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Abstract

Purpose: Vitamin D (VD) can be considered a functional steroid hormone 
with a well-established effect on musculoskeletal health. The purpose of this 
systematic review was to investigate the role of vitamin D in male reproduction, 
presenting current evidence from experimental animal and human studies. The 
basis of this interplay lays on the presence of Vitamin D-Receptor (VDR) and 
Vitamin D (VD) metabolizing enzymes in testis and male reproductive tract.

Methods: Using PubMed, we searched for publications during the last 30 
years that investigated the role of vitamin D in male reproduction.

Results: Evidence from animal and human studies suggests a possible role 
of vitamin D in male reproduction. Epidemiological studies suggest a positive 
association between 25-hydroxy-vitamin D [25(OH)D] and semen parameters 
and androgen levels. On the other hand, several studies reported that high 
vitamin D levels may have a negative effect on gonadal function.

Conclusions: Further large prospective studies are warranted to prove a 
casual relationship between vitamin D and male reproduction and the impact of 
vitamin D supplementation on gonadal function.

Keywords: Vitamin D; Androgens; Fertility; Male reproduction; Sperm; 
Supplementation

dihydroxyvitamin D3 [1α,25(OH)2D3], is the active metabolite 
obtained by 1α-hydroxylase (CYP27B1) from 25(OH)D in the 
kidneys, as well as in other tissues including human testis [4].

The broad biological actions of VD which involve the regulation 
of about 3% of the human genome are mediated through the Vitamin 
D Receptor (VDR) [1].

The VDR acts as a transcription factor binding to Vitamin D 
Responsive Elements (VDREs) in the promoter region of target 
genes after forming a VDR-RXR heterocomplex with the Retinoid 
X Receptor (RXR) [5]. The VDR is almost ubiquitously expressed 
in human cells, suggesting an endocrine role of the VD [3,6,7]. 
In the kidney, 25(OH)D and 1α,25(OH)2D3 are catabolized by 
24R-hydroxylase (identified as CYP24A1) to 24R,25(OH)2D3 and 1-α 
24R,25(OH)3D3, respectively [8] (Figure 1).

•	 Most studies both in animals and humans showed an 
association between low vitamin D levels and impaired gonadal 
function. Infertile subjects with low vitamin D levels may then 
beneficiate from a vitamin D supplementation.

•	 Some studies showed a possible association between high 
levels of vitamin D and impaired gonadal function, so indiscriminate 
vitamin D supplementation is not suggested.

•	 Keeping in mind the hydroxylation function of Leydig cells, 
subjects with low vitamin D levels and impaired testicular function 
should be better treated with activated vitamin D formulation (i.e. 
25(OH) vitamin D).

Materials and Methods
We performed a systematic review of the literature by searching 

in Pubmed for relevant English language papers published until 
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Introduction
Vitamin D (VD) is a versatile signaling molecule that could be 

properly considered a functional steroid hormone. Currently, there is 
great interest in VD for its possible “non-classical” effects in addition 
to the well-known role on bone metabolism, especially on male 
gonadal function [1,2].

Vitamin D synthesis and role
In humans the VD status is mainly determined by ultraviolet-B 

radiation of the skin, while VD intake by nutrition and supplements 
plays only a minor role [3].

Thereafter, VD is hydroxylated at the C25 position of the side 
chain. This hydroxylation takes place in the liver and other tissues 
such as testes by 25-hydroxylase (identified as CYP2R1 or CYP27A1). 
The product of this reaction is 25-hydroxyvitamin D [25(OH)
D], which is commonly used to evaluate VD levels. 1alpha,25-
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November 2016. We used the following search terms: ‘vitamin 
D’ and ‘fertility’, ‘vitamin D’ and ‘male reproduction’, ‘vitamin 
D’ and ‘infertility’. In addition, we also used the search terms 
‘25-hydroxyvitamin D (25(OH)D)’, ‘1,25-dihydroxyvitamin D’, and 
‘calcitriol’ instead of vitamin D. We also used listed references from 
selected articles to expand the search. We excluded editorials, case 
reports, and letters to editors, duplicate publications and studies 
pertaining to female subjects. The results of original articles up to 
2016 have been summarized and discussed in a critical manner.

