thromboembolic 
events [10,52-54]. Therefore, it is still necessary to develop strategies 
that allow the earlier identification of women at risk of fractures and 
to identify new therapeutic approaches for long-term OP prevention.

Both environmental and genetic factors contribute to the 
development and progression of OP [55,56]. Genome-wide 
association studies have reported the association between the CNR2 
gene, which encodes the CB2 receptor, and OP susceptibility in 
different populations [57-60]. It is widely known that cannabinoids 
and their receptors, CB1 and CB2, play an important role in bone 
metabolism regulating bone cell function [10]. CB1 activation 
stimulates osteoclast activity, whereas CB2 activation inhibits 
osteoclast activity and promotes osteoblast function [61-64].

Woo et al. demonstrated that several SNPs (rs2501431 and 
rs3003336 polymorphisms) in CNR genes may be genetic factors 
affecting Bone Mineral Density (BMD) in a cohort of Korean 
postmenopausal women [58]. In agreement, Yamada et al 
indicated that CNR2 loci were associated with reduced bone mass 
in Japanese women [59]. Alongside, Karsak et al. demonstrated 
that polymorphisms in CNR2 affect CB2 expression and activity, 
suggesting that a reduced efficacy of CB2 signaling could result in a 
lower bone density and even OP [57]. Therefore, these studies suggest 
CB2 as a possible marker to identify women at risk of fractures. 
Moreover, several authors suggested also a role for the CB2 receptor 
in the etiology of OP providing a new therapeutic target for this 
common disease [65-67].

Rossi et al. demonstrated that in Osteoclasts (OCs) from 
ovariectomized mice, the estrogen deficiency is associated with 
a reduction in CB2 receptor expression and signaling [68]. In 
accordance with this finding, an estrogen receptor antagonist down-
regulates the expression of CB2 receptors in human OCs [69]. 
Conversely, confirming the anti-osteoporotic properties of estrogens, 
the 17-β-estradiol is able to induce an increase of CB2 expression 
through the recruitment of a putative estrogen-responsive element 
in the CB2 gene [70]. Rossi et al. also investigated the alteration of 
endocannabinoid system in OCs from postmenopausal women with 
or without OP demonstrated an alteration of CB1 and CB2 receptors 
expression as well as of endogenous mediator levels, responsible 
for the bone alteration [71]. Moreover, CB2 stimulation reduces 
the number of active OCs, confirming the protective role of the 
receptor in bone metabolism [9,10,35]. Interestingly, Raloxifene, a 
selective estrogen receptor modulator approved for the treatment of 
postmenopausal OP [72], is an inverse agonist for CB2, suggesting 
that the anti-osteoporotic activity of the drug it might be partially 
mediated through the CB2 [73,74].

All these studies suggest the possibility of acting on CB2 
receptor instead of adopting HRT to reduce bone resorption in 
postmenopausal OP.

Cardiopathy and Oxidative Stress in 
Menopause: Role of Endocannabinoid 
System

The correlation between endogenous estrogen levels and 
cardiovascular health is very strong and well documented in 
literature [75]. Over the last years several authors demonstrated 
that cardiovascular diseases (i.e. atherosclerosis, cardiac remodeling 
and hypertension) are less frequent in premenopausal women, in 
which estrogen levels are high, than in age-matched men and that 
this advantage decreases with the estrogen loss at the menopause 
onset [76,77]. Estrogen reduction is indeed related to many 
biochemical, functional and morphological alterations [78] such 
vascular inflammation and also increase in sympathetic tone and 
blood pressure [79,80]. Menopausal-related cardiovascular diseases 
as well as mortality in postmenopausal women affected by heart 
diseases are significantly reduced by the commonly administered 
HRT [81,82], especially because of the increase in Nitric Oxide (NO) 
production, strongly related to a reduction in coronary resistance and 
peripheral vascular tone [83]. NO is produced by NO Synthase (NOS) 
starting from L-arginine and is involved in many physiological and 
pathological events, for example in inflammation, hyperalgesia and 
also several neurological disorders [84,85].

