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Abstract

Zinc is an indispensable trace element required for several critical functions 
of the human body. Deficiencies of micronutrients can impair immune function 
and increase susceptibility to infectious disease. It is noteworthy that higher 
susceptibility to the SARS-CoV-2 viral infection is seen in individuals with 
micronutrient deficiencies and poorer overall nutrition. Research in the last 
two decades suggests that one-third of the global population may be deficient 
in zinc, which affects the health and well-being of individuals of all ages and 
gender. Zinc deficiency is now considered one of the factors associated with 
susceptibility to infection and the detrimental progression of COVID-19. The 
trace element is essential for immunocompetence and antiviral activity, rendering 
zinc supplements highly popular and widely consumed. Zinc supplements are 
required in small doses daily, and their absorption is affected by food rich in 
fiber and phytase. The organic forms of zinc such as picolinate, citrate, acetate, 
gluconate, and the monomethionine complexes are better absorbed and have 
biological effects at lower doses than inorganic salts. Considering the present 
global scenario, choosing the right zinc supplement is essential for maintaining 
good health. In the present review, we reexamine the role of zinc in immunity 
and antiviral activity and a comparative account of different forms of zinc 
supplements.
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Introduction
Nutritional deficiency contributes to poor health and 

susceptibility to infection. The deficiency in micronutrients are not 
easily recognized as their manifestation is not very distinct and hence 
may not get noticed. Correcting the micronutriient deficiencies may 
be helpful in supporting the immune function and resist frequent 
infection, especially in the vulnerable population.

Zinc is only second to iron as an important trace element in the 
human body. It is abundantly distributed throughout body tissues 
and is vital for growth and development, gene expression, and 
immune functions [1,2]. Zinc is a structural component of nearly 
2000 transcription factors and a required cofactor for more than 
300 enzymes, which help in digestion, metabolism, and neuronal 
functions [2]. Numerous studies have shown that zinc is essential 
for maintaining a strong immune function, blood sugar levels and 
keeping skin, hair, eyes, and heart healthy [3]. Daily intake is required 
for maintaining the levels to support the essential biological functions 
as only 20-40% mineral is absorbed by the enterocytes in the gut, while 
the residual zinc is excreted [4]. Zinc may be stored in skeletal muscle 
and bone and a very small fraction (10-20 µM) is found circulating 
in the blood [5]. The prevalence of zinc deficiency is estimated to be 
17-20% globally, predominant in African and Asian countries [6]. 
Zinc deficiency is commonly observed in the geriatric population, 
vegans/vegetarians, and individuals with chronic disease such as 
immunosuppression, Chronic Obstructive Pulmonary Disease 
(COPD), asthma, cardiovascular diseases, autoimmune diseases, 

kidney diseases, obesity, diabetes, liver disorders, inflammatory 
bowel disease and cancer, who are also known to be at high risk 
for SARS-CoV-2 infection [7,8]. Zinc is vital for a proper immune 
response as its deficiency results in defective lymphocyte responses, 
lymphopenia, and thymic atrophy [9]. In the present scenario of the 
pandemic viral infection, robust immunity is a major concern. In 
this review, we focus on the role of zinc in immunity and antiviral 
response, and the importance of zinc supplements in prophylaxis 
and treatment of Severe Acute Respiratory Syndrome Coronavirus-2 
(SARS-CoV-2) infections.

Zinc in Respiratory Health: SARS-CoV-2 
Infection

The world is now facing a serious pandemic, caused by the 
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), 
also known as the novel Coronavirus Disease 2019 (COVID-19). 
There is an urgent need for pharmacological, traditional, and 
complementary medicine approaches and nutritional intervention to 
aid in prevention, treatment, and recovery from the infection. SARS- 
CoV-2 is an enveloped beta coronavirus with a positive-sense single-
stranded RNA genome [10]. It is transmitted via direct contact, 
respiratory secretions and remains stable on surfaces for days [11,12]. 
High morbidity has been observed among the elderly, especially those 
with prevailing chronic diseases [13]. The pathogenesis of COVID-19 
is yet to be fully understood, but the multifactorial pathology results 
in a systemic hyperinflammatory response, cytokine storm, and an 
associated thromboembolic complication in severe cases [14,15].
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Zinc, as a trace element, has potent antiviral and 
immunomodulatory properties [16]. It is used as a cofactor by 
different cellular proteins with immunomodulatory and antioxidant 
actions [17]. Zinc is essential for the development and activation 
of T-lymphocytes, which are the leading cells for defense against 
viral infections [18]. The antiviral property of zinc has been 
studied extensively in hepatitis C virus, coronavirus, human 
immunodeficiency virus and others [19].

