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Abstract

This review focuses on the relationship between oxidative status as measured 
by the systemic levels of lipid peroxidation markers F2-isoprostanesand etiology 
of type 2 diabetes. Elevated levels F2-isoprostaneswere found in obesity, insulin 
resistance, impaired glucose tolerance and type 2 diabetes. It was hypothesized 
that increased F2-isoprostanelevels reflect the obesity-induced oxidative stress 
that promotes the development of type 2 diabetes. The most convincing evidence 
against such an interpretation is the well-accepted role of physical activity in 
protecting against type 2 diabetes, given that physical activity increases F2-
isoprostane levels. Adding to this evidence, the prospective studies show that 
individuals with higher levels of urinary F2-isoprostanes have a lower risk of 
weight gain and type 2 diabetes, thereby directly contradicting the etiological 
relevance of elevated oxidative status in diabetes etiology. This review 
examines a new interpretation of F2-isoprostane levels as reflecting intensity of 
oxidative metabolism, a major endogenous source of reactive oxygen species, 
and specifically, the intensity of fat oxidation.
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Oxidative status and type 2 diabetes
The cross-sectional studies show direct association between 

systemic F2-isoprostane levels and type 2 diabetes [9-16]. Also, the 
early stage of diabetes, impaired glucose tolerance [12,17,18], the 
hallmark of diabetes etiology insulin resistance [19], and its main risk 
factor obesity [12,20,21] – all are associated with elevated systemic 
levels of F2-isoprostanes cross-sectionally. Naturally, these cross-
sectional associations can be interpreted as evidence that elevated F2-
isoprostane levels promote the development of type 2 diabetes.

However, three lines of evidence strongly contradict sucha 
hypothesis. The first is related to the assumption that antioxidant 
supplementation can shift pro-/antioxidant balance and thereby, 
prevent type 2 diabetes. This assumption and the aforementioned 
cross-sectional findings encouraged several randomized trials of type 
2 diabetes prevention. Contrary to expectations, all large randomized 
trials of antioxidant supplementation failed to prevent type 2 
diabetes [22-28]. In fact, a systematic review of the overall mortality 
in antioxidant trials concluded that “Beta-carotene and vitamin E 
seem to increase mortality, and so may higher doses of vitamin A” 
[29].Failure to prevent diabetes by antioxidant supplementation 
questions the hypothesis that elevated oxidative status promotes the 
development of type 2 diabetes.

The second line of evidence is related to physical exercise as 
one of the best preventive strategies in type 2 diabetes prevention 
[30,31]. Physical exercise undeniably increases F2-isoprostane 
levels for at least several hours [32]; whereas an increase in the basal 
levels of these biomarkers has been demonstrated only in some 
populations [33]. Over the years a sustained exercise training exposes 
an individual to repetitive sharp increases in oxidative status. Thus, 
there is a contradiction between the suggested harmful role of high 
oxidative status on one hand and the protective role of physical 
exercise that increases oxidative status on the other hand. Dr. James 
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Oxidative Status
All aerobic organisms are constantly exposed to Reactive Oxygen 

Species (ROS) generated either by endogenous processes, such as 
cellular respiration and antibacterial defense, or by external oxidative 
exposures, such as ionizing radiation, smoking, and toxins [1]. ROS 
are highly reactive molecules that oxidize DNA, lipids, and proteins 
[1]. To counteract their damaging effects, aerobic organisms have 
developed multiple antioxidant defense systems [1]. Theoretically, 
ROS production and antioxidant defense set constitutive levels of 
oxidative status within cells, tissues, and at the systemic level. Whether 
or not this assumption is correct at the tissue level remains to be 
determined. However, the systemic levels of oxidative status measured 
by biomarkers of lipid peroxidation, F2-isoprostanes [2,3], represents 
a constitutive individual characteristic [4,5]. F2-isoprostanes are 
the only biomarkers of oxidative status that have been validated 
against established oxidative stressors in animal [6] and clinical [7] 
models. Thus, this review will focus on the relationship between 
F2-isoprostanes and type 2 diabetes as well as diabetes risk factors. 
Importantly, similar to other individual characteristics, such as BMI 
and blood pressure, the levels of urinary F2-isoprostanes can change 
within an individual during the lifetime. Such modifiable factors are 
important for epidemiological research, because – as opposed to 
unmodifiable factors (age, gender, and genetics) – they can be targeted 
by prevention strategies. This consideration is especially important 
for etiology of type 2 diabetes, a disease that proved to be preventable 
[8]. If elevated oxidative status promotes the development of type 2 
diabetes, the disease could be prevented by reducing oxidative status 
via lifestyle modifications and/or pharmacological interventions. 
This consideration stimulated research of the relationships between 
oxidative status and type 2 diabetes as well as its risk factors. 
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Watson published a biological hypothesis explaining why increased 
generation of ROS by physical exercise prevents the development of 
type 2 diabetes, namely by generating a “sufficient redox potential for 
disulfide bonds to be formed” [34]. 