The ECS is expressed in cardiovascular system and plays an 
important modulating role on contractility and vascular tone [86]. 
In literature it is reported that N-Arachidonoyl Ethanolamine 
or Anandamide (AEA) causes an increase in NO levels with a 
consequent endothelium-dependent vasorelaxation [65] probably 
mediated by the CB1 receptor [87,88]. Among the known NOS 
isoforms, the Endothelial one (eNOS) is the most expressed in 
cardiovascular system and it plays an important antioxidant role, 
besides its function in vasorelaxation [89]. The exact mechanism by 
which endocannabinoids act as protective agents against cardiopathy 
in postmenopausal women is still unclear. However, it seems to be 
principally related to the activation of CB1 and CB2 receptors [90,91]. 
Szabó et al. after inducing estrogen deficiency in female rats by 
ovariectomy, observed a drastic reduction in CB1 receptor expression 
in their cardiac tissue [92]. This condition was restored after two-week 
treatment with AEA, obtaining the same benefits of canonic estrogen 
replacement therapy, maybe via NOS pathway. In according with this 
study, already in 2002 Joyeux et al. demonstrated that NOS inhibition 
effects were similar to CB2 receptor antagonism, while selective CB1 
and CB2 agonists, respectively ACEA and JWH015, reduced the 
infarct size in the same manner of 2-Arachidonoylglycerol (2-AG), 
the endogenous agonist of the CB1 [93,94]. Consistently, in CB2 
knockout mice or after CB2 antagonism it was observed a larger 
infarct size [95,96]. In 2014 also Wheal and collaborators described a 
correlation between cannabinoids, oxidative stress and cardiovascular 
risk, reporting that in Zucker obese rats the impairment in eNOS-
dependent relaxation of the femoral artery could be restored with the 
administration of cannabidiol, a non-specific activator of CB1 and 
CB2 receptors [97]. Moreover, in this year, Van Hove et al. performed 
a study on diabetic rats, founding that treatment with CB2 receptor 
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agonist could elevate eNOS-related dilation of cerebral arterioles 
directly ameliorating tissue blood flow thus diminishing also vascular 
risk [98]. These evidences support the cardiovascular protective role 
of ECS components and the main hypothesis about the underlying 
mechanism is related to their capability to contain the inflammatory 
processes [8] and inhibit oxidative stress, that are frequently elevated 
in postmenopausal women [99].

Cancer in Menopause: Role of 
Endocannabinoids System

One of the most remarkable characteristic of menopause 
condition is the reduction in estrogen circulating levels [100], with 
a wide range of side effects that compromise life quality for post-
menopausal women, to the point that hormone replacement therapy 
becomes necessary [101]. From literature it is well-known that high 
estrogen levels play a protective role [102] and represent a valid 
prognostic factor for different kind of cancers, including liver [103] 
and lung cancers [91,93]. Therefore, with menopause onset and the 
related estrogen decrease, cancer survival rate diminishes for women 
in comparison with age-matched men. The reasons underlying this 
disparity include not only sex hormone levels, but also sex distinctions 
in genetics and epigenetics [92], sex hormone receptors levels [104] 
and smoking history [105]. Considering this aspect, it is possible to 
recognize the beneficial effect of the HRT also in containing tumor 
development and progression [106].

Together with the reduction of estrogens, in postmenopausal 
women it has been also seen a decrease in AEA concentrations, similar 
to the luteal phase of premenopausal subjects [107]. Several authors 
reported the anti-cancer role of AEA, describing its capabilities to 
affect cell cycle distribution of gastric cancer cells [15,108,109] and 
also to reduce proliferation of neuroblastoma, prostate carcinoma 
and melanoma cells [110-112]. Cancer cells are more sensitive to 
endocannabinoids compared to healthy cells, since a most abundant 
presence of EC receptors on their surface [113]. When properly 
stimulated, the ECS induces apoptosis, arrests cell cycle and inhibits 
metastasis [114,115] in both animal models and cell lines of cancer. 
For example, the CB agonist WIN-55, 212-2 has been seen to 
increase in a significative manner the expression of both CB1 and 
CB2 receptors in human prostate cancer cells (LNCaP) with a strong 
reduction in their viability [116], as well as Δ9-Tetrahydrocannabinol 
(THC) [113]. All these evidences put the ECS in an interesting 
position as pharmacological target against cancer. Moreover, there 
is a well-documented interaction between this system and the sex 
steroid hormones [117,118] that let hypothesize a particular impact 
on hormone-related neoplasms. Estrogens are strongly involved in 
regulation of cell proliferation and apoptosis [119], in particular the 
most abundant estrogen is 17β-Estradiol (E2) and it is able to directly 
stimulate the AEA release from endothelial cells and also to inhibit 
the synthesis of FAAH, the enzyme responsible for AEA degradation 
[120]. In colorectal carcinoma as well as in normal colonic epithelium 
E2 regulates CB1 expression [121]. Consequently, the collapse of 
estrogens with menopause causes reduction in AEA levels and a 
minor stimulation of CB receptors, thus reducing the protective 
effects of EC system and exposing postmenopausal women to a higher 
risk for cancer development. On the other hand, progesterone has 
been found upregulating FAAH activity, thus decreasing AEA plasma 

levels [122]. Theoretically, this could be one of the reasons why HRT 
is, in long term, considered responsible for the major susceptibility in 
developing some subtype of cancers, such as endometrial carcinoma 
[123].

Conclusion
Menopause-related diseases reduce quality of life and could 

represent an important public and economic health burden in 
nowadays society. It is well known that CB1 and CB2 receptors play 
specifically roles in regulating several physiological functions.

In this review we highlighted the possible link between ECS system, 
estrogens deficiency and the development of several paraphysiologic 
and pathological changes related to menopausal transition, including 
obesity, osteoporosis, cardiovascular diseases and increased risk of 
cancer. The compromised hormone condition in postmenopausal 
women could induce an alteration of cannabinoid receptors 
expression and endocannabinoids levels and, consequentially, a 
reduced efficacy of receptor signaling. This alteration might be related 
to increased inflammation triggering, lowered bone density, increased 
oxidative stress, cardiovascular risk, and cancer progression.

Reported studies suggest a protective role of the ECS in counteract 
the harmful effects of these menopause-related diseases, suggesting it 
as a good and alternative prognostic marker and therapeutic target to 
address further researches.
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