(Austin Publishing Group

Research Article

The Value of Hysteroscopy in the Diagnosis of Endometrial Cancer

Oliveres-Amor C*, Pampalona JR, Bastos MD, García AG and Torras PB

Department of Obstetrics and Gynaecology, Igualada Hospital, Spain

***Corresponding author:** Oliveres-Amor C, Department of Obstetrics and Gynaecology, Igualada Hospital, Avinguda de Catalunya 11, 08007 Igualada, Barcelona, Spain

Received: January 29, 2018; Accepted: February 16, 2018; Published: February 23, 2018

Abstract

Introduction: Endometrial cancer is the most common malignancy of the female genital tract in developed countries. Hysteroscopy allows direct visualization of the uterine cavity and has the capacity of detecting malignant pathologies such as endometrial cancer, and it permits an endometrial sampling or removal of the lesion during the same procedure.

Objective: To evaluate the efficiency of outpatient hysteroscopy for the diagnosis of intrauterine pathology.

Material and Methods: Retrospective study with 891 outpatient hystesocopies performing and eye-directed biopsy, according to the hospital protocol. Patients were divided into four diagnostic categories for the endometrium classification; normal, benign pathology, suspected hyperplasia or suspected malignancy.

Results: 26 patients were diagnosed of endometrial cancer with the histologic study, 24 of them suspected on hysteroscopy (92.3%). The mean age was 65.27, being 88.5% of patients postmenopausal. The most common symptom was Postmenopausal Bleeding (PMB) present in the 86.9% of the postmenopausal patients. All the patients had abnormal findings in the Transvaginal Ultrasound (TVUS).

Conclusion: Hysteroscopic view presents excellent specificity for endometrial cancer (99.1%) and good sensitivity for endometrial cancer (92.3%).

Keywords: Endometrial cancer; Hysteroscopy; Diagnosis; Sensitivity

Abbreviations

AUB: Abnormal Uterine Bleeding; TVUS: Transvaginal Ultrasonography; ET: Endometrial Thickness; PMB: Postmenopausal Bleeding; D&C: Dilatation and Curettage

Introduction

Endometrial cancer is the most common malignancy of the female genital tract in developed countries, and the second in mortality after ovarian cancer [1]. For the last 30 years there has been an increase in the number of diagnoses. Its incidence is rising among pre and postmenopausal women; every year, about 200.000 new endometrial cancers are diagnosed around the world and an estimated 50.000 women die from this illness [2].

The risk of endometrial cancer is positively correlated with the excessive endometrial stimulation with estrogen, associated with older age, early menarche, late menopause, nulliparity, obesity, family history of endometrial cancer, Polycystic Ovarian Syndrome, as well as hormone replacement therapy [3]. Other risk factors include personal history of breast cancer and genetic predisposition (Lynch syndrome) [4]. Diabetes, hypertension, and geographical and socioeconomic factors are still inconclusive [5].

The most common symptom of endometrial cancer is Abnormal Uterine Bleeding (AUB). However, up to 20% of patients can be asymptomatic at the time of diagnosis [7]. For all stages taken together, the overall 5-year survival is around 80% [8].

The most important prognostic features for endometrial cancer are the stage (FIGO), the myometrial infiltration, histological type and differentiation grade [9].

The Transvaginal Ultrasonography (TVUS) has been the first-line diagnostic test to detect endometrial pathology. It shows endometrial thickness and heterogeneous variations within the echogenicity of the endometrium [10]. Because of its non-invasive nature and its high accuracy, it is used extensively to assess the endometrium.

The cut-off value for Endometrial Thickness (ET) in asymptomatic women is not well established [11,12]. The most frequently used optimal threshold level of endometrial thickness measure to separate postmenopausal patients into low-risk and high-risk patients is 4-5mm [11].

Some authors suggest that an endometrial thickness cut-off **Table 1:** Suspected cases with endometrial neoplasia correlated with histological examination.

	Endometrial carcinoma
Suspected endometrial carcinoma on hysteroscopic view	24
Histologic diagnosis of endometrial carcinoma	26
False positive	0
False negative	2

Citation: Oliveres-Amor C, Pampalona JR, Bastos MD, García AG and Torras PB. The Value of Hysteroscopy in the Diagnosis of Endometrial Cancer. Austin J Obstet Gynecol. 2018; 5(2): 1094.

