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Abstract 

Background: Fatty acid metabolism plays an important role in 
many biological activities, such as cell membrane formation, energy 
storage, and signal molecule generation in tumorigenesis. Lipid me-
tabolism affects the progression and treatment of Bladder Cancer 
(BLCA). Therefore, it is imperative to explore the function and prog-
nostic value of lipid metabolism-related genes in BLCA patients.

Methods: In this study, we collected gene expression profiles 
and clinical information in The Cancer Genome Map (TCGA) da-
tabase and two independent Group on Earth Observations (GEO) 
datasets. Gene interaction information was obtained from ENCORI 
database. Based on these databases, we analyzed the expression 
patterns of genes and proteins involved in fatty acid metabolism 
and their matching clinicopathological features. Further, the gene 
for fatty acid metabolism, FN1, was screened for cellular function 
science experiments to validate our findings. 

Results: Analysis in the TCGA database identified 310 fatty acid 
metabolism-related mRNAs, 91 of which were differentially ex-
pressed in BLCA patients. Based on the correlation of Differentially 
Expressed Genes (DGEs) with patient characteristics, we developed 
a clinical prognostic correlation model and validated the accuracy 
of the model based on information from the GEO database. Sur-
vival analysis and clinical correlation analysis showed that elevated 
FN1 levels were highly correlated with shorter survival, higher stag-
ing, higher grading, and lower infiltration of immune cells in BLCA. 
Furthermore, we experimentally verified that FN1 can activate the 
IL6 -JAK - STAT3 pathway and further promote PD-L1 expression, 
which would serve as a potential factor for immune escape in blad-
der cancer. Finally, our experimental results were consistent with 
the bioinformatics analysis.

Keywords: Bladder cancer; Fatty acid metabolism; Immunother-
apy; fn1

Abbreviations: BLCA: Bladder Cancer; FA: Fatty Acids; TCGA: 
The Cancer Genome Map; GEO: Group on Earth Observations; GO: 
Gene Ontology; KEGG: Kyoto Encyclopedia of genes and genomesBackground

BLCA is one of the most common malignant tumors, particu-
larly in the middle-aged and elderly [1]. Although a variety of 
treatment methods have been developed in recent years, such 
as surgery, chemotherapy, and targeted therapy, most patients 
relapse after treatment, resulting in high medical costs and low 

quality of life [2]. In addition, BLCA is a disease with relatively 
high treatment cost, which causes a considerable disease bur-
den to individuals and society [3]. Therefore, it is very important 
to explore new therapeutic targets and develop new prognostic 
models in BLCA [4]. 
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Metabolic disorder is one of the characteristics of cancer [5]. 
Lipid metabolism reprogramming is one of the most significant 
metabolic changes observed in cancer cells and has attached 
more and more attention [6]. Fatty Acids (FA) are required for 
energy storage, membrane proliferation and signal molecule 
generation [7]. FA are important components of lipid metabo-
lism, and their accumulation can meet the needs of lipid syn-
thesis signal molecules and membranes [8]. Therapies targeting 
deregulated fatty acids in cancer may slow tumor growth and 
have synergistic effects with immune checkpoint inhibitors [9]. 
More than this, the prognostic value of fatty acid metabolism-
related genes and their relationship with BLCA immunotherapy 
remain largely unknown. The gene set related to fatty acid me-
tabolism in BLCA has not been systematically studied. There-
fore, we think it is necessary to further explore the mechanism 
of fatty-acid metabolism genes involved in the tumorigenesis 
and development of BLCA. 

In this study, we comprehensively evaluated the metabolic 
pattern of fatty acids by analyzing the genomic information of 
433 BLCA samples. Combining the TCGA database and two in-
dependent GEO datasets, we analyzed the sequencing data of 
BLCA and constructed a fatty acid prognostic risk score mod-
el. The prognostic risk score model can independently predict 
the survival outcome of BLCA patients. We investigated the 
relationship between the prognostic risk score model and the 
characteristics of TME cell infiltration. Prognostic risk scoring 
model can effectively distinguish whether patients are sensitive 
to BLCA immunotherapy. Therefore, fatty acid metabolism is 
crucial in forming individual TME characteristics. We found that 
FN1 was significantly high expressed in tumor tissues of BLCA 
patients compared with tumor-adjacent tissue. In addition, the 
results of clinical correlation analysis showed that the expres-
sion of FN1 was related to the clinical stage, tumor invasion, 
and immune invasion of BLCA patients. By further exploring the 
possible molecular mechanism of FN1 in BLCA, we found that 
it is involved in immune escape. Recently, increasingly people 
pay attention to the role of CD8+T cells in tumor immunity [10-
13]. Our analysis results indicate that FN1 may participate in 
tumor immune checkpoint blocking (PD-L1 and CTLA4). Finally, 
we detected the expression of FN1 in BLCA tissue samples and 
verified its potential significance. These findings provide a new 
perspective for exploring the metabolic mechanism and treat-
ment of BLCA. 