The third and the ultimate line of evidence of a protective instead 
of causal role of elevated systemic F2-isoprostanes in etiology of type 
2 diabetes come from the prospective studies. In two cohorts, elevated 
levels of F2-isoprostanes predicted lower risk of weight gain [21,35]. 
Moreover, high levels of F2-isoprostanes predicted lower risk of type 
2 diabetes [36]. These prospective findings refute the hypothesis that 
elevated F2-isoprostane levels promote the development of type 
2 diabetes. Hence, the prospective and cross-sectional data show 
opposite directions of the associations between F2-isoprostane levels 
and type 2 diabetes. How can this be explained?

The existing cross-sectional and prospective findings can be 
reconciled within the framework of a compensatory function. Within 
this framework, systemic levels of F2-isoprostanes can be interpreted 
as reflecting a compensatory mechanism that is related to etiology of 
obesity and type 2 diabetes. 

Regulation of energy balance as a framework for 
understanding the connection between oxidative status 
and type 2 diabetes etiology

A compensatory mechanism involved in the maintenance of 
energy balance can explain the opposite direction of the cross-
sectional and prospective associations between F2-isoprostane levels 
and obesity and type 2 diabetes risks. 

Generally, a stable body weight constitutes balanced energy 
intake and energy expenditure. Positive energy balance occurs when 
energy intake exceeds energy expenditure and is manifested as an 
increase in body mass, with the majority of the gained mass being fat 
mass [37,38]. Correspondingly, negative energy balance occurs when 
energy expenditure exceeds energy intake and is manifested as a loss 
of body mass, with fat mass loss being the predominant component 
of this change as well. A physiological control of energy balance 
promotes shifts in energy expenditure to counteract both negative 
energy balance (by a decrease in energy expenditure) and positive 
energy balance (by an increase in energy expenditure). With fat 
mass being the predominant element of body mass changes, it is not 
surprising that fat oxidation plays an essential role in physiological 

control of energy balance [37-41]. Accordingly, in obese individuals 
the levels of fat oxidation rates on average are higher as a result of fat 
mass gain; and conversely, weight loss is associated with a decrease in 
fat oxidation rates. At the same time, efficient fat oxidation lowers the 
risk of weight gain and thereby, the risk of obesity and type 2 diabetes 
[37-41] (Figure 1). Thus, fat oxidation rates are positively associated 
with obesity and type 2 diabetes (fat oxidation rates increase in type 
2 diabetes also as a result of diminished ability to use glucose as a 
fuel source), whereas intensive fat oxidation reduces the risk of both 
conditions. 

Is there a connection between F2-isoprostanes and fat oxidation 
rates? Such connection would explain the increased levels of F2-
isoprostanes among obese individuals and diabetics as well as lower 
risks of weight gain and type 2 diabetes among individuals with 
elevated levels of these biomarkers [42]. 

Systemic levels of F2-isopeostanes and fatty acid 
oxidation

As biomarkers of systemic ROS levels, F2-isoprostanes are likely 
to reflect intensity of mitochondrial metabolism, which represents 
the major endogenous source of ROS (1). A connection between 
oxidative metabolism and F2-isoprostane levels can explain the 
observed increase in F2-isoprostanes during physical exercise 
as a reflection of increased oxidative metabolism and fatty acid 
oxidation specifically. Fatty acid oxidation increases with moderate 
physical activity as fat is the predominant contributor to muscle fuel 
metabolism; vice-versa muscles are the major organ for free fatty 
acid disposal [43-46]. Correspondingly, glucose uptake by skeletal 
muscle in the basal state accounts for only a small percentage of total 
glucose disappearance and only a minor proportion of peripheral 
oxygen consumption [47]. This suggests that the intensity of fatty 
acid oxidation by skeletal muscle is likely to determine whether an 
individual has higher or lower systemic ROS (and F2-isoprostane) 
levels. The fact that mitochondrial fatty acid oxidation produces 
higher levels of ROS as compared to glycolytic substrates [48] 
strongly supports the connection between increased oxidative status 
and intensive fat oxidation. 