Austin Publishing Group

	Age	Symptoms	TVUS	Hysteroscopy suspected malignancy	Anatomopathologic study	FIGO stage
1	58	РМВ	ET > 5mm	Yes	Endometrioid adenocarcinoma G1	IA
2	39	Intense dysmenorrhoea	ET > 5mm	Yes	Endometrioid adenocarcinoma G1	IA
3	64	РМВ	ET > 5mm	Yes	Endometrioid adenocarcinoma G1	IA
4	77	РМВ	Endocavitari mass	No	Endometrioid adenocarcinoma G1	IA
5	69	РМВ	ET > 5mm	Yes	Undifferentiated carcinoma	IIIC1
6	59	РМВ	Endocavitari mass	Yes	Endometrioid adenocarcinoma G1	IA
7	68	РМВ	Endocavitari mass	No	Endometrioid adenocarcinoma G2	IA
8	68	Asymptomatic	ET > 5mm	Yes	Endometrioid adenocarcinoma G1	IA
9	84	РМВ	ET > 5mm	Yes	Carcinosarcoma	IA
10	61	РМВ	Endocavitari mass	Yes	Endometrioid adenocarcinoma G1	IIB
11	55	РМВ	ET > 5mm	Yes	Endometrioid adenocarcinoma G2	IA
12	73	РМВ	Ovarian tumor	Yes	Endometrioid adenocarcinoma G3	IIIB
13	50	Bleeding between menstrual periods	ET > 5mm	Yes	Endometrioid adenocarcinoma G1	IA
14	62	Asymptomatic	Endocavitari mass	Yes	Papillary serous carcinoma	IIIC2
15	72	PMB	Endocavitari mass	Yes	Undifferentiated carcinoma	IVB
16	60	PMB	Endocavitari mass	Yes	Papillary serous carcinoma	IA
17	82	PMB	Endocavitari mass	Yes	Papillary serous carcinoma	IVB
18	71	PMB	ET > 5mm	Yes	Endometrioid adenocarcinoma G1	IA
19	52	PMB	ET > 5mm	Yes	Endometrioid adenocarcinoma G3	IB
20	66	PMB	Endocavitari mass	Yes	Carcinosarcoma	IVB
21	67	РМВ	Endocavitari mass	Yes	Endometrioid adenocarcinoma G1	IIIB
22	73	РМВ	ET > 5mm	Yes	Leiomyosarcoma	IA
23	51	Heavy menstrual bleeding	ET > 5mm	Yes	Endometrioid adenocarcinoma G1	IIIA
24	65	Asymptomatic	ET > 5mm	Yes	Papillary serous carcinoma	IA
25	62	РМВ	ET > 5mm	Yes	Papillary serous carcinoma	
26	92	PMB	*	Yes	Papillary serous carcinoma	IVB

Table 2: Patient's age and symptomatology, echography suspicion and malignancy during hysteroscopy, as well as the anatomopathological result of the endometrial biopsy performed during hysteroscopy and post-surgical stage.

TVUS: Transvaginal Ultrasound; PMB: Postmenopausal Bleeding; ET: Endometrial Thickness *No data on the TVUS of this patient.

value of 10mm does not miss any cases of endometrial cancer [13,14]. Therefore, the hysteroscopy examination and the sequential endometrial biopsy for the histopathological examination of tissue are essential to get an endometrial carcinoma diagnosis.

Hysteroscopy allows direct visualization of the uterine cavity. In most cases, it detects malignant pathologies and, in these circumstances, it permits an endometrial sampling or removal of the lesion during the same procedure [15,16].

Although the final diagnosis is histologic, there are some morphological hysteroscopic criteria that are indicative of endometrial cancer. The purpose of this study is to evaluate the diagnostic accuracy of hysteroscopy for de diagnosis of malignant endometrial lesions.

Objective

To evaluate the efficiency of outpatient hysteroscopy for the diagnosis of intrauterine pathology.

Materials and Methods

The study was a retrospective diagnostic-type test. It involves 891 outpatient hysteroscopies performed between July 2012 and December 2015 in the department of Obstetrics and Gynaecology of Igualada Hospital.

Each patient underwent an outpatient hysteroscopy with no anaesthesia and no cervical or endometrial rispering pre-intervention, according to the hospital protocol. The procedure was carried out by two experienced hysteroscopists using one of two hysteroscopic systems (the Truclear 5.0 Tissue Removal System or the Versapoint Bipolar Electrosurgery System). All the procedure involved an eyedirected biopsy in which a standard forceps with a polyp grip was used for extracting intrauterine tissue.

With the hysteroscopic reports, patients were divided into three diagnostic categories for the endometrium classification; normal, benign pathology and suspected malignancy.

The objective of this study was to assess the accuracy of hysteroscopy and endometrial biopsy in the diagnostic of endometrial malignancy.

For statistical analysis, the sensitivity, specificity, positive predictive value and negative predictive value were analyzed.