Vitamin D hypovitaminosis and male gonadal function
Hypovitaminosis D (<30 ng/ml) in the general population is very 

prevalent. It has been estimated that 20-100% of U.S., Canadian, and 
European elderly men and women still living in the community are 
VD deficient (<30 ng/ml) [3,9-12], while 32% of healthy students 
and physicians at a Boston hospital showed 25(OH)D below 20 
ng/ml [13, 14]. VD deficiency has been linked to various health 
disorders including bone, cardiovascular, infectious, oncologic, 
musculoskeletal, neuropsychologic and reproductive disorders, as 
well as to overall mortality [15-23]. While the role of VD deficiency 
in reduced bone mass is evident, its relation to other health disorders 
is subject of debate.

Accumulating evidence from animal and human studies suggests 

that VD is involved in reproductive function in both genders. It has 
been shown that the VDR and the VD metabolizing enzymes are 
expressed in reproductive organs [2,24]. They are concomitantly 
expressed, in males, in Sertoli cells, germ cells, Leydig cells, mature 
spermatozoa and in the epithelial cells lining the male reproductive 
tract [2,4,25]. There is increasing literature supporting the existence 
of a complex relation between VD and androgen metabolism. For 
example, data demonstrate that androgens can increase 1-alpha-
hydroxylase [26]. Moreover, the regulation of gene expression by VD 
metabolites can be modified depending on androgen levels [27]. VD 
has probably a role in the developing gonad, considering that VDR 
is early expressed in human gonocytes, Leydig and immature Sertoli 
cells from gestational week 16 [28].

VD has widespread biological functions, including an essential 
role for systemic calcium homeostasis [1]. Optimal sperm function 
may thus depend on a direct effect of VD or be indirectly influenced 
through calcium homeostasis, which is known to play a role in male 
reproductive function [29,30,31].

On the other hand, the role for calcium in the maturation of 
human spermatozoa is well documented and highlighted by the 2–3-
fold higher calcium concentration in human epididymal and prostate 
fluid compared with serum [4,32].

Similarly to what happens in the kidney, which shares with the 
male reproductive tract a common development origin, VD in the 
epididymis and efferent ducts may regulate transcellular calcium 
transport through action of TRPV6. This membrane calcium channel 
is expressed in the epididymis and its ablation may compromise 
calcium absorption, resulting in impaired sperm motility and 
infertility in mice [33].

Moreover, Blomberg Jensen and colleagues have shown in vitro 
that in ejaculated mature sperm, activated VD (1α,25(OH)2D3) 
increased the intracellular calcium concentration through Inositol 
Trisphosphate (IP3)-mediated calcium-release from an intracellular 
IP3-receptor-gated calcium store in the neck of human spermatozoa, 
then increasing sperm motility and inducing the acrosome reaction 
[34]. One possible mechanism that links the extracellular calcium with 

Figure 1: Vitamin D metabolism.

Figure 2: 1α, 25-dihydroxyvitamin D3 activates VDR in the neck region of 
spermatozoa and determines inositol trisphosphate (IP3)-mediated calcium-
release from an intracellular IP3- receptor-gated calcium store resulting in 
increase of intracellular calcium-release from RNE activates SOCE resulting 
in calcium entry from the extracellular space.
Abbreviations: [Ca2+]: Intracellular concentration of Calcium Ions; PLC: 
Phospholipase C; RNE: Redundant Nuclear Envelope; SOCE: Store-
Operated Calcium Entry; VDR: Vitamin D Receptor.

Figure 3: Chloride Channel-3 (ClC-3) opening in the membrane of secretory 
vesicles is required for exocytosis. 1,25(OH)2-D3 may enhance ClC-3 
phosphorylation and opening via a non-genomic pathway involving protein 
kinase C (PKC)/protein kinase A (PKA) activation.
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intracellular calcium was proposed by Blomberg Jensen [4]. Blomberg 
Jensen speculates the existence of a “Store-Operated Calcium Entry” 
(SOCE) in the neck of human spermatozoa. SOCE is a mechanism in 
which the depletion of calcium from the intracellular stores induces 
calcium entry from the extracellular space. Based on Blomberg 
Jensen’s hypothesis it is possible that hypovitaminosis D impairing 
calcium release from intracellular stores can affect SOCE and the 
whole mechanism of calcium regulation. The final consequence may 
be a reduced motility and impaired acrosome reaction (Figure 2).