Zinc is considered a potential supportive treatment due to its 
immune-modulatory and antiviral effect [16]. Hydroxychloroquine, 
a zinc ionophore, has been increasingly used as antiviral therapy 
for COVID-19 patients [21,22]. Further, zinc is known to improve 
antiviral immunity and diminish the risk of hyper-inflammation. The 
anti-oxidative effect of zinc could reduce lung damage and curtail 
secondary infections [22,23]. A significant number of COVID-19 
patients were found to be zinc deficient compared to healthy 
individuals in a recent study. Severity and complications due to 
infection, were higher in zinc deficient patients, who had prolonged 
hospital stay associated with increased mortality [24].

Mechanism of Antiviral Activity of Zinc
Viral entry

The entry of infectious agents is prevented by the ciliary cells 
in mucosal layers. The coronavirus infection damages the ciliated 
epithelium and ciliary dyskinesia, thus impairing the mucociliary 
clearance [25]. Zinc could increase the ciliary beat frequency, the 
number, and the length of bronchial cilia, thus improving the 
elimination of virus particles and prevention of secondary bacterial 
infections [25]. Disruptions in the respiratory epithelial integrity 
facilitate the entry of the virus. Decreasing zinc level was found to 
increase the epithelial leakage in the respiratory tract in an ex vivo 
model of COPD, while lung integrity could be improved by zinc 
supplementation [26,27]. Zinc supplementation was shown to 
increase proteolysis of E-cadherin/beta-catenin and increase the 
expression of tight junction proteins like Claudin-1 and ZO-1, which 
improved lung integrity in a murine model of acute lung injury 
[27,28]. Further, zinc had an inhibitory effect on LFA-1/ICAM-1 
interaction, which reduced leukocyte recruitment and inflammation 
in the respiratory tract, while high zinc levels improved the tolerance 
of the lung towards damage induced by mechanical ventilation 
[29,30].

SARS-CoV-2 infects cells expressing the surface receptors 
Angiotensin-Converting Enzyme 2 (ACE-2). Zinc binds to the 
active center of the ACE-2 active center and is thus essential for its 
enzymatic activity. The expression of ACE-2 expression is regulated 
by Sirt-1, which is downregulated by zinc. Thus, zinc is likely to have 
an indirect effect on ACE-2 expression and thus viral entry into the 
cell [31].

Viral replication
The antiviral effects of zinc have been demonstrated against 

several human viruses. Increasing the intracellular zinc concentration 
with zinc-ionophores like pyrithione was reported to impair viral 
replication in vitro [32,33]. Recent studies have shown the efficacy 
of chloroquine, a zinc ionophore, as an antiviral treatment for 
COVID-19 (20). Positive stranded RNA viruses use RNA-dependent 

polymerase for replication. Increased intracellular zinc ion 
concentrations was found to inhibit the viral replication by directly 
inhibiting the RNA polymerase activity in Vero cells [34]. Zinc could 
also interfere with the synthesis and assembly of viral proteins [35]. 
It was suggested that zinc plays a vital role in preventing viral fusion 
with the host membrane, decrease the viral polymerase function, 
impair protein translation and processing, block viral particle release, 
and destabilize the viral envelope in different viral models [34,36,37]. 
Zinc was also reported to act in a synergistic manner with standard 
antiviral therapy [38]. Overexpression of metallothionines was also 
reported to inhibit replicating few viruses such as flaviviruses and 
encephalitis virus. Metallothionines are hypothesized to sequester 
Zn2+ away from the viral proteins by acting as zinc chaperones and 
facilitating antiviral signaling [39].

