(Austin Publishing Group

# **Research Article**

# Relationship of Body Mass Index and Clinical Outcomes in Patients with Acute Kidney Injury: Systematic Review and Meta-analysis

Nsengimana B, Guo Y, Jin Y, Wei W\* and Ji S\* Department of Biochemistry and Molecular Biology, School of Basic Medical sciences, Henan University, Henan, China

\*Corresponding author: Wenqiang Wei, School of Basic Medical Sciences, Henan University, Kaifeng, China

Shaoping Ji, School of Basic Medical Sciences, Henan University, Kaifeng, China

**Received:** March 14, 2022; **Accepted:** April 08, 2022; **Published:** April 15, 2022

### Abstract

**Background:** A higher body mass index (BMI) is considered as risk factor of developing chronic kidney diseases. However, its impact on acute kidney injury (AKI) remains debatable. This meta-analysis aimed to scrutinize the research evidence regarding the association of BMI and AKI development.

**Methods:** Eligible studies published until August, 2021 were searched by using electronic databases. Review Manager (RevMan) was used to evaluate the association of BMI and AKI by considering the odd ratio (OR) with 95% confidence interval (CI). Sensitivity analysis and publication bias were assessed.

**Results:** A total of 69,190 participants were obtained from 15 included studies. The pooled results show that the overall AKI incidence was 24.9%. OR of AKI in obese, overweight, and underweight were 1.22, 95% CI: 0.98 to 1.52, 1.2, 95% CI: 1.01 to 1.42, and 0.9, 95% CI: 0.78 to 1.02 respectively. AKI mortality was associated with underweight group with OR of 1.45, 95% CI: 1.04 to 2.01. AKI stages were statistically insignificant.

**Conclusion:** High incidence of AKI and high AKI mortality rate are associated with elevated BMI and low BMI respectively, hence awareness and control measures on BMI should be taken into account to prevent AKI burden. Further studies are recommended.

Keywords: AKI; BMI; Clinical outcome

# **Abbreviations**

AKI: Acute Kidney Disease; APACHE: Acute Physiology and Chronic Health Evaluation; BMI: Body Mass Index; BUN: Blood Urea Nitrogen; CI: Confidence Interval; eGFR: estimated Glomerular Filtration Rate; LOS: Length of Stay; ICU: Intensive Care Unit; OR: Odd Ratio; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; PROSPERO: International Prospective Register of Systematic; SD: Standard deviation

# Background

Despite BMI's consideration as a tool for evaluating the nutritional status, its increment remains associated with different health comorbidities such as cardiovascular diseases, type 2 diabetes, and chronic kidney diseases [1-5].

The impact of overweight and obesity as a global epidemic is intense. BMI average is raising over 0.4 to 0.5 kg/ m2 in each decade worldwide [6]. It has been stated that 39% of adults were overweight in 2016. In 2020, 39 million of under 5 years old were overweight or obese, and the trend estimates that 2.7 billion adults will be overweight in 2050 globally [7-9]. In USA, the severe obesity folded over 9.2% from 2000 to 2018 [10]. In similar vein, a study carried out in England reports that overweight rate is increasing up to 40% in men [11]. Based on the aforementioned studies, a growing rate of BMI in global and regional is alarming. A rationale for researchers to explore the association of BMI and other diseases. In the past decades, obesity-related nephropathy has been recognized due to several factors including type 2 diabetes, hypertension, intraglomerular pressure, and glomerulomegaly resulting in chronic kidney diseases [12]. Currently, findings show that AKI-obesity is associated a high number of patients in intensive care unit (ICU) [13]. 25% of ICU patients are obese with OR of 1.89 compared to general population [14]. So far, the confounding results have been found. Some studies established that more BMI is correlated with high prevalence of AKI and ICU- mortality compared to normal BMI, whereas, others proved that high mortality rate exists in underweight compared to overweight [15,16]. Therefore, the current meta-analysis aimed to scrutinize the research evidence regarding the association of BMI and AKI as the outcome of critically ill patients which remains inconsistent.

# Methodology

# **Protocol and registration**

This meta-analysis was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [17]. The protocol was registered in International Prospective Register of Systematic (PROSPERO) database (Registration number: CRD42021272156).

## Searching strategies

An electronic search was conducted in Pubmed, Embase, Medline, Google Scholar, and Scopus databases for retrieving the

Citation: Nsengimana B, Guo Y, Jin Y, Wei W and Ji S. Relationship of Body Mass Index and Clinical Outcomes in Patients with Acute Kidney Injury: Systematic Review and Meta-analysis. Int J Nutr Sci. 2022; 7(1): 1062.

Table 1: Details of the included studies.

| Author,<br>Year,<br>Reference | Study design                             | Country  | Population<br>n | Number with<br>BMI/total<br>patients (%) | Aim of the study                                               | Comorbidities                                                                                                                                                                                                                                     | Outcomes                                                                                                                  |
|-------------------------------|------------------------------------------|----------|-----------------|------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Vasquez<br>2020 [19]          | Prospective<br>cohort study              | USA      | 463             | 463/553 (84%)                            | BMI and AKI<br>after severe<br>trauma                          | Hypertension, Diabetes mellitus, chronic kidney disease, and congestive heart failure                                                                                                                                                             | -                                                                                                                         |
| Zou 2017<br>[20]              | Retrospective<br>study                   | China    | 8,455           | 8,455/13083<br>(65%)                     | BMI and AKI<br>after cardiac<br>surgery                        | Hypertension and Diabetes mellitus,                                                                                                                                                                                                               | AKI mortality, duration of<br>mechanical ventilation,<br>LOS in ICU, and LOS in<br>hospital                               |
| Ju 2018 [21]                  | Retrospective<br>study                   | Korea    | 468             | 468                                      | BMI as AKI<br>predictor in<br>critically ill<br>patients       | diabetes mellitus, hypertension;<br>cardiovascular disease; liver cirrhosis;<br>chronic kidney disease; and acute<br>respiratory distress syndrome                                                                                                | APACHE II score, SOFA<br>score, ICU admission,<br>MV duration, ICU LOS,<br>hospital LOS, ICU death,<br>and hospital death |
| Argalious<br>2017 [22]        | Retrospective                            | USA      | 8,543           | 8,543/121,745<br>(7%)                    | BMI and<br>AKI after<br>laparoscopic<br>surgery                | Diabetes mellitus, hypertension; coronary artery disease, and chronic obstructive pulmonary disease                                                                                                                                               | AKI and hospital mortality                                                                                                |
| Park 2017<br>[23]             | Retrospective study                      | Korea    | 203             | 203/334 (61%)                            | BMI and<br>AKI in liver<br>transplantation<br>recipients       | hepatitis B virus; hepatitis C virus, Primary<br>biliary cirrhosis, Autoimmune hepatitis,<br>hypertension, and diabetes mellitus                                                                                                                  | AKI incidence, ICU stay,<br>hospital stay, and hospital<br>mortality                                                      |
| Kim 2018<br>[24]              | Observational study                      | Korea    | 1,144           | 1144/2391<br>(48%)                       | BMI and<br>AKI in renal<br>replacement<br>therapy              | Cancer, diabetes mellitus,<br>hypertension, myocardiac infarction,<br>congestive heart failure, cerebrovascular<br>attack, peripheral vascular disease, and<br>chronic obstructive pulmonary disease                                              | AKI , APACHE II, and<br>SOFA                                                                                              |
| Wang 2019<br>[25]             | Retrospective cohort study               | China    | 1120            | 1120/1271<br>(88.1%)                     | BMI and<br>AKI in renal<br>replacement<br>therapy              | Myocardial infarction, congestive heart<br>failure, cerebrovascular disease, diabetes<br>mellitus, and hypertension                                                                                                                               | -                                                                                                                         |
| Kim 2017<br>[26]              | Observational study                      | Korea    | 212             | 212/573 (36.9)                           | BMI and<br>AKI in renal<br>replacement<br>therapy              | Diabetes mellitus, hypertension, congestive heart failure, cerebrovascular attack, and cancer                                                                                                                                                     | Mortality, hospital LOS, and ICU LOS                                                                                      |
| Liu 2021 [27]                 | Retrospective cohort study               | China    | 115             | 115/137 (83.9)                           | BMI and AKI<br>after aortic arch<br>surgery                    | Cerebrovascular disease, diabetes mellitus, hypertension, and kidney malperfusion                                                                                                                                                                 | postoperative AKI,<br>Length of ICU, length of<br>in hospital, and hospital<br>mortality                                  |
| Liu 2018 [28]                 | Retrospective cohort study               |          | 12,555          | 12555/35474<br>(35.3%)                   | BMI and AKI                                                    | Hypertension, hypertension, and cardiovascular disease                                                                                                                                                                                            | AKI, mortality within 90<br>days of admission, and<br>length of stay                                                      |
| MacLaughlin<br>2021 [29]      | Prospective<br>multisite cohort<br>study | USA      | 1477            | 1477/1603<br>(92.1%)                     | BMI and Chronic<br>kidney disease<br>after AKI                 | Diabetes, chronic heart failure, and cardiovascular disease                                                                                                                                                                                       | AKI stages, ICU, and hospital mortality                                                                                   |
| Gameiro<br>2018 [30]          | Retrospective cohort study               | Portugal | 456             | 456/722 (63.1%)                          | Obesity and AKI<br>in patients with<br>sepsis                  | Hypertension, diabetes, and infection                                                                                                                                                                                                             | AKI, LOS in hospital, LOS<br>in ICU, ICU mortality, and<br>hospital mortality                                             |
| Sabaz 2021<br>[13]            | Retrospective cohort study               | Turkey   | 4,459           | 4459/7227<br>(61.6%)                     | BMI on AKI and<br>ICU mortality                                | Hypertension, Diabetes, Cerebrovascular<br>disease, Malignancy, Hepatic disease,<br>Psychiatric disorder, Dementia, chronic<br>obstructive pulmonary disease, chronic<br>renal failure, coronary artery disease, and<br>gastrointestinal bleeding | AKI, mechanic ventilation,<br>APACHE 2, SOFA, and<br>LOS in ICU                                                           |
| Zhou 2020<br>[31]             | Retrospective<br>cohort study            | China    | 244             | 244/341 (71.5%)                          | Overweight and<br>AKI after liver<br>transplantation           | Hypertension, diabetes mellitus, chronic kidney disease, encephalopathy, ascites, and liver disease                                                                                                                                               | AKI and hospital mortality                                                                                                |
| Wang 2021<br>[32]             | Retrospective cohort study               | China    | 15174           | -                                        | BMI and AKI<br>in critically ill<br>patients                   | Congestive heart failure, cardiac<br>arrhythmias, valvular disease, hypertension,<br>renal disease, Liver disease, uncomplicated<br>and complicated diabetes, metastatic cancer<br>and coagulopathy,                                              | AKI stage, SOFA, ICU<br>LOS, and mortality                                                                                |
| Moon 2018<br>[33]             | Retrospective cohort study               | Korea    | 3018            | 3018/3089<br>(97.7%)                     | Obesity and AKI<br>after coronary<br>artery bypass<br>grafting | Hypertension, and diabetes mellitus,                                                                                                                                                                                                              | AKI                                                                                                                       |
| Pedersen<br>2016 [35]         | Regional cohort study                    | Denmark  | 13529           | 11411/16111<br>(70.8)                    | BMI and AKI<br>after hip fracture<br>surgery                   | Chronic kidney disease, diabetes, and Charlson comorbidity                                                                                                                                                                                        | AKI, mortality and hospital stay                                                                                          |

articles published until August, 2021. The search term with Boalean Operators used were: "BMI" OR "body mass index" OR "overweight" OR "obese" OR "normal weight" OR "underweight" AND "acute kidney disease" OR "AKI" OR "kidney injury" OR "kidney failure". The language applied was English.

## Inclusion and exclusion criteria

The study included the original articles that evaluated the association of BMI and AKI. The first criterion was if the participants were classified into underweight, normal weight, overweight, and obese. The second criterion was the analyzed outcomes which were included but not limited to, AKI development, AKI stage, intensive care unit stay, time used to stay in hospital, comorbidities (hypertension and diabetes mellitus). The excluded studies in metaanalysis were reviews, case reports, newspapers, conference papers, comments, and other studies that were not published in English and those conducted on the participants who are under 18 age old.