Another possible indirect effect of VD on male fertility may depend 
on its central regulation of male reproductive function. In fact, VDR 
and 1α-hydroxylase expression have been showed in neurons, glial 
cells, substantia nigra, human pituitary samples and hypothalamus. 
Several data have shown a relevant interaction between VD and 
Pituitary Transcription Factor-1 (Pit-1), which is involved in the 
development of the anterior pituitary gland and influences growth 
hormone (GH) and prolactin gene expression [35-38].

Influence of Hypovitaminosis D in Male 
Gonadal Function: Animal Experimental 
Data

Experimental data support a dual way of action of VD in testis. 
Actually, VD achieves its effects either through a genomic pathway or 
through a no-genomic pathway involving PKA and PKC or calcium/
potassium channels in the plasma membrane [39-40]. The cyclic 
AMP/PKA complex acts as a mediator of 1α,25(OH)2D3 in both 
genomic and no-genomic effects [41]. It has been shown that VD 
deficiency in rodents leads to reduced sperm counts, impaired sperm 
motility and lower fertility rates in females inseminated with semen 
from VD deficient males [42].

Moreover, VDR knockout mice present with gonadal 
insufficiency, with decreased sperm count and motility and histological 
abnormalities of the testis as well as high LH and FSH levels that may 
indicate the presence of a testicular damage. The explanation remains 
unclear but data show a possible pathophysiological mechanism 
in these mice which involves a reduced gonadal aromatase activity 
and gene expression in the testis and epididymis compared with 
the wild-type ones [6]. This reduced aromatase activity may in part 
explain the gonadal abnormalities in mice lacking the VDR if we 
consider the importance of estrogens for testicular function including 
steroidogenesis.

VD might also influence the male reproductive functions by 
stimulating Sertoli cell secretory functions. In fact, Menegaz et al 
have suggested a PKA/PKC-dependent 1α,25(OH)2D3-VDR non-
genotropic pathway leading to Cl- -channel and exocytosis activation 
in immature Sertoli cells thus promoting its release of ions, proteins 
and growth factors relevant to germ cell maturation [43] (Figure 3).

The influence of VD on male reproduction might be mediated 
by calcium levels, since the impaired fertility in some animal models 
was partly restored by normalization of serum calcium levels [31,44]. 
Furthermore Sun and colleagues, employing a 1α-hydroxylase-/- 
mouse model, have recently showed that sperm count, motility, 
histological structure of testis, and spermatogenesis can depend 
on calcium and phosphorus levels rather than VD. In fact, these 
hypocalcemic and hypophosphatemic male mice exhibited fertility 

abnormalities characterized by hypergonadotropic hypogonadism, 
with downregulation of testicular calcium channels, lower 
intracellular calcium levels, decreased proliferation of spermatogenic 
cells with down regulation of cyclin E and CDK2 and up regulation 
of p53 and p21 expression; these abnormalities were all reversed with 
diet modification without VD supplementation, suggesting that the 
regulation of 1α,25(OH)2D3 in the male reproductive system can be 
mediated through extracellular calcium and phosphate [45].

It has also been suggested a protective role of vitamin D from 
oxidative stress and cellular toxicity in diabetic rat testes and 
maintenance of the number and motility of sperm in these animals 
[46,47].

Finally, Sood et al have shown in mice with impairment of Sertoli 
and Leydig cells function and fed with VD deficient diet, that VD 
supplementation was able to reverse these alterations. However the 
authors observed a worsening of function (testicular sperm count, 
total testicular GTP activity and Leydig cell count) at higher dose of 
VD supplementation, suggesting the existence of an optimal dose for 
male fertility [48].