Zinc and Immune Response
Zinc is crucial for the proper folding and activity of various 

cellular enzymes and transcription factors. It is a component of the 
thymic hormone and thus mediates the normal development and 
function of innate immune response cells, neutrophils, and natural 
killer cells [38]. Zinc deficiency suppresses human immunity by 
affecting T-helper cells and the balance of the helper T cell (Th1 
and Th2) functions, antibody response, activity of natural killer 
cells and macrophages [40,41]. Supplementation with zinc could 
activate the interleukin -2 expression and normalize the cellular 
immune response in elderly individuals and reduce mortality from 
infections [42,43]. Apart from improving immune response, zinc is 
known to play an important role in maintaining immune tolerance. 
It induces regulatory cell differentiation while dampening the 
proinflammatory Th17 and Th9 differentiation [44-46]. Thus, zinc 
supplements improve the T cell function, thereby strengthening the 
cell-mediated immunity [47]. Zinc also enhances the phagocytosis, 
intracellular killing, and cytokine production in macrophages [47]. 
In elderly population, zinc supplementation is believed to help to 
manage immune senescence [48]. Zinc deficiency is associated with 
higher susceptibility to infections, which could be reversed with 
supplementation. Hepatitis and human papilloma virus-infected 
individuals showed an enhanced response to antiviral therapies when 
supplemented with zinc [49,50].

Zinc and antiviral immunity
Zinc was shown to induce the production of antiviral interferons 

(IFN-α and IFN-γ) in leukocytes and reduce the release of 
proinflammatory cytokine, TNF-α [51]. Zinc supplementation in 
the elderly restored the production of IFN-α [52]. Imbalance in the 
immune response is a hallmark of SARS-CoV-2 infection. Heightened 
cytokine release increases reactive oxygen and nitrogen species (ROS 
and RNS), and hyperactive immune cells in the lungs complicate the 
disease, leading to lung tissue destruction, systemic inflammation, and 
organ failure [53]. This leads to the development of Acute Respiratory 
Distress Syndrome (ARDS) in patients, accompanied by fluid 
accumulation in the lungs, interstitial edema with severely limited 
oxygen exchange [54]. Elevated levels of proinflammatory mediators, 
increased ROS levels reversible by zinc supplementation [27,55]. 
COVID-19 patients show increased expression T cell exhaustion 
markers like Tim-3 and PD-1 and neutrophilia and lymphopenia, 
associated with poor prognosis of these patients [56,57]. Zinc is 
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required for the development and function of lymphocytes and its 
supplementation can reverse lymphopenia [58,59]. In the recovery 
phase of COVID-19 patients an increase of CD14+ monocytes and 
NK cells could be correlated with clinical improvement [60]. These 
CD14+ cells require sufficient intracellular zinc levels for phagocytic 
activity and inflammatory response [9], while zinc supplementation 
increased the cytotoxicity of NK cells and cytotoxic T cells toward 
their target cells [61]. These studies suggest that zinc balances immune 
response by influencing several cellular pathways.

Zinc supplementation in viral infections
Several studies showed reduced symptom severity, frequency, 

and duration of common cold after zinc supplementation. Higher 
susceptibility to infections associated with zinc deficiency could 
be reversed with supplementation. Further, zinc supplementation 
enhanced the response to antiviral therapies in hepatitis and human 
papilloma virus-infected individuals [49,50]. In patients with human 
immunodeficiency virus (HIV) infections, zinc supplementation was 
found to increase the peripheral CD4+ T cells [62]. An increase in zinc 
deficiency with age increases the susceptibility of older individuals to 
viral infections. Elderly subjects supplemented with 45 mg elemental 
zinc/day for a year, demonstrated a remarkable reduction in the 
incidence of infection and plasma oxidative stress markers [58]. 

Zinc supplementation enhanced the NK cell cytotoxicity in both 
healthy and zinc deficient elderly individuals [63,64], and increased 
the peripheral CD4+ T cells in HIV patients [42]. A systematic meta-
analysis showed that zinc consumed as gluconate lozenges reduce the 
first signs of cold duration and severity [65,66]. Few clinical studies in 
the last two decades are listed in Table 1.