## **Study selection**

Based on eligibility criteria, two independent reviewers screened the selected studies. They firstly removed the duplicates and other studies based on exclusion criteria by screening the titles and abstracts. The full-text of remaining studies were further revised for checking their eligibilities. Any discrepancies between the two investigators were solved by a third reviewer in mutual consensus.

# Data extraction and quality assessment

The data were extracted by two independent authors based on a standardized form which is recommended by Cochrane. The extracted information was year of publication, design of study, country, participants' demographic features (age, height, weight, and gender), and outcomes: glomerulus filtration rate features, AKI mortality, AKI stage, LOS in ICU, LOS in hospital, acute physiology and chronic health evaluation (APACHE II). Participants group was classified as underweight, normal, overweight, and obese based on BMI <18.5kg/m<sup>2</sup>, BMI ≥18.5<25kg/m<sup>2</sup>, BMI ≥25<30kg/m<sup>2</sup>, BMI ≥30kg/ m<sup>2</sup> respectively. Newcastle-Ottawa quality assessment tool was used to assess the quality of the cohorts and the risk of bias [18], more than six stars were considered as high quality to meet the eligibility criteria in meta-analysis. A funnel plot was used to evaluate the publication bias (more or equal to six included studies were considered).

# Statistical analysis

Statistical analysis was executed by RevMan 5.0.25 (Nordic Cochrane Centre, Cochrane Collaboration, UK). Mann-Whitney U test was used to evaluate the hypothesis and P <0.05 was considered as statistical significance. For continuous and dichotomous data, mean difference and OR in 95% CI were calculated respectively. A random effect model was used to assess the pooled OR and 95% CI. I<sup>2</sup> was used to assess the heterogeneity, where 0% to 40%, 30% to 60%, 50% to 90%, and 90% to 100% was considered as minimal, moderate, substantial, considerable heterogeneity respectively, and P <0.1 designated the significance. Sensitivity analysis was used to assess the consistence of results.

# **Results**

## Study flow and characteristics

A total of 284,212 articles were retrieved through online searching the different databases including PubMed (169,107), Embase (57,726),



# **Austin Publishing Group**

# Table 2: Details on patients' baseline features.

| Author year,<br>Ref      | BMI (kg/m²)<br>categories | Age, years,<br>median (SD) | Hypertension<br>(%) | Albumin<br>baseline, | UA baseline,<br>µmol/L | eGFR<br>baseline, | SCr baseline,<br>µmol/L | BUN<br>baseline, | Height, cm  | Body<br>weight, | Male,<br>n (%) | Diabetes<br>mellitus, |
|--------------------------|---------------------------|----------------------------|---------------------|----------------------|------------------------|-------------------|-------------------------|------------------|-------------|-----------------|----------------|-----------------------|
|                          | Underweight               | 84 (78-89)                 | -                   | -                    | -                      | -                 | -                       | -                | -           | -               | 168 (13.2%)    | 70 (5.5%)             |
| Pedersen                 | Normal                    | 84 (78-89)                 | -                   | -                    | -                      | -                 | -                       | -                | -           | -               | 1817 (27.6%)   | 651 (9.9%)            |
| 2016 [35]                | Overweight                | 82 (76-87)                 | -                   | -                    | -                      | -                 | -                       | -                | -           | -               | 938 (33.9%)    | 480 (17.3%)           |
|                          | Obese                     | 80 (74-86)                 | -                   | -                    | -                      | -                 | -                       | -                | -           | -               | 201 (25.7%)    | 206 (26.3%)           |
|                          | Normal                    | 52.6 ± 14.1                | 1,042 (23.6)        | 40.2 ± 3.6           | 354.7 ± 117.4          | 91.9 ± 25.1       | 77.4 ± 25.3             | 6.6 ± 2.9        | 163.4 ± 7.2 | 58.0 ± 6.6      | 2,251 (51.0)   | 292 (6.6)             |
|                          | Overweight                | 55.3 ± 12.2                | 59.4 (16.7)         | 40.3 ± 3.3           | 377.8 ± 141.8          | 89.3 ± 23.1       | 80.9 ± 24.0             | 6.3 ± 2.2        | 166.4 ± 7.0 | 71.2 ± 6.8      | 1,644 (65.1)   | 307 (12.2)            |
| Zou 2017 [20]            | Obese                     | 55.0 ± 11.9                | 344 (48.9)          | 40.4 ± 3.1           | 396.0 ± 109.5          | 87.3 ± 23.1       | 83.0 ± 24.4             | 6.3 ± 2.0        | 166.1 ± 8.0 | 83.0 ± 8.2      | 471 (66.9)     | 111 (15.8)            |
|                          | Underweight               | 47.8 ± 16.6                | 97 (12.0)           | 39.8 ± 4.1           | 342.0 ± 114.6          | 98.2 ± 28.6       | 73.4 ± 25.0             | 6.6 ± 3.0        | 163.6 ± 7.3 | 46.0 ± 5.2      | 340 (42.2)     | 38 (4.7)              |
|                          | Normal                    | 68.6 ± 14.1                | -                   | -                    | -                      | -                 | -                       | -                | -           | -               | 197 (41)       | 94 (33.0)             |
| h. 0040 [04]             | Overweight                | 64.9 ± 13.8                | 44 (55.0)           | -                    | -                      | -                 | -                       | -                | -           | -               | 47 (7)         | 34 (42.5)             |
| JU 2018 [21]             | Obese                     | 57.0 ± 15.9                | -                   | -                    | -                      | -                 | -                       | -                | -           | -               | 116 (63.4%)    | -                     |
|                          | Underweight               | 71.3 ± 12.7                | 34 (33.3)           | -                    | -                      | -                 | -                       | -                | -           | -               | 62 (13)        | 27 (26.5)             |
|                          | Normal                    | 54 ± 17                    | 461 (31)            | -                    | -                      | -                 | -                       | -                | -           | -               | 391 (26)       | 107 (7)               |
|                          | Overweight                | 57 ± 15                    | 7354 (44)           | -                    | -                      | -                 | -                       | -                | -           | -               | 644 (39)       | 243 (15)              |
| Argalious<br>2017 [22]   | Obese                     | 56 ± 14                    | 700 (56)            | -                    | -                      | -                 | -                       | -                | -           | -               | 394 (31)       | 253 (20)              |
|                          | Morbidly obese            | 49.3 ± 13.1                | -                   | -                    | -                      | -                 | -                       | -                | -           | -               | 23 (31.1%)     | 26 (35.1%)            |
|                          | Underweight               | 49 ± 17                    | 21 (21)             | -                    | -                      | -                 | -                       | -                | -           | -               | 20 (20)        | 2 (2)                 |
| Deal: 0047 [00]          | Normal                    | 54.38 ± 7.33               | 14 (18.9)           | -                    | -                      | -                 | -                       | -                | -           | -               | 58 (78.4)      | 21 (28.4)             |
| Park 2017 [23]           | Underweight               | 53.68 ± 8.91               | 9 (24.3)            | -                    | -                      | -                 | -                       | -                | -           | -               | 26 (70.3)      | 14 (17.0%)            |
|                          | Normal                    | 65.0±13.6                  | 217 (53.8)          | 2.6±0.6              | 35 (8.7)               | 33.1±22.3         | 2.5±1.3                 | 35 (8.7)         | -           | -               | 241 (59.8)     | 140 (34.7)            |
|                          | Overweight                | 63.9±14.0                  | 110 (50.0)          | 2.6±0.6              | 21 (9.5)               | 32.7±24.4         | 2.9±1.9                 | 21 (9.5)         | -           | -               | 155 (70.4)     | 79 (35.9)             |
| Kim 2018 [24]            | Obese                     | 61.3±14.5                  | 233 (55.3)          | 2.6±0.6              | 46 (10.9)              | 29.0±18.8         | 2.9±1.7                 | 46 (10.9)        | -           | -               | 248 (58.7)     | 153 (36.3)            |
|                          | Underweight               | 62.3±17.2                  | 40 (40.4)           | 2.5±0.5              | 13 (13.1)              | 33.2±18.0         | 2.6±1.5                 | 13 (13.1)        | -           | -               | 61 (61.6)      | 27 (27.6)             |
|                          | Normal                    | 64.85±13.73                | 216 (53.87)         | -                    | -                      | -                 | 32.44±22.51             | 55.83±28.07      | -           | -               | 242 (60.3)     | 138 (34.41)           |
| Wang                     | Overweight                | 63.94±13.61                | 113 (50.45)         | -                    | -                      | -                 | 31.75±22.63             | 56.79±31.36      | -           | -               | 154 (68.7)     | 83 (37.05)            |
| 2019 [25]                | Obese                     | 61.24±14.59                | 224 (55.31)         | -                    | -                      | -                 | 28.86±18.52             | 54.57±29.82      | -           | -               | 238 (58.7)     | 146 (36.05)           |
|                          | Underweight               | 63.10±17.48                | 38 (42.22)          | -                    | -                      | -                 | 35.22±22.51             | 60.70±35.26      | -           | -               | 53 (58.8)      | 22 (24.72)            |
|                          | Normal                    | 63 ± 19.5                  | 1579 (36.4)         | -                    | -                      | -                 | -                       | -                | -           | -               | 2329 (53.7)    | 1039 (23.9)           |
| Liu 2018 [27]            | Overweight                | 62 ± 17.3                  | 1519 (38.9)         | -                    | -                      | -                 | -                       | -                | -           | -               | 2264 (58.0)    | 1072 (27.5)           |
|                          | Obese                     | 57 ± 15.9                  | 1144 (44.2)         | -                    | -                      | -                 | -                       | -                | -           | -               | 1306 (50.5)    | 837 (32.4)            |
|                          | Underweight               | 70 ± 19.4                  | 653 (37.8)          | -                    | -                      | -                 | -                       | -                | -           | -               | 856 (49.6)     | 341 (19.7)            |
|                          | Normal                    | 64.3 (16.0)                | -                   | -                    | -                      | -                 | 70 (31)                 | -                | -           | -               | 88 (65.6)      | 43 (32)               |
| MacLaughlin<br>2021 [29] | Overweight                | 65.9 (12.7)                | -                   | -                    | -                      | -                 | 64 (25)                 | -                | -           | -               | 174 (78)       | 87 (39)               |
|                          | Obese                     | 62.3 (11.2)                | -                   | -                    | -                      | -                 | 65 (26)                 | -                | -           | -               | 248 (62.6)     | 253 (64)              |
|                          | Underweight               | 61.7 (15.1)                | -                   | -                    | -                      | -                 | 74 (36)                 | -                | -           | -               | 9 (56.2)       | 4 (25)                |
| Gameiro 2018             | Normal                    | 63.9±16.5                  | 141 (43)            | 1.9±0.6              | -                      | -                 | -                       | -                | -           | -               | 203 (61.3)     | 63 (19)               |
| [30]                     | Obese                     | 64.4±14.8                  | 71 (56.8)           | 1.9±0.5              |                        | -                 | -                       | -                | -           | -               | 61 (48.8)      | 40 (32)               |
|                          | Normal                    | 57.88±21.53                | 495 (27.5)          | -                    | -                      | -                 | -                       | -                | -           | -               | 1153 (64)      | 270 (15.0)            |
| Sabaz 2021<br>[13]       | Overweight                | 61.16±18.0                 | 662 (37.4)          | -                    | -                      | -                 | -                       | -                | -           | -               | 1088 (61.5)    | 397 (22.4)            |
|                          | Obese                     | 64.69±15.53                | 481 (54.2)          | -                    | -                      | -                 | -                       | -                | -           | -               | 258 (29.1)     | 326 (36.7)            |
| Zhou 2020<br>[31]        | All participants          | 54.8 (9.6)                 | 69 (28.04)          | -                    | -                      | -                 | -                       | -                | -           | -               | 244 (99)       | 86 (34.9)             |
|                          | Normal                    | 81.42 ± 61.16              | 749 (15.99)         | -                    | -                      | -                 | -                       | 26.39 ± 21.27    | -           | -               | 2683 (57.29)   | 1087 (23.2)           |
| Wang 2021                | Overweight                | 74.72 ± 47.22              | 815 (16.03)         | -                    | -                      | -                 | -                       | 26.03 ± 20.38    | -           | -               | 3412 (67.11)   | 1481 (29.1)           |
| [32]                     | Obese                     | 66.80 ± 31.95              | 824 (16.38)         | -                    | -                      | -                 | -                       | 28.21 ± 21.77    | -           | -               | 2973 (59.12)   | 2125 (42.2)           |
|                          | Underweight               | 87.05 ± 71.09              | 55 (14.55)          | -                    | -                      | -                 | -                       | 26.59 ± 21.97    | -           | -               | 153 (40.48)    | 65 (17.1)             |