Influence of Hypovitaminosis D in Male 
Gonadal Function: Human Data
Vitamin D and seminal parameters

Epidemiological studies support a positive association between 
serum 25(OH)D levels and sperm motility in both fertile and infertile 
men [4]. Interestingly, the expression of VDR and CYP24A1 is higher 

Figure 4: Schematic representation of the crosstalk between testis and bone. 
Leydig cells contribute to bone metabolism by producing testosterone and 
INSL3 and expressing the CYP2R1 enzyme that hydroxylates cholecalciferol 
to 25-hydroxyvitamin D. Testosterone, directly or after conversion to E2 and 
DHT, acts on osteoblasts and osteoclasts through AR and ER, whereas INSL3 
acts only on osteoblasts through its receptor RXFP2. 1,25-dihydroxyvitamin D 
regulates calcium homeostasis and bone metabolism by acting on the kidney, 
intestine and osteoblasts. The osteoblast protein, osteocalcin, promotes 
testosterone production in Leydig cells by activating steroidogenesis 
enzymes.
Abbreviations: 25 (OH) vitamin D: 25-Hydroxyvitamin D; 1,25 (OH)2 
vitamin D: 1,25-Dihydroxyvitamin D; AR: Androgen Receptor; DHT: 
Dihydrotestosterone; E2: 17β-Estradiol; ER: Estrogen Receptor; INSL3: 
Insulin-Like 3; LH: Luteinizing Hormone; T: Testosterone.
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in spermatozoa from fertile than infertile men [49]. CYP24A1 is 
expressed at the annulus in 1% of spermatozoa from subfertile men, 
whereas fertile men express CYP24A1 in 25% of their spermatozoa 
[49]. Moreover, several studies have suggested that the presence 
of VDR and VD metabolizing enzymes may be useful as positive 
predictive marker for semen quality [29,49-51].

Our group has shown in a study in which participated 98 patients 
with a cytological diagnosis of hypospermatogenesis or Sertoli cell-
only syndrome a higher prevalence of hypovitaminosis D, higher 
parathyroid hormone levels and lower gene and protein expression 
of CYP2R1 compared with healthy controls [52]. Another study 
performed in 300 men with severe hypovitaminosis D (25(OH)D < 25 
nmol/L) has shown the presence of alterations in semen parameters 
(forward motility and normal morphology) compared with those 
with sufficient VD levels [25(OH)D > 75 nmol/L] [34]. Yang et al, 
moreover, have found that lower 25(OH)D concentrations were 
associated with impaired sperm motility and morphology only in 
infertile men [53]. Based on these data, a supplementation of 10-20 
μg per day for men with infertility in order to obtain serum VD levels 
of 10-50 ng/ml, has been suggested [54].

Nevertheless, while association studies documented a clear 
negative effect of hypovitaminosis D on sperm parameters, we 
lack interventional studies to prove a positive effect of vitamin D 
supplementation on these parameters.

In fact there is only one prospective study on infertile men who 
presented idiopathic oligoasthenozoospermia, in which a three-
month course of supplementation with VD (200 IU/day) and calcium 

(600 mg/day) determined a significant improvement in sperm quality 
compared with a supplementation with vitamin E (100 mg/day) [55].

Lastly, there are only few studies regarding a positive relationship 
between VD status and successful conception [55,56], whereas other 
authors did not observe any correlation between VD status and 
fertility parameters or pregnancy outcomes among men undergoing 
subfertility treatment [51,57,58]. Taken together, these data suggest 
a positive correlation between semen parameters and VD status 
but further prospective studies are warranted to clarify whether 
VD supplementation can be beneficial for infertile men regarding 
reproductive outcomes.

Vitamin D and androgen levels
There are conflicting data regarding the possible influence of VD 

on androgen levels.

Several epidemiological studies have shown a positive linear 
relationship between androgen and 25(OH)D levels, especially in 
elderly men. This might be particularly important because of very 
high prevalence of VD and androgen deficiency in elderly men that 
are associated at high risk for all-cause and cardiovascular mortality 
suggesting that a parallel deficiency is a powerful marker of poor 
health [59,60].