Zinc absorption and homeostasis
The cellular homeostasis of zinc is mediated by two protein 

families of zinc transporters and metallothionein [67]. Zinc absorption 
occurs mostly in the small intestine by a carrier-mediated mechanism 
[68]. Zinc ions released from food during digestion, are transported 
across the cell membrane into the portal circulation by specific 
transport proteins. Zinc is delivered to tissues through systemic 
circulation as a complex bound to albumin or metallothionein [69]. 
Elimination of zinc from the body is mediated mainly through the 
gastrointestinal tract. The balance between total zinc absorption and 
endogenous intestinal excretion is the primary means of maintaining 
zinc homeostasis in animals [69]. Phytic acid and fibers in diet, bind 
to zinc in the gastrointestinal tract and limit its bio-availability, while 
proteins have a positive influence on absorption [70]. High dietary 
calcium intake [71], high dosage of iron [72], and cadmium level [73] 
are also reported to limit the bioavailability of zinc. A complex of zinc 

Figure 1: Role of Zinc in immune response and antiviral activity: Zinc supplementation may prevent viral entry, suppress viral replication and improve the antiviral 
immune response.

Supplement Dose/Duration Disease Effect Reference

Zinc gluconate
10 mg of elemental zinc per day for 60 days Acute Respiratory Infections Decreased episodes [125]

30 mg of elemental zinc for 12 months. Cystic fibrosis (children) Reduced duration of antibiotics [126]

 (5/11.5 mg) lozenges, every 2-3 h/d. Common cold Reduced duration of illness [127]

Zinc acetate 20 mg/d for 5 days Lower RTI (children) Increased recovery rates (boys) [113]

Zinc bis-glycinate 30 mg/d of elemental zinc for 7 days Lower RTI (children) Decreased duration of lower RTI [128]

Zinc sulphate

15 mg/d for 7 months Common cold Decreased incidence [129]

60–90 mg/d for 12 months Ventilation associated pneumonia Decreased incidence [130]

20 mg/d of elemental of zinc for 2 weeks Lower RTI (children) Reduced morbidity [131]

Zinc Oxide 5 mg/d for 12 months Upper RTI (children) Decreased incidence [132]

Table 1: Zinc supplementation in respiratory viral infections.

RTI: Respiratory Tract Infection; mg/d: Milligram Per Day.
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with ligands, chelators, amino acids, and organic acids, increases its 
solubility and bioavailability [74]. 

Zinc deficiency
Zinc deficiency occurs most frequently in vegetarians, the elderly, 

and individuals with chronic gut diseases, which cause malabsorption 
[75]. Inherited diseases like acrodermatitis enteropathica and cystic 
fibrosis, as well as a high intake of copper, iron, or phytic acid, cause 
reduced absorption of zinc [76]. Currently, almost 17% of the global 
population suffers from zinc deficiency [77], and most importantly, 
it is responsible for 4% of global child morbidity and mortality [78]. 
Zinc deficiency is represented by growth retardation, loss of appetite, 
and impaired immune function. In severe deficiency cases, hair loss, 
diarrhea, delayed sexual maturation, impotence, hypogonadism 
in males, eye and skin lesions have also been reported [79-81]. 
Thymic atrophy, lymphopenia, and defective lymphocyte responses, 
resulting in a compromised immune system, are common due to 
zinc deficiency [82]. Inadequate zinc intake also causes significant 
etiological changes like adolescent nutritional dwarfism, diarrhea, 
pneumonia, disturbed neurological performances, and abnormal 
fetal development [83]. Zinc deficiency has also been correlated 
with acute viral hepatitis, liver cirrhosis, reduced testosterone and 
progesterone levels, and other reproductive abnormalities [76]. Other 
symptoms of zinc deficiency are weight loss, difficulty in wound 
healing, taste deviations, and mental fatigue [84-86]. In the absence 
of biomarkers to establish physiological zinc status, the early stages 
of zinc insufficiency are rarely recognized [87]. Clinical symptoms 
of zinc deficiency can be present even in the absence of abnormal 
laboratory indices [79]. Thus, it is always essential to determine 
the plasma levels of zinc, which is also not very straightforward as 
free zinc levels are very low in serum or plasma. Generally, clinical 
factors such as digestive diseases and zinc deficiency symptoms are 
considered when determining the need for zinc supplementation.