Results

A total of 26 patients with histologic diagnoses of endometrial cancer were investigated, to whom a hysteroscopy was performed. Among them, the hysteroscopic examiner suspected endometrial cancer in 24 cases (Table 1).

There were two cases of false negatives in which the examiner described the hysteroscopic image as large polyps. The anatomopathological study showed focus of endometrioid carcinoma grade 1 and 2, the first one above the polyp.

In the 26 patients with the histologic diagnosis of endometrial carcinoma, the 88.5% were postmenopausal. The mean age was 65.27 (range 39-92).

The most common symptom was Postmenopausal Bleeding (PMB) present in the 86.9% of the postmenopausal patients. Three of the postmenopausal patients were asymptomatic, who underwent a TVUS for genital prolapse study, suspecting endometrial pathology that required hysteroscopic study.

In patients of reproductive age (3/26), the most common form of presentation was menstrual disturbances as heavy menstrual bleeding (33.3%) and bleeding between menstrual periods (33.3%). The third pre-menopausal patient presented intense dysmenorrhea, and was diagnosed of synchronous ovarian neoplasm.

All the patients had abnormal findings in the TVUS, described as endocavitari mass (40.0%), endometrial thickness > 5mm in menopausal women (56.0 %) and synchronous ovarian neoplasm (4.0%).

Among the most frequent personal history, the highlights are hypertension (13/26), obesity (6/26), diabetes mellitus (7/26), dyslipidaemia (7/26) and psychiatric disorders such as depression (6/26). None of the patients were undergoing treatment with tamoxifen or hormone replacement therapy.

The most common type of cancer was endometrioid adenocarcinoma (50%) (Table 2) with histologic subtypes G1 (42.3%), G2 (7.9%) and G3 (7.9%). After the post-surgical staging, most of the cases correspond to stage IA [14] in the FIGO classification. The more advanced stages correspond to more aggressive histologic subtypes; IVB for undifferentiated carcinoma, papillary serous carcinoma and carcinosarcoma. However, in the endometrioid carcinomas there are also some cases of advanced stages, less frequently than in the most aggressive histological subtypes. Only 5 out of 15 endometrioid carcinoma were not an IA stage in the FIGO classification.

In our study, we obtained a sensitivity of 92.3% with hysteroscopy for the diagnosis of endometrial cancer and it presents excellent specificity (Table 3). The final diagnosis was reached with pathological study sample obtained during hysteroscopy.
 Table 3: Sensitivity, specificity, positive and negative predictive values for diagnosis of endometrial cancer on hysteroscopic view.

	Presence of endometrial carcinoma (%)
Sensitivity	92.3 (24/26)
Specificity	99.1 (857/865)
Positive predictive value	75.0 (24/32)
Negative predictive value	99.7 (857/859)

Discussion

In our study, for the assessment of endometrial carcinoma, hysteroscopy has high diagnostic accuracy with sensitivity of 92.3%, specificity of 99.1%, positive predictive value of 75.0% and negative predictive value of 99.7%. Previous studies showed that hysteroscopy is an accurate diagnostic method to discriminate between normal and pathologic endocavitary conditions in both symptomatic and asymptomatic women, with values ranging from 85% to 98% [17]. In addition, hysteroscopy has the capability of reducing sampling errors, very common in blind Dilatation and Curettage (D&C) technique, which can miss focal pathology or endometrial precancerous lesions [18].

Many studies have described hysteroscopic features of neoplastic morphology [19-21] and one group conducted a study to develop a systematic score system for identification of endometrial cancer [22]. Despite the higher accuracy of the score system compared with subjective evaluation of the endometrium, it must be evaluated in larger populations and not selected patients in order to generalize its use.

However, performing an eye-directed biopsy during the hysteroscopy has been shown to be the best strategy, not only to diagnose a neoplasm but to accurately differentiate benign pathology such as endometrial polyps from pre-cancerous lesions like endometrial hyperplasia [15,23].

Although it has been shown that the best test to study the endometrial pathology is hysteroscopy, usually the endometrial study begins with a TVUS. Sonographic measurement of endometrial thickness is an accurate and easy procedure to determine whether further investigations are needed to rule out malignancy. Different cut off values for endometrial thickness have been used, but guidelines recommend a cut-off value of 3 to 5mm below which endometrial cancer is unlikely in symptomatic women [24,25]. This limit is not well established in asymptomatic women in whom an endometrial thickness of up to 10mm could be normal.

Despite the high sensibility of transvaginal ultrasound to diagnose intrauterine disorders, endometrial thickness or Doppler ultrasonography measured by transvaginal ultrasonography has low specificity for predicting malignant endometrial disorders [16,26].