Large multi-center, cross-sectional studies [61,62] have shown 
positive linear association between 25(OH)D and androgen levels.

Insufficient and deficient 25(OH)D concentrations have been 
associated with lower total testosterone levels and free androgen index 
compared with sufficient 25(OH)D concentrations in an Australian 

Animal studies Human studies

Positive linear association

Sperm count

Kwiecinski et al., 1989 [42] Foresta et al., 2011 [52]

Kinuta et al., 2000 [6] Blomberg Jensen, 2014 [4]

Ding et al., 2016 [46]

Sperm motility

Kwiecinski et al., 1989 [42] Blomberg Jensen et al., 2011 [34]

Kinuta et al., 2000 [6] Yang et al., 2012 [53]

Ding et al., 2016 [46] Blomberg Jensen, 2014 [4]

Sperm morphology
Blomberg Jensen et al., 2011[34]

Yang et al., 2012 [53]

Steroidogenesis Kinuta et al., 2000 [6]

Wehr et al., 2010 [63]

Lerchbaum &Obermayer-Pietsch, 2012 [59]

Lerchbaum et al., 2012 [60]

Lee et al., 2012 [61]

Nimptsch et al., 2012 [62]

Ferlin et al., 2013 [66]

Bellastella et al., 2014 [65]

Wang et al., 2015 [64]

U-shaped association

Sperm count, motility, morphology and steroidogenesis

Ramlau-Hansen et al., 2011 [22]

Hammoud et al., 2012 [73]

Lerchbaum et al., 2014 [83]

Table 1: Vitamin D association with gonadal function in animal and human studies.
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study considering men at cardiovascular risk (2229 men, mean age 62 
± 11 years referred for coronary angiography). In the same study, the 
two groups showed a similar seasonal variations of androgens with a 
peak of 25(OH)D levels at the end of summer [63]. This association 
has been also documented in a large Chinese study with 2854 men 
(mean age 53 ± 13.5 years) in which a higher risk of hypogonadism 
(OR 1.5, 95% confidence interval 1.14-1.97) was found in men within 
the lowest 25(OH)D quartile (≤ 35.4 nmol/L) compared with those 
in the highest one (≥ 48.8 nmol/L) [64]. Moreover, Bellastella and 
colleagues have recently reported, in a case-control study involving 
122 men with type 2 diabetes, a significant difference in the VD levels 
(20.1 ± 6.58 vs 24.0 ± 5.6 ng/ml, p <0.01) in hypogonadal men (n=51) 
compared with eugonadal ones (n=71) [65]. These epidemiological 
studies did not, however, explain the physiopathological link between 
VD and androgen levels. The 25-hydroxylation activity performed by 
the Leydig cell could justify these findings.

In fact the hydroxylating enzyme CYP2R1 (microsomal VD 
25-hydrosylase), the major enzyme involved in VD 25-hydroxylation, 
is highly expressed in Leydig cells [52,66,67]. This enzyme participates 
in the activation of the VD precursor cholecalciferol and it is expressed 
by Leydig cells of the testis under the influence of hCG/LH [52,66,67]. 
Low expression of CYP2R1 in patients with Leydig cell dysfunction 
leads to low serum levels of 25(OH)D and low bone mineral density 
(BMD) [52,66,67]. Impaired CYP2R1 expression (and perhaps INSL3 
production), which leads to low levels of 25(OH)D, is found not only 
in cases of overt hypogonadism (primary and secondary) but also in 
cases of subclinical hypogonadism [66]. Furthermore, men with low 
25(OH)D levels are at risk of clinical sequelae (such as low BMD and 
osteoporosis) even if they have normal testosterone levels [52,66,67]. 
25(OH)D (and LH) levels are more sensitive markers of Leydig cell 
impairment than testosterone, so that it may be useful in the diagnosis 
of male hypogonadism (Figure 4).