These hypothesized relationships between systemic F2-
isoporstanes levels and fatty acid metabolism are further reinforced 
by several circumstantial evidence. For example, fat oxidation and 
urinary F2-isoporstanes both decrease in response to weight loss 
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Figure 1: Proposed relationships between urinary F2-isoprostanes and fatty acid oxidation rates.
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[37,38,48]. Similar parallel relationships are found in racial groups: 
African Americans have lower levels of fat oxidation [49], and also 
lower levels of urinary F2-isoprostanes [50]. Furthermore, the rates 
of obesity and type 2 diabetes are greater among African Americans 
and low levels of fat oxidation are proposed as a metabolic trait 
predisposing African Americans to these conditions [49]. Other 
supporting evidence is the correlation between fasting levels of non-
esterified fatty acids, that are known to stimulate fatty acid oxidation in 
skeletal muscles [43-46], and urinary F2-isoprostanes [51]. However, 
to the best of the author’s knowledge, no direct evidence have been 
published that urinary F2-isoprostanes relates to the intensity of fat 
oxidation. For example, the proposed hypothesis predicts inverse 
relationship between respiratory quotient (low respiratory quotient 
indicates higher proportion of fat oxidation in fuel metabolism) and 
urinary F2-isoprostanes. 

Within this framework (Figure 1), the well-established cross-
sectional direct association of F2-isoprostane levels with obesity 
can be seen to represent a long-term adaptation to higher adiposity 
through increased fat oxidation. At the same time, slow fat oxidation 
– reflected by low urinary F2-isoprostane levels – would lead to weight 
gain. In the case of weak long-term adaptation, the cycle of increasing 
adiposity should persist, leading to the obesity-driven development 
of type 2 diabetes. Of importance, F2-isoprostane levels among 
African Americans showed no association with adiposity (measured 
as BMI), whereas a direct cross-sectional association with BMI was 
clearly evident among Caucasians [50]. This disconnect between 
F2-isoprostane levels and BMI in African Americans may signify 
weak long-term adaptation to higher adiposity, which potentially 
could help to explain the greater type 2 diabetes rates among African 
Americans.

Conclusion
Commonly, a statistically significant elevation of oxidative status 

markers has been interpreted as harmful oxidative stress [52]. A 
prominent example is the conventional view that the elevated F2-
isoprostane levels in obesity represent obesity-induced oxidative 
stress and a mechanistic link between obesity and the risks of type 2 
diabetes [53] and cardiovascular disease [54]. The most convincing 
evidence against such an interpretation is the well-accepted role of 
physical activity in protecting against the development of both type 
2 diabetes and cardiovascular disease [31,55], given that physical 
activity actually increases F2-isoprostane levels at least for several 
hours. Adding to this evidence, the prospective studies show that 
individuals with higher levels of urinary F2-isoprostanes have a lower 
risk of weight gain [21,35] and type 2 diabetes [36]. These findings 
directly contradict the hypothesis that high oxidative status has 
etiological relevance in the development of diabetes; in fact, they 
suggest just the opposite – that an increase in F2-isoprostane levels 
may be beneficial in preventing diabetes and obesity. Congruent to 
these observations, multiple antioxidant supplementation trials so far 
have failed to prevent cardiovascular disease or type 2 diabetes [22-
29]. Thus, the accumulating body of evidence emphasizes the need for 
a new interpretation of systemic oxidative status markers. The focus 
on fat oxidation as a physiological determinant of F2-isoprostane 
levels connects and sheds light on several observations that are 
otherwise unexplainable [42]. This hypothesis however does not rule 

out a possibility that locally elevated reactive oxygen/nitrogen species 
at the tissue level may promote development of pathological changes; 
but it argues that local oxidative stress contributes insignificantly to 
the systemic levels of oxidative status. Then, the systemic levels of F2-
isoprostanes can be viewed as a beneficial metabolic trait reflecting 
healthy mitochondrial metabolism and fatty acid oxidation rates, 
allowing an effective physiological control of energy balance and 
thereby preventing obesity and type 2 diabetes.
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