Sources and daily recommended dose of zinc
Zinc is found in several plant and animal products. Some of the 

major food products include oysters, red meat, poultry, seafood, 
fortified breakfast cereals, beans, nuts, whole grains, and dairy 
products [88]. The average daily Recommended Daily Allowance 
(RDA) of zinc as defined by the US Institute of Medicine/Food and 
Nutrition board in the 2001 Dietary Reference Intakes (DRIs) is 
11mg/day for men and 8mg/day for women [89]. The requirement 
is higher for vegetarians as zinc is not readily available from a 
vegetarian diet [79]. The pharmacological dose of zinc is equivalent 
to 40mg/day of elemental zinc, the tolerable upper intake level for 
zinc in adults. Zinc supplements are recommended to avoid nutrient 
imbalances and to manage diseases, wherein zinc may be used as an 
adjunct therapy [90]. 

Comparative bioavailability and efficacy of zinc 
supplements

Zinc is supplemented in humans as sulfate, acetate, gluconate, 
picolinate, histidine and methionine salts [91]. Very few studies 
involve a direct comparison of the bioavailability of different forms 
of zinc in humans. The important fact is that the form of zinc needs 
to become dissociated into zinc ions, which then bind to ligands 
(proteins) for transport [92]. The organic sources of zinc such as 
complexes of the metal with amino acids  or organic acids, have been 

reported to meet the requirement at lower doses and have a better 
effect than inorganic salts [93-95]. 

In a randomized, double-masked, 3-way crossover study, water-
soluble zinc salts gluconate, sulfate, and acetate were given as a 
supplement in 15 healthy adults. This study showed that zinc citrate and 
gluconate had comparable absorption, which was significantly higher 
than zinc oxide [96]. The absorption of zinc from zinc methionine, 
zinc sulfate, and zinc polysorbate either in a water solution or added 
to a standard meal was compared in nine adults in another study. The 
plasma levels of zinc were significantly higher with zinc methionine 
and polyascorbate than zinc sulfate. Supplementation with meal 
reduced the absorption of all the forms of zinc [91,97]. In one study, 
the comparative absorption of zinc after oral administration of zinc 
picolinate, zinc citrate and zinc gluconate were studied in 15 healthy 
human volunteers in a double-blind four-period crossover design. 
Zinc levels significantly increased in hair, urine and erythrocytes at 
the end of 4 weeks following oral supplementation of zinc picolinate 
but not with the citrate and gluconate forms suggesting picolinate 
form may have better bioavailability [98]. Zinc chelated with 
methionine was also found to have better bioavailability compared to 
zinc oxide and zinc polysaccharides in beagle dogs [97]. The higher 
bioavailability of zinc methionine over other zinc sources is attributed 
to the stable methionine complex, which is preferentially transported 
into tissues compared to other amino acids. It is reported to be a 
more potent antioxidant than vitamin E, vitamin C, β-carotene, 
and 4-6 times more effective than other zinc salts such as oxide and 
sulfate, citrate, gluconate, and picolinate [99,100]. Compared to 
polyascorbate and sulfate, zinc methionine has 16% better absorption 
capability (Figure 2) [91]. These studies suggest that organic source of 
zinc is better absorbed compared to zinc salts.

Corroborating these studies, the efficacy of organic zinc was also 
reported to be better than zinc salts. Shrimp fed diets with organic zinc 
supplementation (methionine, lysine and glycine chelates) produced 
significantly higher growth, survival and immune parameters than 
ZnSO4 treatment [101]. Zinc nicotinate, an organic source, was 
significantly better than zinc carbonate salt in improving growth 
performance, hematology, serum biochemical constituents oxidative 
stress, and immunity in rats [102]. Similar results were observed in 
sheep supplemented with zinc methionine, which showed improved 
growth, energy balance, and gastrointestinal development [103]. 