Only one interventional prospective study investigated the 
effect of VD supplementation on testosterone levels reporting that 
VD therapy (average dose 3332 IU/day for 1 year) might increase 
testosterone levels in non diabetic obese men with VD deficiency 
undergoing weight reduction [68]. The mechanism involved has not 
been clarified, but possibilities are a vitamin-D-receptor-mediated 
effect on Leydig cells or an effect on the pituitary gland, but current 
literature does not clarify these hypotheses.

In fact, Hofer et al. have reported that 1α,25(OH)2D3 increases 
testosterone production and mRNA expression of enzymes involved 
in androgen production and their precursors (CYP11A1, HSD3B2, 
CYP19A1, CYP3A4, and SRD5A1) in human primary testicular cells 
[69]. In this study, this effect seems to be VDR-depended and can 
be directly or synergistically related to LH. It is also possible that 
1α,25(OH)2D3 exerts an influence on steroidogenesis by modulating 
the calcium-dependent LH response [4].

Nevertheless, a multilevel interaction between testosterone 
and VD that involves 25-hydroxylation of VD by Leydig cells, and 
stimulation of testosterone production by VD, is plausible and 
deserves further investigation.

Actually, many others studies among young and health men 
failed to find an association between VD and androgen levels in men 
[22,70-73]. Furthermore, no difference in VD levels was found in 

men with congenital hypogonadotropic hypogonadism compared 
with healthy controls [74].

The possible reasons for these controversial findings may be 
differences in age, healthy and fertility status, seasonal variations 
and BMI. In particular, striking differences between young and older 
men (>60 years of age) have been suggested and attributed to indirect 
effects of VD in older men [4]. It is likely that some indirect VD effects 
on testosterone levels in older men could be mediated by calcium and 
phosphate homeostasis, SHBG or osteocalcin production [4,51]. This 
hypothesis is supported by some data from the European Male ageing 
study, including 3369 community-dwelling men aged 40-79 years. 
In this study, a positive association of 25(OH)D levels with total 
testosterone and free testosterone lost significance after adjusting for 
age and lifestyle factors [61].

The possible role of osteocalcin
Osteocalcin (OC) is a small protein secreted by bone-forming 

osteoblast that showed ability to modulate Leydig cell function, such 
as the production of testosterone. In fact the experiments of Oury 
and colleagues, conducted ex vivo and in vivo in loss- and gain-of-
function models, showed that OC is able to regulate the expression 
of enzymes required for testosterone synthesis in Leydig cells in 
a CREB-dependent manner, suggesting an endocrine regulation 
of male reproduction by the skeleton [75]. A posttranslational 
gamma-carboxylation of glutamate residues of OC is thought to 
strongly influence its biological activity. In fact, uncarboxylated-
OC (ucOC), which lacks of gamma- carboxylation of glutamate 
residues at position 17, 21, and 23, is the only form able to influence 
Leydig cell function [75,76]. The receptor mediating the activity of 
OC is probably the G protein-coupled receptor GPRC6A, which is 
expressed at high levels in Leydig cells as well [75,77]. Animal data 
by Pi et al showed that GPRC6A-deficient mice presented a number 
of bone/metabolic impairment which were probably related to 
the altered steroidogenesis [78]. Actually, GPRC6A -/- mice had 
reduced testosterone levels along with defective mineralization of 
bone and impaired osteoblast function, glucose intolerance, and 
metabolic syndrome [78]. Moreover, our group has recently showed 
a positive correlation between serum ucOC and 25(OH)D levels in 
40 overweight male patients and 21 controls, suggesting that OC may 
contribute with LH to 25(OH)D production by Leydig cells [79]. 
Taken together, these data underline the crucial role of Leydig cells in 
the crosstalk between testis and bone function (Figure 4).

Vitamin D, Seminal Parameters and 
Androgen Levels: U-Shaped Association?