## **Austin Publishing Group**

|                      | Normal           | 66.7 ± 9.88  | 53.4       | 3.7 ± 0.46     |   | 69.7 ± 20.74 | - |   | - | - | 836 (74.0)  | 43.2      |
|----------------------|------------------|--------------|------------|----------------|---|--------------|---|---|---|---|-------------|-----------|
| Moon 2018            | Overweight       | 64.7 ± 9.48  | 60.4       | 3.8 ± 0.65     |   | 70.2 ± 19.63 | - | - | - | - | 493 (77.4)  | 45        |
| [33]                 | Obese            | 60.0 ± 11.60 | 72.7       | $3.9 \pm 0.60$ |   | 73.4 ± 20.06 | - | - | - | - | 829 (70.2)  | 49.6      |
|                      | Underweight      | 70.8 ± 9.95  | 53.5       | 3.7 ± 0.60     |   | 66.0 ± 23.59 | - | - | - | - | 44 (62)     | 28.2      |
| Vasquez 2020<br>[19] | All participants | 42 (28-60)   | 127 (27.4) | -              | - | -            | - | - | - | - | 350 (75.5)  | 31 (6.6)  |
| Liu 2021 [27]        | All participants | 48.7±10.4    | 92 (80)    | -              | - | -            | - | - | - | - | 86 (74.7)   | 7 (6.08)  |
| Kim 2017 [26]        | All participants | 61.8 ± 13.2  | 100 (47.1) | -              | - | -            | - | - | - | - | 138 (65.09) | 58 (27.3) |

Medline (3,042), Google Scholar (45,900), and Scopus (8,437). A total of 115,051 duplicates were removed, resulting in 169,161 articles which screened for the title and abstract. Subsequently, 229 articles were identified after removing 50,783 narrative reviews and 118,149 irrelevant articles. Among 55 full articles which checked for eligibility, 39 articles were excluded due to the lack of the related report of BMI and AKI outcomes. 17 articles were included in systematic review and 15 articles were considered in meta-analysis (Figure 1).

A total of 69,190 participants were included in these studies which carried out in 7 countries namely China (n=4), Denmark (n=1) Korea (n=4), Portugal (n=1), Turkey (n=1), Singapore (n=1), and USA (n=3). Study design in all studies was retrospective, except one which was a prospective study (Table 1).

The male participants who included in the studies were 33,478/69,190 (48.3%), and the range of mean age was 47.8-87.05. More about patients' baseline features including albumin, uric acid, estimated glomerular filtration rate (eGFR), serum creatinine, and blood urea nitrogen (BUN) baseline, height, weight, and comorbidities like hypertension, and diabetes mellitus were summarized in Table 2.

## **Quality assessment**

The Newcastle-Ottawa tool was used to determine the quality of each eligible study. The maximum star designed for each study was nine: four stars for selection, two stars for comparability, three stars for the outcome. A study with greater or equal to seven stars was considered as high quality. Among seventeen studies, seven studies [13,23,28-30,32,35] scored eight points, eight studies [19,21,22,24-26,29,31] scored seven points and two studies [27,33] scored six points (Supplementary Table 1). Meta-analysis included fourteen study based on the quality scale. There was no obvious risk of publication bias which was assessed based on funnel plot (Supplementary 1 Figure 1).

## **Overall analysis**

Based on BMI, the current systematic review assessed the different patient's outcomes in the included studies including AKI incidence, AKI mortality, length of stay in intensive care (LOS in ICU), and APACHE II score. Among these studies, the highest incidence of AKI, AKI mortality, ICU mortality, Hospital mortality, highest APACHE II score, long stay in ICU, and long stay in hospital were found in obese population (92.8 %), underweight population (9.5%), overweight population (43.8%), underweight population (70.7%), overweight population (35 (14–222)) respectively, as they are summarized in Table 3. Table 4 summarizes the percentage of comorbidities (hypertension and diabetes mellitus) in different groups. The overall percentage of hypertension and diabetes mellitus

was 34.4% and 20.03% respectively. The highest percentage of hypertension (46.2%) and diabetes (34.3%) was in obese group. The percentage of hypertension in underweight, normal-weight, and overweight was 19.9%, 26.9%, and 31.4% respectively. The percentage of diabetes mellitus in underweight, normal-weight, and overweight was 5.9%, 13.4%, and 19.9% respectively.

# BMI and AKI

The incidence of AKI among the included studies in metaanalysis was 24.9%. The subgroups analysis shows that the highest incidence was 30.1% in overweight population, and the smallest was 18% in underweight group (Table 5).

The risk of developing AKI in the overweight group was more likely than normal-weight group, OR was 1.2, 95% CI: 1.01 to 1.42, P=0.03), there was substantial heterogeneity among overweight studies with I<sup>2</sup>=78%, P=0.0001. The association of AKI in obese group was more likely higher than in normal group, even it is not statistically significant, OR was 1.22, 95% CI: 0.98 to 1.52, P=0.08, there was substantial heterogeneity with I2=86%, P=0.00001. The results in underweight group show that 10% were less likely to develop AKI compared to normal-weight group, even it was not statistically significant, OR was 0.9, 95% CI: 0.78 to 1.02, P=0.11, with a minimal heterogeneity, I<sup>2</sup>=7%, P=0.38 as shown in Figure 2a-2c. A sensitivity analysis were conducted after removing the outlier in underweight and overweight group, results remain consistent to the primary findings. However, in the overweight group, the sensitivity analysis shows the statistical significant results with OR of 1.32, 95% CI: 1.16 to 1.5, I<sup>2</sup>=36%, P=0.0001 (Supplementary 2 Figure 1).

**BMI and AKI stage 1:** The overall analysis of BMI and AKI stage 1 in six and seven included studies shows that 4% underweight and 5% obese patients were less likely to experience AKI stage 1 compared with normal population, with OR of 0.96, 95% CI: 0.74 to 1.6, P=0.77 and 0.95, 95% CI: 0.74 to 1.22, P=0.69, but, both findings were not statistically significant. The results reveal that overweight patients were slightly more likely to experience AKI stage 1 compared to normal-weight, even if it was not statically significant, OD was 1.01, 95% CI: 0.91 to 1.11, p=0.90. There was a moderate heterogeneity in underweight group with I<sup>2</sup>=25%, P=0.63, and a substantial heterogeneity in obese group with I<sup>2</sup>=81%, P=0.0001 (Figure 3a-3c).

**BMI and AKI stage 2:** The overall meta-analysis of BMI and AKI stage 2 demonstrates that 8% in underweight (seven studies) and overweight (eight studies) sub-groups are less likely to develop AKI stage 2, but not statistically significant, the OR in underweight and overweight group were 0.92, 95% CI: 0.57 to 1.46, P=0.71 and 0.92, 95% CI: 0.47 to 1.77, P=0.79, respectively. Conversely, obese