Clinical Studies with Zinc Supplements
Zinc citrate

Zinc citrate has been widely studied in the improvement of oral 
health. In a crossover clinical study, zinc citrate dentifrice showed a 
24-52% reduction in anaerobic bacteria and streptococci compared 
to control formulation after 14 days. The zinc citrate dentifrice could 
reduce biofilm formation and also significantly reduce anaerobic 
bacteria and streptococci, five hours post brushing compared to 
control [104]. In another clinical study, the use of zinc citrate 
dentifrice for 6 months showed a statistically significant (50.2%) 
reduction in severe plaque and severe gingivitis (66.7%) reduction in 
over the control dentifrice [105].

Zinc gluconate
Zinc gluconate supplementation for three months showed efficacy 
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in reducing acne in a multicenter randomized, double-blind trial in 
comparison with minocycline [106]. In a randomized, double-blind, 
placebo-controlled trial, of zinc gluconate supplementation in elderly 
subjects for 12 months, the incidence of infections, TNF-α levels 
and plasma oxidative stress markers were significantly lower with 
zinc gluconate supplementation than placebo, suggesting its efficacy 
in immune modulation [107]. In another study, zinc gluconate 
supplementation for eight weeks significantly reduced the levels of hs 
CRP and IL-6 in serum compared to placebo, suggesting a favorable 
effect on obesity-related inflammation in young adults [108]. Zinc 
gluconate supplementation improved nutritional status and clinical 
outcome in patients with ulcerative colitis, reinforcing zinc’s role as an 
important dietary component in disease control [109]. Zinc gluconate 
administration prior to allergen exposure significantly decreased the 
neutrophil infiltration and TNF-α release into the airways in mice. 
Zinc supplementation reduced airway hyperresponsiveness and 
serum IgE levels, although Th2 cytokine expression was not affected 
[110]. Dietary supplementation with zinc gluconate for three months 
effectively reduced respiratory morbidity in preschool children, 
suggesting that zinc gluconate supplements can positively influence 
response to infection and build immunity [111].

Zinc acetate
Zinc acetate was evaluated for the reduction in symptoms of cold 

and respiratory infections in clinical studies. Compared to placebo, 
zinc acetate supplemented individuals had a shorter mean overall 
duration of cold symptoms, cough, nasal discharge, and overall 
severity [112]. In a controlled trial, children in the age group of 2-24 
months were treated with zinc acetate either alone or in combination 
with vitamin A. Recovery from illness severity and fever significantly 
better in zinc acetate treated boys compared to placebo control [113]. 
In another study, zinc acetate and chlorhexidine diacetate mouth 

rinse showed long-term efficacy against intra-oral halitosis than 
placebo mouth rinse [114].

Zinc picolinate
Zinc picolinate is an organic supplement wherein zinc atom is 

attached to a picolinic acid molecule. While the supplement is believed 
to increase bioavailability, scientific literature to support the claim is 
limited. In a clinical study, patients with COPD were supplemented 
with zinc picolinate for eight weeks, significantly increasing mean 
antioxidant (superoxide dismutase) and zinc levels. However, no 
significant change in levels of forced expiratory volume in one second 
(FEV1) and the ratio of FEV1 and Forced Vital Capacity (FVC), 
FEV1/FVC (%) parameters was observed after zinc supplementation 
[115]. 

Zinc monomethionine
Zinc methionine is a complex of zinc with DL- or L-methionine. 

The amino acid methionine is one of the essential amino acids for 
humans and a free radical scavenger due to the presence of sulfur 
atom. It is involved in the production of S-adenosyl methionine, L 
cysteine, and glutathione, which are involved in maintaining the 
cellular redox state. Dietary methionine and cysteine are important 
to ensure the health of the intestine and immune function. Unlike 
other zinc supplements, the methionine form does not remove iron 
from cells, causing anemia or increasing lead absorption [116].

Zinc methionine acts as a potent free radical scavenger and 
inhibitor of oxidative stress and cellular injury. Zinc methionine was 
shown to resist binding with dietary fiber and phytate, which usually 
inhibits zinc absorption. Compared to other salts, zinc methionine 
showed higher inhibition of superoxides (Figure 3a) and hydroxyl free 
radicals (Figure 3b) [99]. The antioxidant activity of zinc methionine 
was reported to be comparable to vitamins E, C, and β-carotene, and 
significantly more than other zinc salts.