The literature support that the combined use of ultrasonography and hysteroscopy, with eye directed biopsy, is the most appropriate diagnostic strategy for not infradiagnosticating endometrial pathology such as cancer [27]. The importance of hysteroscopy is also shown in the present study, in which 92.3% of the cases of endometrial cancer were suspected by hysteroscopy and confirmed with eye-directed biopsy on histologic examination. On two occasions, the neoplasm

Oliveres-Amor C

was not suspected and the hysteroscopist reported endometrial polyps. These two patients had presented a post-menopausal bleeding and had undergone an ultrasound to study if there was endometrial pathology, which also suspected benign pathology.

Therefore, it is important to study all post-menopausal metrorrhagia, because it is usually the main clinical sign of endometrial carcinoma. The prevalence of this symptom in endometrial carcinoma-afflicted patients highlights the need to study these patients to rule out endometrial pathology. This fact is also evident in our sample, where 88.5% of patients are post-menopausal and the most frequent symptom within these was post-menopausal bleeding. For these reasons, hysteroscopy should be considered in all women with postmenopausal uterine bleeding due to the increased risk of endometrial carcinoma within this group [27,28].

On the other hand, asymptomatic patients with suspected endometrial pathology by TVUS can't be despised. In the sample of the present study, it is observed that asymptomatic patients may have high-grade histologic subtypes such as papillary serous carcinoma and present with advanced stage carcinoma. At the same time, it is important not to forget the premenopausal patients, poorly rethought in the study sample (3/26), age group in which the incidence of endometrial carcinoma is increasing. It is thought that that the increase of endometrial carcinoma in younger women is due to an early onset of obesity [3]. In the current study, obesity, along with other pathologies carried out with the metabolic syndrome, are widely present as concomitant diseases of the patients.

Conclusion

Hysteroscopic view presents excellent specificity for endometrial cancer (99.1%) and good sensitivity for endometrial cancer (92.3%). Despite the good validity of hysteroscopic view, biopsy is essential for endometrial hyperplasia and cancer diagnosis.

References

- 1. American Cancer Society: Cancer Facts and Figures 2016. Atlanta, Ga: American Cancer Society. 2016.
- Bray F, Loos AH, Oostinider M, Weiderpass E. Geographic and temporal variations in cancer of the corpus uteri: incidence and mortality in pre- and post-menopausal women in Europe. Int J Cancer. 2005; 117: 123-131.
- Moore K, Brewer MA. Endometrial Cancer: Is This a New Disease? Am Soc Clin Oncol Educ Book. 2017; 37: 435-442.
- Ali AT. Risk factors for endometrial cancer. Ceska Gynekol. 2013; 78: 448-459.
- Renaud MC, Le T, Le T, Bentley J, Farrell S, Fortier MP, et al. Epidemiology and investigations for suspected endometrial cancer. J Obstet Gynaecol Can. 2013; 35: 380-381.
- Malkasian GD Jr, Annegers JF, Fountain KS. Carcinoma of the endometrium: stage I. Am J Obstet Gynecol. 1980; 136: 872-888.
- 7. Binder PS, Mutch DG. Update on prognostic markers for endometrial cancer. Womens Health (Lond). 2014; 10: 277-288.
- Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I. Endometrial cancer. Lancet. 2012; 366: 491-505.
- Alcázar JL, Orozco R, Martinez-Astorquiza Corral T, Juez L, Utrilla-Layna J, Mínguez JA, et al. Transvaginal ultrasound for preoperative assessment of myometrial invasion in patients with endometrial cancer: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2015; 46: 405-413.
- 10. Saidi MH, Sadler RK, Theis VD, Akright BD, Farhart SA, Vil- Ianueva GR.

Comparison of sonography, sonohysterogra- phy and hysteroscopy for evaluation of abnormal uterine bleeding. J Ultrasound Med. 1997; 16: 587-591.