# **Austin Publishing Group**

# Table 3: Incidence of AKI and outcomes.

|              |                    | AKI-RRT      |                |                 | ICU        |             | hospital      |            |             |            | AKI          | AKI            | AKI             | AKI     | Renal       |             |
|--------------|--------------------|--------------|----------------|-----------------|------------|-------------|---------------|------------|-------------|------------|--------------|----------------|-----------------|---------|-------------|-------------|
| Author year  | BMI (kg/m²)        | Incidence    | AKI mortality  | MV-free         | mortality  | LOS in ICU  | length of     | Hospital   | AKI-RRT     | AKI (%)    | STAGE 1      | STAGE 2        | STAGE 3         | stage   | replacement | APACHE II   |
|              | categories         | (%)          | (%)            | days            | (%)        |             | stay          | mortality  | mortality   |            | (%)          | (%)            | (%)             | 2-3 (%) | therapy     | score       |
|              | Underweight        | -            | -              | -               | -          | -           | 9 (5-13)      | 24 (23.1%) | -           | 128 (10)   | 96 (7.5%)    | 22 (1.7%)      | 10 (0.8%)       | -       | -           | -           |
|              | (n=1272)<br>Normal |              |                |                 |            |             |               |            |             | 782        | 572          |                |                 |         |             |             |
| Pedersen,    | (n=6588)           | -            | -              | -               | -          | -           | 10 (5-14) 6.6 | 97 (14.1%) | -           | (11.9)     | (8.7%)       | 158 (2.4%)     | 52 (0.8%)       | -       | -           | -           |
| 2016         | Overweight         | -            | -              | -               | -          | -           | 10 (6-14)     | 35 (10.7%) | -           | 345        | 249          | 69 (2.5%)      | 27 (1.0%)       | -       | -           | -           |
|              | (n=2769)           |              |                |                 |            |             |               |            |             | (12.4)     | (9.0%)<br>92 |                |                 |         |             |             |
|              | Obese (n=782)      | -            | -              | -               | -          | -           | 11 (7-16)     | 20 (15.2%) | -           | (17.9)     | (11.8%)      | 33 (4.2%)      | 15 (1.9%)       | -       | -           | -           |
|              | Normal             | 74/1,368     | 82/1,368 (6.0) | 1 (1, 2)        | -          | 40 (20, 88) | 13 (10, 18)   | -          | 45/74       | 1,368      | 1,010        | 205 (15.0)     | 153 (11.2)      | 358     | -           | -           |
|              | Querusiaht         | (3.4)        | 25/022 (2.0)   | 4 (4 0)         |            | 20 (20 .00) | 44 (44 40)    |            | 16/44       | 922        | 667          | 454 (40.7)     | 404 (44 0)      | 255     |             |             |
| Zou 2017     | Overweight         | 44/922 (4.8) | 35/922 (3.8)   | 1 (1, 2)        | -          | 39 (20, 86) | 14 (11, 18)   |            | (36.4)      | (36.5)     | (72.3)       | 154 (16.7)     | 101 (11.0)      | (27.7)  | -           | -           |
|              | Obese              | 17/324 (5.2) | 14/324 (4.3)   | 1 (1, 2)        | -          | 40 (19, 93) | 14 (11, 18)   | -          | (58.8)      | 324        | (68.8)       | 67 (20.7)      | 34 (10.5)       | (31.2)  | -           | -           |
|              | Underweight        | 13/241 (5.4) | 23/241 (9.5)   | 1 (1 2)         | -          | 44 (20, 95) | 14 (10, 18)   |            | 9/13 (69.2) | 241        | 161          | 51 (21 2)      | 29 (12 0)       | 80      | -           | -           |
|              | Chaormolgin        | 10/211 (0.1) | 20/211 (0.0)   | . (., 2)        |            | (20, 00)    | (10, 10)      |            | 0,10 (00.2) | (29.9)     | (66.8)       | 01 (21:2)      | 20 (12:0)       | (33.2)  |             |             |
|              | Normal             | 121 (42.3)   | 9.8 ± 19.8     | 10.3 ± 21.0     | -          | -           | -             | -          | -           | -          | -            | -              | -               | -       | 66 (23.1)   | 18.8 ± 8.8  |
|              | Overweight         | -            |                | 7.4 ± 10.5      | 35 (43.8)  | 6.9 ± 9.8   |               | 40 (50.0)  |             | 29         | -            | -              | -               | -       | 28 (35)     | 21.4 ± 10.0 |
| Ju 2018      |                    |              |                |                 | . ,        |             |               |            |             | (36.3)     |              |                |                 |         | . ,         |             |
|              | Obese              | -            | -              | -               | -          | -           | -             | -          | -           | -          | -            | -              | -               | -       | -           | -           |
|              | Underweight        | -            | -              | 10.7 ± 11.8     | 41 (40.2)  | 11.7 ± 13.4 | -             | 48 (47.1)  | -           | 10 (9.8)   | -            | -              | -               | -       | 19 (18.6)   | 16.7 ± 7.5  |
|              | Normal             |              |                |                 |            |             |               | 0 (0 6)    |             | 24 (2.2)   | 27 (1.9)     | E (0.2)        | 2 (0 1)         |         |             |             |
|              | Normai             | -            | -              | -               | -          | -           | -             | 9 (0.0)    | -           | 34 (2.3)   | 27 (1.0)     | 5 (0.3)        | 2 (0.1)         | -       | -           | -           |
|              | Overweight         | -            | -              | -               | -          | -           | -             | 9 (0.5)    | -           | 53 (3.2)   | 42 (2.5)     | 8 (0.5)        | 3 (0.2)         | -       | -           | -           |
| Argalious    | Obese              | -            | -              | -               | -          | -           | -             | 5 (0.4)    | -           | 37 (2.9)   | 28 (2.2)     | 5 (0.4)        | 4 (0.3)         | -       | -           | -           |
| 2017         |                    |              |                |                 |            |             |               |            |             |            |              |                |                 |         |             |             |
|              | Morbidly obese     | -            | -              | -               | -          | -           | -             | -          | -           | -          | -            | -              | -               | -       | -           | -           |
|              | Underweight        | -            | -              | -               | -          | -           | -             | 1 (1)      | -           | 4 (4)      | 3 (3)        | 1 (1)          | 0               | -       | -           | -           |
|              | Normal             | -            | -              | -               | -          | 10.0 + 8.8  | 26 (15-110)   | 2 (2.7)    | -           | 30         | 23 (31.1)    | 7 (9.5)        | 0               | -       | -           | -           |
| Park 2017    |                    |              |                |                 |            | 12 41 +     |               | - ( )      |             | (40.5)     |              | . (515)        | -               |         |             |             |
|              | Underweight        | -            | -              | -               | -          | 10.96       | 35 (14-222)   | 2 (5.4)    | -           | (35.1)     | 10 (27.0)    | 2 (5.4)        | 1 (2.7)         | -       | -           | -           |
|              | Normal             | -            | -              | -               | -          | 9 (3-20)    | 20 (7-46)     | 256 (63.5) | -           | -          | -            | -              | -               | -       | -           | 27.4±8.0    |
|              | Querensieht        |              |                |                 |            | C (2 45)    | 00 (0 5 45 5) | 400 (04.0) |             |            |              |                |                 |         |             | 07.5 . 0.4  |
| Kim 2018     | Overweight         | -            | -              | -               | -          | 6 (3-15)    | 23 (0.5-45.5) | 130 (01.8) | -           | -          | -            | •              | -               | -       | -           | 27.5±9.1    |
|              | Obese              | -            |                | -               | -          | 8 (3-16)    | 21 (8-41)     | 239 (56.8) | -           | -          | -            | -              | -               | -       | -           | 26.7±8.4    |
|              | Underweight        | -            | -              | -               | -          | 5 (2-14)    | 8 (2-30)      | 70 (70.7)  | -           |            | -            | -              | -               | -       | -           | 26.4±8.3    |
|              |                    |              |                | 319             |            | - ( )       | - (           |            |             |            |              | 122            | 279             |         |             |             |
|              | Normal             | -            | -              | (79.55%)        | -          | -           | -             | -          | -           | -          | -            | (30.42%)       | (69.58%)        | -       | -           | 27.86±7.47  |
|              | Overweight         | -            |                | 176             | -          | -           | -             | -          | -           | -          | -            | 67             | 157             | -       | -           | 27.64±8.57  |
| Wang 2019    |                    |              |                | (78.57%)<br>313 |            |             |               |            |             |            |              | (29.91%)<br>90 | (70.09%)<br>315 |         |             |             |
|              | Obese              | -            | •              | (77.28%)        | -          | -           | -             | -          | -           | -          | -            | (22.22%)       | (77.78%)        | -       | -           | 26.77±8.13  |
|              | Underweight        | -            | -              | 70 (77.78%)     | -          | -           | -             | -          | -           | -          | -            | 14             | 76              | -       | -           | 25.81±7.55  |
|              | Normal             |              |                |                 | 414 (0.5)  | E (2.10)    |               |            |             | 564        |              | (13.3078)      | (04.4478)       |         |             |             |
|              | Normai             | -            | -              | -               | 414 (9.5)  | 5 (3-10)    |               |            | -           | (35.1)     | -            | -              | -               | -       | -           | -           |
|              | Overweight         | -            |                | -               | 239 (6.1)  | 4 (3-8)     | -             | -          | -           | (30.4)     | -            | -              | -               | -       | -           | -           |
| Liu 2018     | Obese              | -            | -              | -               | 88 (3.4)   | 4 (2-7)     | -             | -          | -           | 279        | -            | -              | -               | -       | -           | -           |
|              |                    |              |                |                 | ,          | ,           |               |            |             | (17.4) 275 |              |                |                 |         |             |             |
|              | Underweight        | -            | -              | -               | 256 (14.8) | 7 (4-14)    | -             | -          | -           | (17.1)     | -            | -              | -               | -       | -           | -           |
|              | Normal             | -            | -              | -               | -          | -           | -             | -          | -           | -          | 100          | 18 (13%)       | 16 (12%)        | -       | -           | -           |
|              | Oversished         |              |                |                 |            |             |               |            |             |            | 174          | DE (440/)      | 24 (440/)       |         |             |             |
| MacLaughlin  | Overweight         | -            | -              | -               | -          | -           | -             | -          | -           | -          | (78%)        | ∠ວ (11%)       | 24 (11%)        | -       | -           | -           |
| 2021         | Obese              | -            | -              | -               | -          | -           | -             | -          | -           | -          | (67%)        | 75 (19%)       | 57 (14%)        | -       | -           | -           |
|              | Underweight        | -            | -              | -               | -          | -           | -             |            | -           | -          | 15 (94%)     | 0              | 1 (6%)          | -       | -           | _           |
|              |                    |              |                |                 |            |             |               |            |             | 283        | . (= 170)    | -              | (= ,0)          |         |             |             |
|              | Normal             | -            | -              | 256 (77.3)      | -          | 81 (24.5)   | 38.8±39.3     | 113 (34.1) | -           | (85.5)     | -            | -              | -               | -       | -           | -           |
|              | Overweight         | -            | -              | -               | -          | -           | -             | -          | -           | -          | -            | -              | -               | -       | -           | -           |
| Gameiro 2018 | Obese              | _            | _              | 94 (75.2)       |            | 27 (21.6)   | 326+30.2      | 40 (32)    | _           | 116        |              |                |                 | _       |             |             |
|              | Obese              | -            | -              | 3++ (13.2)      |            | 21 (21.0)   | J2.0139.3     | +0 (32)    | -           | (92.8)     | -            | -              | -               | -       | -           | -           |
|              | Underweight        | -            | -              | -               | -          | -           | -             | -          | -           | -          | -            | -              | -               | -       | -           |             |
|              | Normal             | -            | -              | 4.81 (2.74-     | 548 (30.4) | 5.45 (3-    | -             | -          | -           | 1172       | 98 (5.4)     | 156 (8.7)      | 918 (51.0)      | -       | -           | 24 (17-29)  |
|              |                    |              |                | 11.14)          |            | 12.72)      |               |            |             | (65.1)     | (0.1)        | (0)            |                 |         |             | (., 20)     |
| Sabaz 2021   | Overweight         | -            | -              | 12.16)          | 556 (31.4) | 13.58)      | -             | -          | -           | (64.9)     | 118 (6.7)    | 185 (10.4)     | 846 (47.8)      | -       | -           | 25 (19-30)  |
| Jubaz 2021   | Obese              | -            | -              | 5.89 (2.75-     | 307 (34.6) | 6.81 (3.32- | -             | -          | -           | 620        | 57 (6.4)     | 101 (11.4)     | 462 (52.0)      | -       | -           | 26 (19-31)  |
|              | land of the        |              |                | 12.47)          | · · · · ·  | 13.88)      |               |            |             | (69.8)     |              | · · ·          |                 |         |             |             |
|              | Underweight        | -            | -              | -               | -          | -           | -             | -          | -           |            | -            | -              | -               | -       | -           | -           |

## **Austin Publishing Group**

|           | Normal      | - | - | - | - | - | - | -           | - | 28.7   | -               | -              | -               | - | - | - |
|-----------|-------------|---|---|---|---|---|---|-------------|---|--------|-----------------|----------------|-----------------|---|---|---|
| 74 2020   | Overweight  | - | - | - | - | - | - | -           | - | 47.7   | -               | -              | -               | - | - | - |
| 2nou 2020 | Obese       | - | - | - | - | - | - | -           | - | 50.50% | -               | -              | -               | - | - | - |
|           | Underweight | - | - | - | - | - | - | -           | - | -      | -               | -              | -               | - | - | - |
|           | Normal      | - | - | - | - | - | - | 812 (17.34) | - | -      | 1079<br>(23.04) | 786<br>(16.78) | 2818<br>(60.18) | - | - | - |
|           | Overweight  | - | - | - | - | - | - | 687 (13.51) | - | -      | (22.01)         | 749 (14.73)    | 3216 (63.26)    | - | - | - |
| Wang 2021 | Obese       | - | - | - | - | - | - | 667 (13.26) | - | -      | 920             | 811 (16.13)    | 3298            | - | - | - |
|           | Underweight | - | - | - | - | - | - | 71 (18.78)  | - | -      | 98 (25.93)      | 81 (21.43)     | 199 (52.65)     | - | - | - |
|           | Normal      | - | - | - | - | - | - | -           | - | 25.6   | -               | -              | -               | - | - | - |
| Maan 2049 | Overweight  | - | - | - | - | - | - | -           | - | 26.7   | -               | -              | -               | - | - | - |
| WOON 2018 | Obese       | - | - | - | - | - | - | -           | - | 35.5   | -               | -              | -               | - | - | - |
|           | Underweight | - | - | - | - | - | - | -           | - | 29.6   | -               | -              | -               | - | - | - |



Figure 2a: AKI and Overweight.



Figure 2b: AKI and Obese.



## **Austin Publishing Group**



Figure 3a: AKI stage 1 and Overweight.

| Study or Subgroup<br>Argalious 2017 | Events<br>110          | Total<br>5271       | Events       | Total   | Weight              | M.H. Random, 95% Cl    | M U Dandom 05% Cl                   |
|-------------------------------------|------------------------|---------------------|--------------|---------|---------------------|------------------------|-------------------------------------|
| Argalious 2017                      | 110                    | 5271                | 27           |         |                     | M-ri, runuoni, oo a or | M-H, Kanuolii, 90% Ci               |
|                                     | 264                    |                     | 27           | 1500    | 13.2%               | 1.16 [0.76, 1.78]      | - <b>-</b> -                        |
| MacLaughlin 2021                    | 204                    | 396                 | 100          | 134     | 12.8%               | 0.68 [0.44, 1.06]      |                                     |
| Pedersen 2016                       | 92                     | 782                 | 572          | 6588    | 17.8%               | 1.40 [1.11, 1.77]      | -                                   |
| Sabaz 2021                          | 57                     | 888                 | 98           | 1801    | 15.3%               | 1.19 [0.85, 1.67]      |                                     |
| Wang 2021                           | 920                    | 5029                | 1079         | 4683    | 20.3%               | 0.75 [0.68, 0.83]      | -                                   |
| Zhou 2020                           | 4                      | 14                  | 46           | 136     | 3.6%                | 0.78 [0.23, 2.63]      |                                     |
| Zou 2017                            | 223                    | 324                 | 1010         | 1368    | 17.1%               | 0.78 [0.60, 1.02]      | -                                   |
| Total (95% CI)                      |                        | 12704               |              | 16210   | 100.0%              | 0.95 [0.74, 1.22]      | •                                   |
| Total events                        | 1670                   |                     | 2932         |         |                     |                        |                                     |
| Heterogeneity: Tau² =               | 0.08; Chi <sup>a</sup> | <sup>2</sup> = 31.3 | 6, df = 6 (P | < 0.000 | 1); <b>I</b> ² = 81 | %                      |                                     |
| Test for overall effect:            | Z = 0.40 (I            | P = 0.69            | 0            |         |                     | Fa                     | avours experimental Favours control |

Figure 3b: AKI stage 1 and Obese.