The majority of studies supports a positive linear association 
between 25(OH)D concentrations and gonadal function, while some 
researchers have highlighted the possible negative effects of high 
25(OH)D levels as summarized in Table 1. These apparent conflicting 
data may be because of differences in study design, baseline 25(OH)
D concentrations, different proportion of men with VD sufficiency, 
dietary VD intake, age, ethnicity among the participants and assay 
methodology. Moreover, it is important to underline that some effects 
mediated by VD in humans are exclusively paracrine effects and that 
there are a lot of other systemic and autocrine factors involved in 
the VD metabolism [4,8,80-82]. In fact, a positive linear association 
between 25(OH)D and gonadal function has not been found in 
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several studies, that instead have reported a possible inverse U-shaped 
association. The first study to report possible negative effects of high 
VD levels (94 - 227 nmol/l) on semen volume, sperm count and 
morphology was a cross-sectional study by Ramlau-Hansen [22].

In 2012, Hammoud et al. reported similar findings regarding 
semen parameters. They showed a U-shaped association between 
25(OH)D concentrations and semen quality in a cross-sectional 
study of 152 healthy men. Men with higher (≥ 50 ng/ml) and lower (≤ 
20 ng/ml) 25(OH)D levels presented worse sperm concentrations and 
motility compared with men with 20-50 ng/ml [73].

Another more recent cross-sectional study on 225 men (median 
age 35 years), has suggested a U-shaped association between VD 
and hypogonadism; men in lowest (≤ 43.9 nmol/L) and highest (> 
101.8 nmol/L) 25(OH)D quintiles presented an increased risk of 
hypogonadism, even after adjustment for possible confounders 
factors [83]. In this study there was a relatively large proportion 
of men with 25(OH)D levels ≥ 75 nmol/L that allowed a balanced 
evaluation of high 25(OH)D levels with the possibility to evaluate 
non-linear associations.

As regards this particular U-shaped association between 25(OH)
D and gonadal function, the increased risk of hypogonadism in men 
with higher VD concentrations is difficult to interpret. It has been 
hypothesized that high VD levels may affect VD metabolism within 
the target tissues, leading to increased 24-hydroxylation [84]. Thus, in 
presence of high circulating 25(OH)D levels, the concentration of the 
biologically active 1α,25 (OH)2D3 might be reduced in target tissues 
such as testis and the pituitary gland.

Furthermore, the negative relation between high levels of VD 
and semen parameters can be explained by the experimental finding 
of Aquila and colleagues that, increasing doses of VD resulted in 
a negative effect at higher concentrations of VD on intracellular 
calcium, sperm motility and acrosin reaction, leading to hypothesize 
that high levels of VD might induce alterations in the systemic or local 
calcium and zinc levels, both known to play a role in spermatogenesis 
[29,30,85].

Other studies have also suggested a possible U-shaped or non-
linear associations in other medical fields: for example, between 
VD and cancer mortality [86], breast cancer [87], prostate cancer 
[88], overall and cancer mortality [89] and cardiovascular disease 
[90]. Interestingly, a meta-analysis including 14 prospective studies 
involving 5562 deaths reports a reverse J-shaped association between 
serum 25(OH)D and all-cause mortality [91]. This type of association 
was also suggested by data from the Third National Health and 
Nutrition Examination Survey (NHANES III) cohort [92]. The 
suggested optimal 25(OH)D concentrations for all-cause mortality 
were 75-87.5 nmol/L [91] and 70-90 nmol/L [92], respectively.

Conclusions
Taken together, these data clearly show that hypovitaminosis D 

is associated with impaired gonadal function. Further interventional 
studies are needed to prove a causal relationship and a positive 
effect of VD supplementation and whether VD exerts its effects on 
reproductive male function directly or indirectly through other VD 
regulated endocrine factors, such as calcium or estrogen levels, that 

may play an important role in reproductive outcomes. Furthermore, 
we still lack universally accepted therapeutically target for VD 
levels. However it is now clear that, in clinical practice, clinicians 
can no longer treat deficiency states of VD in the same way, but 
must differentiate between the various forms of hypovitaminosis 
D distinguishing them according to pathophysiological causes. In 
particular, in man, hypogonadism can be associated with a deficiency 
of VD that can strongly influence the type of VD metabolite used 
to treat these patients. It should be taken into account the form 
of the microsomal deficiency of 25-hydroxylase (CYP2R1) and, 
consequently, administer to these subjects active forms of VD 
(calcifediol) in order to reach adequate blood VD levels.
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