- Wolfman W, Leyland N, Heywood M, Singh SS, Rittenberg DA, Soucy R, et al. Asymptomatic endometrial thickening. J Onstet Gynaecol Can. 2010; 32: 990-999.
- Giannella L, Mfuta K, Setti T, Boselli F, Bergamini E, Cerami LB. Diagnostic accuracy of endometrial thickness for the detection of intra-uterine pathologies and appropriateness of performed hysteroscopies among asymptomatic postmenopausal women. Eur J Obstet Gynecol Reprod Biol. 2014; 177: 29-33.
- Smith-Bindman R, Weiss E, Felstein V. How thick is too thick? When endometrial thickness shoulf promt biopsy in postmenopausal women without vaginal bleeding. Ultrasound Obstet Gynecol. 2004; 24: 558-565.
- 14. Yasa C, Dural O, Bastu E, Gungor F, Nehir A, Cem A. Evaluation of the diagnostic role of transvaginal ultrasound measurements of endometrial thickness to detect endometrial malignancy in asymptomatic postmenopausal women. Arch Gynecol Obstet. 2016: 294: 311-316.
- Litta P, Merlin F, Saccardi C, Pozzan C, Sacco G, Fracas M, et al. Role of hysteroscopy with endometrial biopsy to rule out endometrial cancer in postmenopausal women with abnormal uterine bleeding. Maturitas. 2005; 50: 117-123.
- Karlsson B, Grandberg S, Wikiland M, Ylöstalo P, Torvid K, Marsal K, et al. Transvaginal ultrasonography of the endometrium in women with postmenoapusal bleeding. A Nordic multicenter study. AM J Obstet Gynecl. 1995; 172: 1488.
- Socías MT, Vargas RS, Costoya AA, Monje BR, Haye MT. Correlación de la histeroscopia y biopsia dirigida en el estudio del engrosamiento endometrial patológico por ultrasonido. Rev Chil Obstet Ginecol. 2007; 72: 99.
- Van Hanegem N, Prins MM, Bongers MY, Opmeer BC, Sahota DS, Mol BW, et al. The accuracy of endometrial sampling in women with postmenopausal bleeding: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2016; 197: 147-155.
- Gaturi G, De GO, Sambruni I, Cellani F, Luerti M. Prognostic significance of hysteroscopic imaging in endoemtriod endometrial adenocercinoma. Gynecol Oncol. 2001; 81: 408-413.
- Sugimoto O. Hysteroscopic diagnosis of endoemtrial carcinoam. A report of fifty.three cases examined at de Women's CLinic of Kyotot University Hospital. Am. J Obstet. Gynecol. 1975; 121: 105-113.
- Dotto JE, Lema B, Dotto JE Jr, Hamou J. Classification of microhysteroscopic images and their correlation with histologic diagnoses. J Am Assoc Gynecol Laparosc. 2003; 10: 233-246.
- Duhelom M, Hjorth IMD, Secher P, Jørgensen A, Ørtoft G. Structured hysteroscopic evaluation of endometrium in women with postmenopausal bleeding. J Minim Invasive Gynaecol. 2015; 22: 1215-1224.
- Tinelli R, Tinelli FG, Cicinelli E, Malvasi A, Tinelli A. The role of hysteroscopy with eye-directed biopsy in postmenopausal women with uterine bleeding and endometrial atrophy. Menopause. 2008; 15: 737-742.
- 24. Tahir MM, Bigrigg MA, Browning JJ, Brookes ST, Smith PA. A randomized controlled trial comparing transvaginal ultrasound, out- patient hysteroscopy and endometrial biopsy with inpatient hysteroscopy and curettage. Br J Obstet Gynaecol. 1999; 106: 1259-1264.
- 25. Timmermans A, Opmeer BC, Khan KS, Bachmann LM, Epstein E, Clark TJ, et al. Endometrial thickness measurement for detecting endometrial cancer in women with postmenopausal bleeding: a systematic review and metaanalysis. Obstet Gynecol. 2010; 116: 160-167.
- 26. Cavkaytar S, Kokanali MK, Ceran U, Topcu HO, Sirvan L, Doganay M. Roles of sonography and hysteroscopy in the detection of premalignant and malignant polyps in women presenting with postmenopausal bleeding and thickened endometrium. Asian Pac J Cancer Prev. 2014; 15: 5355-5358.

Oliveres-Amor C

- 27. Sousa R, Silvestre M, Almeida e Sousa L, Falcao F, Silva T, et al. Transvaginal ultrasonography and hysteroscopy in postmenopausal bleeding: a prospective study. Acta Obstet Gynecol Scand. 2001; 80: 856-862.
- Epstein E, Ramirez A, Skoog L, Valentin L. Transvaginal sonography, saline contrast sonohysterography and hysteroscopy for the investigation of women with postmenopausal bleeding and endometrium > 5mm. Ultrasound Obstet Gynecol. 2001; 18: 157-162.

Austin J Obstet Gynecol - Volume 5 Issue 2 - 2018 **Submit your Manuscript** | www.austinpublishinggroup.com Oliveres-Amor et al. © All rights are reserved Citation: Oliveres-Amor C, Pampalona JR, Bastos MD, García AG and Torras PB. The Value of Hysteroscopy in the Diagnosis of Endometrial Cancer. Austin J Obstet Gynecol. 2018; 5(2): 1094.