Figure 3c: AKI stage 1 and Underweight.

group (eight studies) was statistically insignificant more likely to develop AKI stage 2, OR was 1.24, 95% CI: 0.96 to 1.61, P=0.1. A substantial, considerable, and substantial heterogeneity with  $I^2=73\%$ , P=0.001,  $I^2=98\%$ , P=0.00001, and  $I^2=78\%$ , P=0.0001 were found in underweight, overweight, and obese group respectively (Figure 4a-4c).

**BMI and AKI stage 3:** The pooled results of BMI and AKI stage 3 of seven studies show that obese population were more likely to develop AKI stage 3 with OR 1.27, 95% CI: 1.06 to 1.51, P=0.008. The other subgroups are also more likely to develop AKI stage 3, but not statistically significant, OR in underweight (seven included studies) and overweight (eight included studies) group were 1.08, 95% CI: 0.71 to 1.65, P=0.72 and 1.06, 95% CI: 0.90, 1.25, P=0.47, respectively. The studies are associated with moderate, moderate to substantial, and substantial heterogeneity with I<sup>2</sup>=60%, P=0.02, I<sup>2</sup>=60%, P=0.02, and I<sup>2</sup>=62%, P=0.01 in obese, underweight, and overweight group respectively (Figure 5a-5c).

**BMI and AKI stage 2-3:** There was only one study which analyzed the association of BMI and AKI stage 2-3 development. The study

showed that underweight population were more likely to develop AKI stage 2-3, OR was 1.4, 95% CI: 1.04 to 1.88, P=0.02. Moreover, the overweight and obese population were more likely to develop AKI stage 2-3, but not statistically significant, ORs were 1.08, 95% CI: 0.89 to 1.30, p=0.43 and 1.28, 95% CI: 0.98, 1.66, P=0.07 (Figure 6a-6c).

Table 4: Percentage of Comorbidities and BMI

| Comorbidities     | Sub-group     | Event | Total | Percentage |
|-------------------|---------------|-------|-------|------------|
|                   | Underweight   | 335   | 1683  | 19.90%     |
|                   | Normal-weight | 4010  | 14885 | 26.90%     |
| Hypertension      | Overweight    | 3996  | 12705 | 31.40%     |
|                   | Obese         | 6771  | 14650 | 46.20%     |
|                   | Total         | 15112 | 43923 | 34.40%     |
|                   | Underweight   | 154   | 2577  | 5.90%      |
|                   | Normal-weight | 2246  | 16786 | 13.30%     |
| Diabetes mellitus | Overweight    | 2071  | 10390 | 19.90%     |
|                   | Obese         | 3576  | 10403 | 34.30%     |
|                   | Total         | 8047  | 40156 | 20.03%     |

## **Austin Publishing Group**



Figure 4a: AKI stage 2 and Underweight.

|                                   | Overw     | eight                 | Normal v     | veight   |                        | Odds Ratio          | Odds Ratio          |
|-----------------------------------|-----------|-----------------------|--------------|----------|------------------------|---------------------|---------------------|
| Study or Subgroup                 | Events    | Total                 | Events       | Total    | Weight                 | M-H, Random, 95% Cl | M-H, Random, 95% Cl |
| Argalious 2017                    | 8         | 1672                  | 5            | 1500     | 9.7%                   | 1.44 [0.47, 4.40]   | <b>+</b> •          |
| MacLaughlin 2021                  | 25        | 223                   | 18           | 134      | 12.0%                  | 0.81 [0.43, 1.56]   |                     |
| Pedersen 2016                     | 69        | 2769                  | 158          | 6588     | 13.2%                  | 1.04 [0.78, 1.38]   | +                   |
| Sabaz 2021                        | 185       | 1770                  | 156          | 1801     | 13.3%                  | 1.23 [0.98, 1.54]   | -                   |
| Nang 2019                         | 67        | 224                   | 122          | 401      | 13.0%                  | 0.98 [0.68, 1.39]   | +                   |
| Nang 2021                         | 749       | 15084                 | 786          | 4683     | 13.5%                  | 0.26 [0.23, 0.29]   | •                   |
| Zhou 2020                         | 21        | 86                    | 26           | 136      | 12.0%                  | 1.37 [0.71, 2.62]   | - <b>+</b>          |
| Zou 2017                          | 154       | 922                   | 205          | 1368     | 13.3%                  | 1.14 [0.91, 1.43]   | +                   |
| fotal (95% CI)                    |           | 22750                 |              | 16611    | 100.0%                 | 0.92 [0.47, 1.77]   | •                   |
| Fotal events                      | 1278      |                       | 1476         |          |                        |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = | 0.83; Ch  | i <sup>z</sup> = 314. | 09, df = 7 ( | P < 0.00 | 001); I <sup>z</sup> = | 98% !               |                     |
| Fest for overall effect:          | Z= 0.26 ( | (P = 0.79)            | ກໍ່ `        |          |                        |                     | U.U1 U.1 1 10 100   |

Figure 4b: AKI stage 2 and Overweight.

|                                   | Obes                   | e                    | Normal v     | veight  |             | Odds Ratio          | Odds Ratio                          |
|-----------------------------------|------------------------|----------------------|--------------|---------|-------------|---------------------|-------------------------------------|
| Study or Subgroup                 | Events                 | Total                | Events       | Total   | Weight      | M-H, Random, 95% Cl | M-H, Random, 95% Cl                 |
| Argalious 2017                    | 28                     | 5271                 | 5            | 1500    | 5.4%        | 1.60 [0.62, 4.14]   | - <b>+•</b>                         |
| /lacLaughlin 2021                 | 75                     | 396                  | 18           | 134     | 10.4%       | 1.51 [0.86, 2.63]   | +                                   |
| Pedersen 2016                     | 33                     | 782                  | 158          | 6588    | 13.9%       | 1.79 [1.22, 2.63]   |                                     |
| Sabaz 2021                        | 101                    | 888                  | 156          | 1801    | 16.5%       | 1.35 [1.04, 1.76]   | -                                   |
| Vang 2019                         | 90                     | 405                  | 122          | 401     | 15.3%       | 0.65 [0.48, 0.90]   |                                     |
| Vang 2021                         | 811                    | 5029                 | 786          | 4683    | 19.2%       | 0.95 [0.86, 1.06]   | +                                   |
| Zhou 2020                         | 5                      | 14                   | 26           | 136     | 3.9%        | 2.35 [0.73, 7.60]   | +                                   |
| Zou 2017                          | 67                     | 324                  | 205          | 1368    | 15.5%       | 1.48 [1.09, 2.01]   |                                     |
| iotal (95% Cl)                    |                        | 13109                |              | 16611   | 100.0%      | 1.24 [0.96, 1.61]   | •                                   |
| Fotal events                      | 1210                   |                      | 1476         |         |             |                     |                                     |
| Heterogeneity: Tau <sup>2</sup> = | 0.09; Chi <sup>a</sup> | <sup>2</sup> = 31.71 | 7, df = 7 (P | < 0.000 | 1); l² = 78 | %                   |                                     |
| Fest for overall effect:          | Z = 1.65 (I            | P = 0.10             | )            |         |             | F                   | avours experimental Favours control |

## BMI and AKI patients with clinical outcomes

Figur

**BMI and AKI mortality:** The study showed that underweight population were more likely to experience AKI mortality, OR was 1.44, 95% CI: 1.04 to 2.00, P=0.03. However, overweight and obese population which were less likely to be associated with AKI mortality, even it was statistically insignificant, ORs were 0.73, 95% CI: 0.53 to 1.01, P=0.05 and 0.71, 95% CI: 0.40 to 1.27, P=0.24 respectively. A minimal, and substantial heterogeneity with I<sup>2</sup>=0%, P=0.46, I<sup>2</sup>=22%, P=0.26, and I<sup>2</sup>=82%, P=0.02 were found in underweight, overweight, and obese group respectively (Figure 7a-7c).

**BMI and LOS in ICU:** The pooled results of two included studies show that 31% of obese patients stay in ICU for a short period of time compared to normal-weight group, OR 0.69, 95% CI: 0.37 to 1.01, p=0.0001. Similarly, underweight (four studies) and overweight (three) group were also more likely to stay in ICU for short time compared to normal-weight, but it was no statistically significant, OR: 0.25, 95% CI: -0.86 to 1.36, p=0.66 and -1.0, 95% CI: -3.23 to

1.23, p=0.38, respectively. There was A minimal, and moderate heterogeneity with  $I^2=0\%$ , P=0.84,  $I^2=9\%$ , P=0.35, and  $I^2=58\%$ , P=0.09 were found in obese underweight, and overweight group respectively (Figure 8a-8c).

**BMI and LOS in hospital:** Compared with normal weight group, findings of four included studies (statistically insignificant) reveal that 96% of underweight are not associated with LOS in hospital with OR of 0.04, 95% CI: -1.79 to 1.87, P=0.96. Moreover, results of three

Table 5: Incidence of AKI in sub-groups.

| Sub-group     | Event (AKI) | Total | Percentage |
|---------------|-------------|-------|------------|
| Underweight   | 429         | 2404  | 18%        |
| Normal-weight | 4184        | 16441 | 25.40%     |
| Overweight    | 3064        | 10157 | 30.10%     |
| Obese         | 2393        | 11412 | 21%        |
| Overall total | 10070       | 40414 | 24.90%     |

### **Austin Publishing Group**



Figure 5a: AKI stage 3 and Obese.

|                                   | Underw                 | eight                | Normal w     | veight   |                  | Odds Ratio                               | Odds Ratio                         |
|-----------------------------------|------------------------|----------------------|--------------|----------|------------------|------------------------------------------|------------------------------------|
| Study or Subgroup                 | Events                 | Total                | Events       | Total    | Weight           | M-H, Random, 95% Cl                      | M-H, Random, 95% Cl                |
| Argalious 2017                    | 0                      | 100                  | 2            | 1500     | 1.8%             | 2.98 [0.14, 62.53]                       |                                    |
| MacLaughlin 2021                  | 1                      | 16                   | 16           | 134      | 3.6%             | 0.49 [0.06, 3.98]                        |                                    |
| Pedersen 2016                     | 10                     | 1272                 | 52           | 6588     | 17.8%            | 1.00 [0.50, 1.96]                        | -+-                                |
| Wang 2019                         | 76                     | 90                   | 279          | 401      | 19.6%            | 2.37 [1.29, 4.36]                        | _ <b></b>                          |
| Wang 2021                         | 199                    | 378                  | 2818         | 4683     | 30.5%            | 0.74 [0.60, 0.91]                        | -                                  |
| Zhou 2020                         | 0                      | 8                    | 13           | 136      | 2.0%             | 0.54 [0.03, 9.85]                        |                                    |
| Zou 2017                          | 29                     | 241                  | 153          | 1368     | 24.8%            | 1.09 [0.71, 1.66]                        | +                                  |
| Total (95% CI)                    |                        | 2105                 |              | 14810    | 100.0%           | 1.08 [0.71, 1.65]                        | ★                                  |
| Total events                      | 315                    |                      | 3333         |          |                  |                                          |                                    |
| Heterogeneity: Tau <sup>2</sup> = | 0.14; Chi <sup>a</sup> | <sup>2</sup> = 15.14 | 4, df = 6 (P | = 0.02); | I <b>≈</b> = 60% | t, i i i i i i i i i i i i i i i i i i i |                                    |
| Test for overall effect:          | Z = 0.36 (I            | P = 0.72             | 0            |          |                  | Fa                                       | vours experimental Favours control |

Figure 5b: AKI stage 3 and Underweight.