Zinc methionine supplemented to 48 patients orally for three 
months showed improvement in the global acne count. 80-100 % 
improvement was observed in 78% (38/48) patients. A significant 
reduction in pustules, papules and closed comedones was reported 
in the study [117]. Zinc methionine as a dietary supplement in laying 
hens showed positive effects on the zinc status of liver, duodenum, 
jejunum, intestinal morphology, and metallothionein mRNA 
expression [118]. A 24 week, randomized controlled study on 27 
client-owned dogs with chronic Canine Atopic Dermatitis (CAD) 
receiving zinc methionine showed a significant decrease in Canine 
Atopic Dermatitis Lesion Index (CADLI) and pruritus Visual 
Analog Scale (VAS) [119]. Better bioavailability of Cu-and Zn- in 

Figure 2: Comparative bioavailability study of various Zinc salts [91].

Figure 3: Inhibition of a) superoxide anion and b) hydroxyl radicals by Zinc methionine in comparison to other salts at 50μM concentration [99].
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gut absorption value, plasma, and liver tissue was observed in female 
sheep with Cu- and Zn-methionine supplementation compared 
to Cu- and Zn-sulphate [120]. In a recent clinical study, a phyto-
mineral supplement containing zeaxanthin, lutein, piperine, extracts 
of bilberry and saffron, in combination with zinc monomethionine, 
maintained eye health and stalled further progression of early-stage 
dryness in patients with age-related macular degeneration [121].

Current status and future perspectives
Zinc has proven antiviral and immune-boosting activities and 

is considered as a prophylactic or adjunct therapy for SARS-CoV-2 
infection. Several clinical trials using zinc as either a prophylactic 
or adjunct therapy are being carried out in different parts of 
the world, highlighting this mineral’s relevance for COVID-19. 
Several researchers have speculated the role of zinc in COVID-19 
pathogenesis and prophylaxis. Table 2 lists the publications related to 
the role of zinc in COVID-19.

So far, one clinical study has shown better outcome in patients 
supplemented with zinc and one case study reports beneficial effects 
of zinc supplementation for COVID-19 progression [122,123]. 
Complications associated with COVID-19 infection were found to 
be higher in patients with lower levels of zinc compared to healthy 
individuals [124]. Although we may not yet understand the optimum 
level of zinc supplementation for COVID-19 infection, it is well 
established that zinc levels are important to develop resistance against 
the infection and positively influence the immune system. Thus, it is 
imperative to choose the right supplement with a proven safety record. 
Organic source of zinc appears to be better absorbed compared to 
zinc salts. Zinc as gluconate, citrate, and methionine chelates are 
extensively studied. Surprisingly, although Zinc picolinate is widely 
used as a supplement with greater bioavailability claims, there are 
very few scientific studies to back this claim. The methionine form of 
Zinc (Zinc monomethionine) may be the preferred supplement due 
to its superior bioavailability. Methionine is involved in the synthesis 

of several essential hormones and growth factors and is the methyl 
donor in biological reactions in the form of S-adenosyl methionine. 
Another advantage could be that its least affected by diet composition 
and does not affect the iron absorption. Robust immune system and 
resistance to infection are the need of the hour and zinc supplements 
may be the answer to tackle the pandemic positively. These strategies 
will definitely help humanity in facing the future emergence of 
pandemic infections.

Conclusions
The current pandemic of SARS-CoV-2 infection has prompted 

researchers to look for essential nutrient supplements with antiviral 
properties and induce an effective immune response. Although 
randomized controlled studies on the effect of zinc supplements on 
SARS-CoV2 infection are minimal, several trials are being planned 
and few are ongoing. Evidence from literature, strongly suggests 
that zinc supplementation may be highly beneficial in reducing 
the severity and morbidity associated with the infection. Zinc 
supplements are cost effective and are simple options to respond to 
oxidative stress, uncontrolled inflammation and infection caused by 
the virus. Choosing the right supplement for the population at risk 
may be highly helpful for tackling the pandemic more effectively.
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