| Study or Subgroup         Events         Total         Events         Total         Weight         M-H, Random, 95% Cl         M-H, Random, 95% Cl           Argalious 2017         3         1672         2         1500         0.8%         1.35 [0.22, 8.07]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | Overwe     | eight               | Normal w     | veight   |                      | Odds Ratio         | Odds Ratio                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------|---------------------|--------------|----------|----------------------|--------------------|-----------------------------------------------------------|
| Argalious 2017       3       1672       2       1500       0.8%       1.35       [0.22, 8.07]         MacLaughlin 2021       24       223       16       134       4.9%       0.89       [0.45, 1.74]         Pedersen 2016       27       2769       52       6588       8.6%       1.24       [0.78, 1.97]         Sabaz 2021       846       1770       918       1801       25.0%       0.88       [0.77, 1.00]         Wang 2019       157       224       279       401       12.3%       1.02       [0.72, 1.46]         Wang 2021       3216       5084       2818       4683       2.7.8%       1.14       [1.05, 1.24]       -         Zhou 2020       20       86       13       136       4.0%       2.87       [1.34, 6.13]       -         Zou 2017       101       922       153       1368       16.6%       0.98       [0.75, 1.28]       -         fotal (95% Cl)       12750       16611       100.0%       1.06       [0.90, 1.25]       -         Fotal events       4394       4251       -       -       -       -       -       -         Heterogeneity: Tau <sup>2</sup> = 0.02; Chi <sup>2</sup> = 18.39, df = 7 (P = 0.01); I <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Study or Subgroup                 | Events     | Total               | Events       | Total    | Weight               | M-H, Random, 95% C | I M-H, Random, 95% Cl                                     |
| MacLaughlin 2021       24       223       16       134       4.9%       0.89 [0.45, 1.74]         Pedersen 2016       27       2769       52       6588       8.6%       1.24 [0.78, 1.97]         Sabaz 2021       846       1770       918       1801       25.0%       0.88 [0.77, 1.00]         Wang 2019       157       224       279       401       12.3%       1.02 [0.72, 1.46]         Wang 2021       3216       5084       2818       4683       27.8%       1.14 [1.05, 1.24]         Zhou 2020       20       86       13       136       4.0%       2.87 [1.34, 6.13]         Zou 2017       101       922       153       1368       16.6%       0.98 [0.75, 1.28]         Fotal (95% CI)       12750       16611       100.0%       1.06 [0.90, 1.25]         Fotal events       4394       4251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Argalious 2017                    | 3          | 1672                | 2            | 1500     | 0.8%                 | 1.35 [0.22, 8.07   | "]                                                        |
| Pedersen 2016       27       2769       52       6588       8.6%       1.24 [0.78, 1.97]         Sabaz 2021       846       1770       918       1801       25.0%       0.88 [0.77, 1.00]         Wang 2019       157       224       279       401       12.3%       1.02 [0.72, 1.46]         Wang 2021       3216       5084       2818       4683       27.8%       1.14 [1.05, 1.24]         Zhou 2020       20       86       13       136       4.0%       2.87 [1.34, 6.13]         Zou 2017       101       922       153       1368       16.6%       0.98 [0.75, 1.28]         Total (95% CI)       12750       16611       100.0%       1.06 [0.90, 1.25]         Fotal events       4394       4251       4251         Heterogeneity: Tau <sup>2</sup> = 0.02; Chi <sup>2</sup> = 18.39, df = 7 (P = 0.01); i <sup>2</sup> = 62%       0.01       0.4       1.0       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MacLaughlin 2021                  | 24         | 223                 | 16           | 134      | 4.9%                 | 0.89 [0.45, 1.74   | l] ————————————————————————————————————                   |
| Sabaz 2021       846       1770       918       1801       25.0%       0.88 [0.77, 1.00]         Wang 2019       157       224       279       401       12.3%       1.02 [0.72, 1.46]         Wang 2021       3216       5084       2818       4683       27.8%       1.14 [1.05, 1.24]         Zhou 2020       20       86       13       136       4.0%       2.87 [1.34, 6.13]         Zou 2017       101       922       153       1368       16.6%       0.98 [0.75, 1.28]         fotal (95% Cl)       12750       16611       100.0%       1.06 [0.90, 1.25]         Fotal events       4394       4251       4251         Heterogeneity: Tau <sup>2</sup> = 0.02; Chi <sup>2</sup> = 18.39, df = 7 (P = 0.01); I <sup>2</sup> = 62%       0.01       0.4       1.0       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pedersen 2016                     | 27         | 2769                | 52           | 6588     | 8.6%                 | 1.24 [0.78, 1.97   | "] <del> -</del>                                          |
| Wang 2019       157       224       279       401       12.3%       1.02 [0.72, 1.46]         Wang 2021       3216       5084       2818       4683       27.8%       1.14 [1.05, 1.24]         Zhou 2020       20       86       13       136       4.0%       2.87 [1.34, 6.13]         Zou 2017       101       922       153       1368       16.6%       0.98 [0.75, 1.28]         Total (95% CI)       12750       16611       100.0%       1.06 [0.90, 1.25]         Fotal events       4394       4251         Heterogeneity: Tau <sup>2</sup> = 0.02; Chi <sup>2</sup> = 18.39, df = 7 (P = 0.01); l <sup>2</sup> = 62%       0.01       0.4       1.0       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sabaz 2021                        | 846        | 1770                | 918          | 1801     | 25.0%                | 0.88 [0.77, 1.00   | uj 🗧                                                      |
| Wang 2021       3216       5084       2818       4683       27.8%       1.14 [1.05, 1.24]         Zhou 2020       20       86       13       136       4.0%       2.87 [1.34, 6.13]         Zou 2017       101       922       153       1368       16.6%       0.98 [0.75, 1.28]         Fotal (95% CI)       12750       16611       100.0%       1.06 [0.90, 1.25]         Fotal events       4394       4251         Heterogeneity: Tau <sup>2</sup> = 0.02; Chi <sup>2</sup> = 18.39, df = 7 (P = 0.01); i <sup>2</sup> = 62%       0.01       0.4       1.0       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Wang 2019                         | 157        | 224                 | 279          | 401      | 12.3%                | 1.02 [0.72, 1.46   | 5] +                                                      |
| Zhou 2020       20       86       13       136       4.0%       2.87 [1.34, 6.13]         Zou 2017       101       922       153       1368       16.6%       0.98 [0.75, 1.28]         Fotal (95% Cl)       12750       16611       100.0%       1.06 [0.90, 1.25]         Fotal events       4394       4251         Heterogeneity: Tau <sup>2</sup> = 0.02; Chi <sup>2</sup> = 18.39, df = 7 (P = 0.01); l <sup>2</sup> = 62%       0.01       0.4       10       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wang 2021                         | 3216       | 5084                | 2818         | 4683     | 27.8%                | 1.14 [1.05, 1.24   | •]                                                        |
| Zou 2017       101       922       153       1368       16.6%       0.98 [0.75, 1.28]         Fotal (95% CI)       12750       16611       100.0%       1.06 [0.90, 1.25]         Total events       4394       4251         Heterogeneity: Tau <sup>2</sup> = 0.02; Chi <sup>2</sup> = 18.39, df = 7 (P = 0.01); l <sup>2</sup> = 62%       0.01       0.4       10       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Zhou 2020                         | 20         | 86                  | 13           | 136      | 4.0%                 | 2.87 [1.34, 6.13   | 3]                                                        |
| Interference         Image: Second state | Zou 2017                          | 101        | 922                 | 153          | 1368     | 16.6%                | 0.98 [0.75, 1.28   | 3] 🛉                                                      |
| Fotal events         4394         4251           Heterogeneity: Tau <sup>2</sup> = 0.02; Chi <sup>2</sup> = 18.39, df = 7 (P = 0.01); l <sup>2</sup> = 62%         0.01         0.1         1         1.0         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total (95% CI)                    |            | 12750               |              | 16611    | 100.0%               | 1.06 [0.90, 1.25   | a 🔶                                                       |
| Heterogeneity: Tau <sup>2</sup> = 0.02; Chi <sup>2</sup> = 18.39, df = 7 (P = 0.01); l <sup>2</sup> = 62%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total events                      | 4394       |                     | 4251         |          |                      |                    |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heterogeneity: Tau <sup>2</sup> = | 0.02; Chi  | <sup>2</sup> = 18.3 | 9, df = 7 (P | = 0.01); | l <sup>≈</sup> = 62% |                    |                                                           |
| Fest for overall effect: Z = 0.73 (P = 0.47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Test for overall effect:          | Z = 0.73 ( | P = 0.47            | n'           |          |                      |                    | 0.01 0.1 1 10 100<br>Eavoure experimental Eavoure control |

Figure 5c: AKI stage 3 and Overweight.

|                         | Under w     | eigni    | Numarw | reigni |        | Odus Radu           | Odus P      | auu       |
|-------------------------|-------------|----------|--------|--------|--------|---------------------|-------------|-----------|
| Study or Subgroup       | Events      | Total    | Events | Total  | Weight | M-H, Random, 95% Cl | M-H, Randor | n, 95% Cl |
| Zou 2017                | 80          | 241      | 358    | 1368   | 100.0% | 1.40 [1.04, 1.88]   |             |           |
| Total (95% CI)          |             | 241      |        | 1368   | 100.0% | 1.40 [1.04, 1.88]   |             | •         |
| Total events            | 80          |          | 358    |        |        |                     |             |           |
| Heterogeneity: Not ap   | oplicable   |          |        |        |        |                     |             |           |
| Test for overall effect | Z = 2.25 (I | P = 0.02 | )      |        |        | 50                  | U.U1 U.1 1  | 10 100    |

Figure 6a: AKI stage 2-3 and Underweight.

|                                                                   | Overweig                       | ght    | Normal w  | eight |        | Odds Ratio          | Odds Ratio                                                  |
|-------------------------------------------------------------------|--------------------------------|--------|-----------|-------|--------|---------------------|-------------------------------------------------------------|
| Study or Subgroup                                                 | Events                         | Total  | Events    | Total | Weight | M-H, Random, 95% Cl | M-H, Random, 95% Cl                                         |
| Zou 2017                                                          | 255                            | 922    | 358       | 1368  | 100.0% | 1.08 [0.89, 1.30]   |                                                             |
| Total (95% CI)                                                    |                                | 922    |           | 1368  | 100.0% | 1.08 [0.89, 1.30]   | +                                                           |
| Total events<br>Heterogeneity: Not ap<br>Test for overall effect: | 255<br>plicable<br>Z = 0.79 (P | = 0.43 | 358<br>3) |       |        | F                   | 0.01 0.1 1 1 10 100<br>Favours experimental Favours control |
| 6b: AKI stage 2-3 and Overv                                       | weight.                        |        |           |       |        |                     |                                                             |

included studies show that 73% of overweight patients were less likely to stay in hospital for long time compared with normal-weight group, OR was 0.27, 95% CI: -0.83 to 1.38, P=0.63. However, two included

studies show that there was no difference of LOS in hospital for obese group compared with normal-weight group, OR was 1.0, 95% CI: 0.62 to 1.38, P=0.0001. There was substantial, and minimal heterogeneity

## **Austin Publishing Group**

|                         | Obes         |           | Normarw | reigini |        | Ouus Ratio          | Ouus Nauo                         |
|-------------------------|--------------|-----------|---------|---------|--------|---------------------|-----------------------------------|
| Study or Subgroup       | Events       | Total     | Events  | Total   | Weight | M-H, Random, 95% Cl | M-H, Random, 95% Cl               |
| Zou 2017                | 101          | 324       | 358     | 1368    | 100.0% | 1.28 [0.98, 1.66]   |                                   |
| Total (95% Cl)          |              | 324       |         | 1368    | 100.0% | 1.28 [0.98, 1.66]   | ◆                                 |
| Total events            | 101          |           | 358     |         |        |                     |                                   |
| Heterogeneity: Not a    | pplicable    |           |         |         |        | L. L.               |                                   |
| Test for overall effect | : Z = 1.82 ( | (P = 0.0) | 7)      |         |        | U<br>Fav            | Auro experimental Eavours control |

Figure 6c: AKI stage 2-3 and Obese.

| Study or Subaroup                 | Evonte                   | Total                | Evonte      | Total                 | Mojabt | M H Bandom, 05% Cl   | M H Bandom 95% Cl  |
|-----------------------------------|--------------------------|----------------------|-------------|-----------------------|--------|----------------------|--------------------|
| Study of Subgroup                 | LYGING                   | Total                | Lyonda      | Total                 | Togic  | W-H, Fallaoh, 55% CF | WH, random, 55% Cr |
| Pedersen 2016                     | 24                       | 1272                 | 97          | 6588                  | 53.6%  | 1.29 [0.82, 2.02]    |                    |
| Zou 2017                          | 23                       | 241                  | 82          | 1368                  | 46.4%  | 1.65 [1.02, 2.69]    |                    |
| Total (95% CI)                    |                          | 1513                 |             | 7956                  | 100.0% | 1.45 [1.04, 2.01]    | ◆                  |
| Total events                      | 47                       |                      | 179         |                       |        |                      |                    |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; Chi <sup>a</sup> | <sup>e</sup> = 0.55, | df = 1 (P = | 0.46); I <sup>z</sup> | = 0%   | F                    |                    |
| Teet for overall effect:          | 7 - 210/1                | - n n .              | \ ·         |                       | U      | 1.01 0.1 1 10 100    |                    |

Figure 7a: AKI mortality and Underweight.

| Study or Subgroup               | Events      | Total               | Events        | Total      | Weight        | M-H, Random, 95% Cl | M-H, Random, 95% Cl |
|---------------------------------|-------------|---------------------|---------------|------------|---------------|---------------------|---------------------|
| Pedersen 2016                   | 35          | 2769                | 97            | 6588       | 51.5%         | 0.86 [0.58, 1.26]   | -                   |
| Zou 2017                        | 35          | 922                 | 82            | 1368       | 48.5%         | 0.62 [0.41, 0.93]   |                     |
| Total (95% CI)                  |             | 3691                |               | 7956       | 100.0%        | 0.73 [0.53, 1.01]   | •                   |
| Total events                    | 70          |                     | 179           |            |               |                     |                     |
| Heterogeneity: Tau <sup>2</sup> | = 0.01; Chi | <sup>2</sup> = 1.29 | , df = 1 (P = | = 0.26); I | <b>≈</b> =22% | Ę                   |                     |

Figure 7b: AKI mortality and Overweight.

|                                   | Obes     | e                    | Normal w     | eight    |          | Odds Ratio          | Odds Ratio                       |
|-----------------------------------|----------|----------------------|--------------|----------|----------|---------------------|----------------------------------|
| Study or Subgroup                 | Events   | Total                | Events       | Total    | Weight   | M-H, Random, 95% Cl | M-H, Random, 95% Cl              |
| Pedersen 2016                     | 20       | 782                  | 97           | 6588     | 51.5%    | 1.76 [1.08, 2.86]   |                                  |
| Zou 2017                          | 14       | 324                  | 82           | 1368     | 48.5%    | 0.71 [0.40, 1.27]   |                                  |
| Total (95% CI)                    |          | 1106                 |              | 7956     | 100.0%   | 1.13 [0.46, 2.78]   | -                                |
| Total events                      | 34       |                      | 179          |          |          |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | 0.35; Ch | i <sup>2</sup> = 5.6 | 5, df = 1 (P | = 0.02); | I≊ = 82% | <u> </u>            |                                  |
| Test for overall effect:          | Z = 0.27 | (P = 0.7             | 9)           |          |          | Favou               | ars experimental Favours control |

Figure 7c: AKI mortality and Obese.

|                                   | 0        | bese            |          | Norm       | al wei | ght             |        | Mean Difference    | Mean Difference                     |  |  |
|-----------------------------------|----------|-----------------|----------|------------|--------|-----------------|--------|--------------------|-------------------------------------|--|--|
| Study or Subgroup                 | Mean     | SD              | Total    | Mean       | SD     | Total           | Weight | IV, Random, 95% Cl | IV, Random, 95% Cl                  |  |  |
| Wang 2021                         | 6.65     | 8.31            | 5029     | 5.96       | 7.7    | 4683            | 99.8%  | 0.69 [0.37, 1.01]  |                                     |  |  |
| Zou 2017                          | 40       | 54.8            | 324      | 40         | 50.3   | 1368            | 0.2%   | 0.00 [-6.54, 6.54] | Ŧ                                   |  |  |
| Total (95% CI)                    |          |                 | 5353     |            |        | 6051            | 100.0% | 0.69 [0.37, 1.01]  |                                     |  |  |
| Heterogeneity: Tau <sup>z</sup> = | 0.00; C  | hi <b>²</b> = 0 | .04, df= | = 1 (P = 1 | 0.84); | I <b>≈</b> = 0% |        |                    |                                     |  |  |
| Test for overall effect:          | Z = 4.24 | (P < 0          | 0.0001)  |            |        |                 |        | F                  | avours experimental Favours control |  |  |

Figure 8a: LOS in ICU and Obese.



#### Figure 8b: LOS in ICU and Underweight.

| Study or Subgroup               | Mean      | SD       | Total   | Mean     | SD      | Total          | Weight | IV, Random, 95% Cl   | IV, Random, 95% Cl |
|---------------------------------|-----------|----------|---------|----------|---------|----------------|--------|----------------------|--------------------|
| Ju 2018                         | 6.9       | 9.8      | 80      | 10.3     | 21      | 286            | 25.6%  | -3.40 [-6.65, -0.15] |                    |
| Wang 2021                       | 6.07      | 8.14     | 5084    | 5.96     | 7.7     | 4683           | 55.2%  | 0.11 [-0.20, 0.42]   |                    |
| Zou 2017                        | 39        | 48.8     | 922     | 40       | 50.3    | 1368           | 19.2%  | -1.00 [-5.13, 3.13]  | +                  |
| Total (95% CI)                  |           |          | 6086    |          |         | 6337           | 100.0% | -1.00 [-3.23, 1.23]  | •                  |
| Heterogeneity: Tau <sup>2</sup> | = 2.32; C | hi² = 4. | 71, df= | = 2 (P = | 0.09);1 | <b>≈</b> = 589 | 6      |                      |                    |

Figure 8c: LOS in ICU and Overweight.

## **Austin Publishing Group**



Figure 9a: LOS in Hospital and Underweight.

|                                   | Ove      | rweig            | ht      | Norm    | al wei  | ght                   |        | Mean Difference       | Mean Difference                      |
|-----------------------------------|----------|------------------|---------|---------|---------|-----------------------|--------|-----------------------|--------------------------------------|
| Study or Subgroup                 | Mean     | SD               | Total   | Mean    | SD      | Total                 | Weight | IV, Random, 95% Cl    | I IV, Random, 95% Cl                 |
| Ju 2018                           | 19.2     | 22.2             | 80      | 26.6    | 37.5    | 286                   | 2.7%   | -7.40 [-13.92, -0.88] | ]                                    |
| Pedersen 2016                     | 10       | 5.9              | 2769    | 10      | 6.6     | 6588                  | 49.9%  | 0.00 [-0.27, 0.27]    | ] 📫                                  |
| Zou 2017                          | 14       | 5.1              | 922     | 13      | 5.9     | 1368                  | 47.4%  | 1.00 [0.55, 1.45]     | ] 🛉                                  |
| Total (95% CI)                    |          |                  | 3771    |         |         | 8242                  | 100.0% | 0.27 [-0.83, 1.38]    | 1 1                                  |
| Heterogeneity: Tau <sup>2</sup> = | 0.62; C  | hi <b></b> ² = 1 | 9.02, d | f=2(P < | < 0.000 | 01); I <sup>z</sup> = | 89%    |                       |                                      |
| Test for overall effect:          | Z = 0.48 | ) (P = 0         | 0.63)   |         |         |                       |        |                       | Favours experimental Favours control |

Figure 9b: LOS in Hospital and Overweight.

| Pedersen 2016  | 11 | 0.0 |      |    |     |      |        |                   |                                          |
|----------------|----|-----|------|----|-----|------|--------|-------------------|------------------------------------------|
|                |    | 0.0 | 782  | 10 | 6.6 | 6588 | 61.4%  | 1.00 [0.51, 1.49] | le l |
| Zou 2017       | 14 | 5.1 | 324  | 13 | 5.1 | 1368 | 38.6%  | 1.00 [0.38, 1.62] | +                                        |
| Total (95% CI) |    |     | 1106 |    |     | 7956 | 100.0% | 1.00 [0.62, 1.38] |                                          |

Figure 9c: LOS in Hospital and Obese.

|                                   | Unde     | erweig           | iht     | Norma     | al Weig | ght    |          | Mean Difference         | Mean Difference                     |
|-----------------------------------|----------|------------------|---------|-----------|---------|--------|----------|-------------------------|-------------------------------------|
| Study or Subgroup                 | Mean     | SD               | Total   | Mean      | SD      | Total  | Weight   | IV, Random, 95% Cl      | IV, Random, 95% Cl                  |
| Argalious 2017                    | 1        | 1                | 100     | 9         | 0.6     | 1500   | 36.2%    | -8.00 [-8.20, -7.80]    |                                     |
| Ju 2018                           | 48       | 47.1             | 102     | 121       | 42.3    | 286    | 28.0%    | -73.00 [-83.37, -62.63] |                                     |
| Park 2017                         | 2        | 5.4              | 37      | 2         | 2.7     | 74     | 35.8%    | 0.00 [-1.85, 1.85]      | •                                   |
| Total (95% Cl)                    |          |                  | 239     |           |         | 1860   | 100.0%   | -23.33 [-34.87, -11.79] | •                                   |
| Heterogeneity: Tau <sup>2</sup> = | 95.89; ( | Chi <b>²</b> = ∶ | 222.59  | df = 2 (f | P < 0.0 | 0001); | l² = 99% |                         |                                     |
| Test for overall effect:          | Z = 3.96 | i (P < 0         | 0.0001) |           |         |        |          | F                       | avours experimental Favours control |

Figure 10a: Hospital mortality and Underweight.

|                                   | over     | weig                | ht              | Norm       | al Weig | ght    |                   | Mean Difference         | Mean Difference                      |
|-----------------------------------|----------|---------------------|-----------------|------------|---------|--------|-------------------|-------------------------|--------------------------------------|
| Study or Subgroup                 | Mean     | SD                  | Total           | Mean       | SD      | Total  | Weight            | IV, Random, 95% Cl      | IV, Random, 95% Cl                   |
| Argalious 2017                    | 9        | 0.5                 | 1672            | 9          | 0.6     | 1500   | 50.5%             | 0.00 [-0.04, 0.04]      |                                      |
| Ju 2018                           | 40       | 50                  | 40              | 121        | 42.3    | 286    | 49.5%             | -81.00 [-97.25, -64.75] |                                      |
| Total (95% CI)                    |          |                     | 1712            |            |         | 1786   | 100.0%            | -40.08 [-119.45, 39.30] |                                      |
| Heterogeneity: Tau <sup>2</sup> = | 3246.12  | 2; Chi <sup>a</sup> | <b>*</b> = 95.4 | l2, df = 1 | (P < 0  | .00001 | ); I <b>=</b> 999 | 6                       |                                      |
| Test for overall effect:          | Z = 0.99 | (P = 1              | 0.32)           |            |         |        |                   | F                       | Favours experimental Favours control |

Figure 10b: Hospital mortality and Overweight.



with  $I^2$ =85%, P=0.0002,  $I^2$ =89%, P=0.0001 and  $I^2$ =0%, P=1 were found in underweight, and overweight group respectively (Figure 9a-9c).

BMI and hospital mortality: Results from three included studies in underweight group and one study in obese group show

that there were less associated with hospital mortality compared to normal weight group, OR was -23.33, 95% CI: -34.87 to -11.79, p=0.0001 and -4, 95% CI: -4.04 to -3.96, P=0.00001 respectively. There was considerable heterogeneity among these included cohorts

in underweight group with I<sup>2</sup>=99%, P=0.0001. The findings from two included cohorts show that overweight was also less associated with hospital mortality, but not statistically significant, OR: -40.08, 95% CI: -119.45 to 39.30, P=0.32. The heterogeneity was considerable with I<sup>2</sup>=99%, P=0.00001. There one study included in this meta-analysis showed that the number of hospital mortality in obese population was lesser compared normal weight group, OR: -4.0, 95% CI of -4.04 to -3.96, p=0.00001, heterogeneity is not applicable (Figure 10a-10c).

# **Discussion**

Current review introduces the possibility of obesity paradox in AKI, where higher BMI is associated with AKI morbidity, while underweight group is associated with AKI mortality.

Based on the meta-analysis results, AKI incidence was 24.9% and higher AKI incidence in subgroup was 30.1% in overweight, while based systematic analysis, findings demonstrate that the highest incidence of AKI was 92.8% in obese group. These findings show that AKI incidence trend is associated with high BMI. AKI stages were not statistically associated with BMI, except AKI stage 2-3 was more likely to develop in underweight with OR of 1.4. Besides, AKI mortality rate was high in underweight group compared to normalweight group, while high incidence was associated with elevated BMI. The current findings are in the line with a retrospective study with 11,736 participants conducted in Australia, where morbid obese and overweight patients were 2.9 1.4 times more likely to develop renal failure and morbidity respectively. The findings of this study found that AKI mortality was not associated with high BMI [34]. Moreover, a cohort study carried out in Denmark from 2005-2011 with 13,529 participants shows that 17.9% were obese patients while 11.9% were normal-weight, nevertheless, AKI mortality was 23.1%, 14.1%, 10.7%, 15.2% in underweight, normal-weight, overweight, and obese patients respectively [35].

Although the higher BMI is accompanied with low rate of AKI mortality, much caution could be taken as the current systematic review reveals that high BMI is associated with different comorbidities (hypertension and diabetes mellitus), where percentage of hypertension in overweight and obese was 31.1% and 46.2% respectively, which are high compared to underweight (19.9%). Moreover, percentage of diabetes mellitus in overweight and obese was 19.9% and 34.3% respectively, which is also high compared with underweight (5.9%). Based on these comorbidities, recent studies have shown that hypertension and diabetes mellitus are associated with AKI in overweight and obese patients. For instance, a retrospective study carried out in Poland with 215 patients shows that among 70% of patients with hypertension were associated with 85%, 75%, and 30% of post-renal AKI, renal AKI, and pre-renal AKI respectively [36]. Besides, Worldwide Acute Kidney Injury Epidemiology in Neonates (AWAKEN) database was used to collect the data in the study enrolled 2162 neonates, where the overall AKI was 29.9% with the association of hypertension over 41.2% compared to 26.2% of control group [37]. Nevertheless, it has been shown that hemoglobin A1c more than 9% is associated with AKI with OR of 1.29, 95% CI: 1.18-1.41 up to 1.33, 95% CI: 1.13-1.57 compared with baseline A1c of 6-6.9% [38]. Moreover, a cohort study of 16,700 participants shows that 48.6% of diabetes patients versus 17.2% controls are more likely to develop AKI [39]. Based on these findings, there might be a great impact of diabetes and hypertension on AKI development. Therefore, more studies are welcomed to reveal the association between these comorbidities and AKI, and related cellular mechanism behind. Moreover, particularly to the current results, it will be interesting to understand why and how low BMI induces AKI mortality in future.

Altogether, the link of low BMI and mortality for patients with AKI shows a more clinically useful observation, therefore clinicians should be especially vigilant when managing AKI risk.

The study was challenged with different limitations. For instance, BMI can be affected by different factors like ethnicity which can increase the heterogeneity [40]. Besides, different sample sizes contribute to the different power of the study which affects the pooled result and result in the study heterogeneity.

# Conclusion

Although high BMI is known to enhance the chronic kidney diseases, having a higher BMI might be associated with AKI morbidity, while low BMI might be associated with AKI mortality. More studies are recommended.

# Declaration

**Funding:** This work was supported by the National Natural Science Foundation of China (No.31371386 SP.J).

**Authors' contribution:** BN collected the data, analyzed and prepared the manuscript. BN, YG, and YJ organized the manuscript. WW and SJ supervised and revised the manuscript. All authors read and approve the final manuscript.

## References

- Bull CJ, Bell JA, Murphy N, Sanderson E, Davey Smith G, Timpson NJ, et al. Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study. BMC Med. 2020; 18: 396.
- Han C, Liu C, Geng J, Tang Y, Li Y, Wang Y, et al. Black and Green Tea Supplements Ameliorate Male Infertility in a Murine Model of Obesity. J Med Food. 2020; 23: 1303-1311.
- Teleka S, Jochems SHJ, Häggström C, Wood AM, Järvholm B, Orho-Melander M, et al. Association between blood pressure and BMI with bladder cancer risk and mortality in 340,000 men in three Swedish cohorts. Cancer Med. 2021; 10: 1431-1438.
- Qiao W, Zhang X, Kan B, Vuong AM, Xue S, Zhang Y, et al. Hypertension, BMI, and cardiovascular and cerebrovascular diseases. Open Med (Wars). 2021; 16: 149-155.
- Martin WP, Bauer J, Coleman J, Dellatorre-Teixeira L, Reeve JLV, Twomey PJ, et al. Obesity is common in chronic kidney disease and associates with greater antihypertensive usage and proteinuria: evidence from a crosssectional study in a tertiary nephrology centre. Clin Obes. 2020; 10: e12402.
- Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al; Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Body Mass Index). National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011; 377: 557-567.
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017; 390: 2627-2642.
- 8. Prevalence of Obesity. 2021.
- 9. Obesity and Overweight. 2021.

- Kompaniyets L, Goodman AB, Belay B, Freedman DS, Sucosky MS, Lange SJ, et al. Body Mass Index and Risk for COVID-19-Related Hospitalization, Intensive Care Unit Admission, Invasive Mechanical Ventilation, and Death -United States, March-December 2020. MMWR Morb Mortal Wkly Rep. 2021; 70: 355-361.
- 11. Muttarak R. Normalization of Plus Size and the Danger of Unseen Overweight and Obesity in England. Obesity (Silver Spring). 2018; 26: 1125-1129.
- Tsuboi N, Okabayashi Y, Shimizu A, Yokoo T. The Renal Pathology of Obesity. Kidney Int Rep. 2017; 2: 251-260.
- Sabaz MS, Aşar S, Sertçakacılar G, Sabaz N, Çukurova Z, Hergünsel GO. The effect of body mass index on the development of acute kidney injury and mortality in intensive care unit: Is obesity paradox valid? Ren Fail. 2021; 43: 543-555.
- 14. Caussy C, Pattou F, Wallet F, Simon C, Chalopin S, Telliam C, et al; COVID Outcomes HCL Consortium and Lille COVID-Obesity Study Group. Prevalence of obesity among adult inpatients with COVID-19 in France. Lancet Diabetes Endocrinol. 2020; 8: 562-564.
- Guo M, Gao Y, Wang L, Zhang H, Liu X, Zhang H. Early Acute Kidney Injury Associated with Liver Transplantation: A Retrospective Case-Control Study. Med Sci Monit. 2020; 26: e923864.
- 16. Kim H, Kim H, Lee M, Cha MU, Nam KH, An SY, et al. The impact of disease severity on paradoxical association between body mass index and mortality in patients with acute kidney injury undergoing continuous renal replacement therapy. BMC Nephrol. 2018; 19: 32.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009; 62: 1006-1012.
- Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010; 25: 603-605.
- Vasquez CR, DiSanto T, Reilly JP, Forker CM, Holena DN, Wu Q, et al. Relationship of body mass index, serum creatine kinase, and acute kidney injury after severe trauma. J Trauma Acute Care Surg. 2020; 89: 179-185.
- Zou Z, Zhuang Y, Liu L, Shen B, Xu J, Luo Z, et al. Role of Body Mass Index in Acute Kidney Injury Patients after Cardiac Surgery. Cardiorenal Med. 2017; 8: 9-17.
- 21. Ju S, Lee TW, Yoo JW, Lee SJ, Cho YJ, Jeong YY, et al. Body Mass Index as a Predictor of Acute Kidney Injury in Critically III Patients: A Retrospective Single-Center Study. Tuberc Respir Dis (Seoul). 2018; 81: 311-318.
- 22. Argalious MY, Makarova N, Leone A, Cywinski J, Farag E. Association of Body Mass Index and Postoperative Acute Kidney Injury in Patients Undergoing Laparoscopic Surgery. Ochsner J. 2017; 17: 224-232.
- 23. Park JY, Park JH, Lee SS, Ri HS, Kim HJ, Choi YM, et al. The Association of Preoperative Body Mass Index with Acute Kidney Injury in Liver Transplantation Recipients: A Retrospective Study. Korean J Crit Care Med. 2017; 32: 265-274.
- 24. Kim H, Kim H, Lee M, Cha MU, Nam KH, An SY, et al. The impact of disease severity on paradoxical association between body mass index and mortality in patients with acute kidney injury undergoing continuous renal replacement therapy. BMC Nephrol. 2018; 19: 32.
- Wang H, Shi Y, Bai ZH, Lv JH, Sun JL, Pei HH, et al. Higher body mass index is not a protective risk factor for 28-days mortality in critically ill patients with acute kidney injury undergoing continuous renal replacement therapy. Ren Fail. 2019; 41: 726-732.

- Austin Publishing Group
- 26. Kim H, Kim J, Seo C, Lee M, Cha MU, Jung SY, et al. Body mass index is inversely associated with mortality in patients with acute kidney injury undergoing continuous renal replacement therapy. Kidney Res Clin Pract. 2017; 36: 39-47.
- 27. Liu T, Fu Y, Liu J, Liu Y, Zhu J, Sun L, et al. Body mass index is an independent predictor of acute kidney injury after urgent aortic arch surgery for acute DeBakey Type I aortic dissection. J Cardiothorac Surg. 2021; 16: 145.
- 28. Liu AYL, Wang J, Nikam M, Lai BC, Yeoh LY. Low, rather than High, Body Mass Index Is a Risk Factor for Acute Kidney Injury in Multiethnic Asian Patients: A Retrospective Observational Study. Int J Nephrol. 2018; 2018: 3284612.
- MacLaughlin HL, Pike M, Selby NM, Siew E, Chinchilli VM, Guide A, et al; ASSESS-AKI Study Investigators. Body mass index and chronic kidney disease outcomes after acute kidney injury: a prospective matched cohort study. BMC Nephrol. 2021; 22: 200.
- Gameiro J, Gonçalves M, Pereira M, Rodrigues N, Godinho I, Neves M, et al. Obesity, acute kidney injury and mortality in patients with sepsis: a cohort analysis. Ren Fail. 2018; 40: 120-126.
- Zhou J, Lyu L, Zhu L, Liang Y, Dong H, Chu H. Association of overweight with postoperative acute kidney injury among patients receiving orthotopic liver transplantation: an observational cohort study. BMC Nephrol. 2020; 21: 223.
- 32. Wang B, Li D, Gong Y, Ying B, Cheng B, Sun L. Body Mass Index is Associated with the Severity and All-Cause Mortality of Acute Kidney Injury in Critically III Patients: An Analysis of a Large Critical Care Database. Biomed Res Int. 2021; 2021: 6616120.
- 33. Moon H, Lee Y, Kim S, Kim DK, Chin HJ, Joo KW, et al. Differential Signature of Obesity in the Relationship with Acute Kidney Injury and Mortality after Coronary Artery Bypass Grafting. J Korean Med Sci. 2018; 33: e312.
- Yap CH, Mohajeri M, Yii M. Obesity and early complications after cardiac surgery. Med J Aust. 2007; 186: 350-354.
- Pedersen AB, Gammelager H, Kahlert J, Sørensen HT, Christiansen CF. Impact of body mass index on risk of acute kidney injury and mortality in elderly patients undergoing hip fracture surgery. Osteoporos Int. 2017; 28: 1087-1097.
- Dylewska M, Chomicka I, Małyszko J. Hypertension in patients with acute kidney injury. Wiad Lek. 2019; 72: 2199-2201.
- 37. Kraut EJ, Boohaker LJ, Askenazi DJ, Fletcher J, Kent AL; Neonatal Kidney Collaborative (NKC). Incidence of neonatal hypertension from a large multicenter study (Assessment of Worldwide Acute Kidney Injury Epidemiology in Neonates-AWAKEN). Pediatr Res. 2018; 84: 279-289.
- 38. Xu Y, Surapaneni A, Alkas J, Evans M, Shin JI, Selvin E, et al. Glycemic Control and the Risk of Acute Kidney Injury in Patients With Type 2 Diabetes and Chronic Kidney Disease: Parallel Population-Based Cohort Studies in U.S. and Swedish Routine Care. Diabetes Care. 2020; 43: 2975-2982.
- Hapca S, Siddiqui MK, Kwan RSY, Lim M, Matthew S, Doney ASF, et al; BEAt-DKD Consortium. The Relationship between AKI and CKD in Patients with Type 2 Diabetes: An Observational Cohort Study. J Am Soc Nephrol. 2021; 32: 138-150.
- Krueger PM, Coleman-Minahan K, Rooks RN. Race/ethnicity, nativity and trends in BMI among U.S. adults. Obesity (Silver Spring). 2014; 22: 1739-1746.