Methods

Data Collection and Processing

TCGA database (https://portal.gdc.cancer.gov/) was used to 
obtain transcriptome analysis data of BLCA tumors and tumor-
adjacent tissue. Then, 19 normal samples and 433 BLCA sam-
ples were obtained. At the same time, the clinical information 
of the samples was obtained from TCGA database, and other 
BLCA related datasets were downloaded from GEO database 
(https://www.ncbi.nlm.nih.gov/geo/). The overview design of 
this study is displayed (Figure 1). We used the annotation plat-
form to convert the entrez gene ID of each sample into the cor-
responding gene symbol. If the same entrez gene ID is targeted 
by multiple probes, the average value is used. We also down-
loaded the matched clinical and survival data from the TCGA 
queue, including gender, age, pathological stage, AJCC-TNM 
classification (TNM) stage, and prognosis information. Finally, 
412 BLCA samples were included to form a training set of TCGA 
data. The original readings of the above data are processed and 
standardized in R software.

Enrichment Analysis of the DEGs in Normal and Cancer Tis-
sue Samples

We used "limma" R package to analyze genes related to fatty 
acid metabolism differentially expressed in normal and cancer 
tissue samples. The gene p<0.05 was statistically significant. 
The "clusterProfiler" R package was used for Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis of DEGs in BLCA tissues to deter-
mine the main biological characteristics and cellular functional 
pathways (p<0.05). Finally, we used the "enrichment map" and 
"ggplot2" R package to visualize the enrichment analysis results.

Development and Verification of a Prognostic Risk Score 
Mode

TCGA queue samples are classified as training sets for the 
development and validation of predictive risk scoring models, 
and GEO queue samples are used as test sets. First, we used 
the sample ID to combine the expression level of fatty acid me-
tabolism related genes differentially expressed in each sample 
with the corresponding prognosis results. By univariate Cox re-
gression analysis in the training set, genes related to prognosis 
were screened from DGEs related to lipid metabolism. Finally, 
the genes with p<0.05 were obtained. The "maftools" R pack-
age is used to analyze the mutation and correlation of genes in 
the BLCA samples of the training set. Prognostic related genes 
were further processed by "glmnet" R software package and 
LASSO Cox regression analysis. Based on these genes, we can 
develop a prognostic risk scoring model to predict OS of BLCA 
samples. The following formula can calculate the risk score of 
each sample:

Risk score= ∑1 
x (Coefi*ExpGene x)

Figure 1: The overview design in this study.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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The "Coef" represents the non-zero regression coefficient 
calculated by LASSO Cox regression analysis, and "Exp Gene" 
is the gene expression value from the prognostic risk scoring 
model. All samples were divided into low and high-risk scoring 
groups according to the median risk score. Kaplan Meier analy-
sis and log-rank test were used to compare the OS difference 
between high and low risk scoring groups. The "survival ROC" 
R was used to draw the time-dependent ROC curve to evaluate 
the prediction accuracy of the prognostic risk scoring model. Fi-
nally, the reliability and applicability of the prognostic risk scor-
ing model were further verified in the test set.

Principal-Component Analysis (PCA) Comparison Before 
and After Prognostic Risk Score Model

We used the “Limma” package to perform PCA on the gene 
expression profile before and after the prognostic risk scoring 
model in the training set to understand the significant differ-
ence between the high and low risk scoring groups. Firstly, PCA 
was performed on the expression profiles of all DGEs related 
to fatty acid metabolism. The gene expression profile from the 
prognostic risk score model was then analyzed using PCA. Fi-
nally, we used the “ggplot2” package to display the PCA results 
on a two-dimensional graph.

Correlation Analysis between Risk Score and Clinical Char-
acteristics

In the TCGA queue, the “CMS caller” R package was used 
to classify all samples into CMS according to their characteris-
tics, and then we combined the risk score of each sample with 
the clinical characteristics according to the sample ID. “limma” 
package was used to explore the relationship between risk 
scores and clinicopathological characteristics of BLCA patients, 
including gender, age, pathological stage, AJCC-TNM stage and 
CMS. In addition, the immune cell infiltration level obtained 
from TCGA database, was divided into high and low risk groups 
based on the median value. The difference of immune cell infil-
tration between the two groups was compared. Collected clini-
cal information related to BLCA in GEO queue to determine the 
correlation between risk score and clinical characteristics. Ac-
cording to the clinical characteristics, the samples were divided 
into high risk and low risk groups to compare the difference of 
risk scores. Wilcoxon rank sum and Kruskal Wallis (K-W) test 
were used to compare two groups and more than two groups, 
respectively (p<0.05).

GSVA Analysis

GSVA is carried out on the gene spectrum through "GSVA" R 
package to compare the difference of biological processes be-
tween high and low rating groups. GSVA is a nonparametric and 
unsupervised method that can evaluate pathway changes or 
biological processes by expressing matrix samples. The gene set 
in the molecular signature database (https://www.gsea-msigdb.
org/gsea/msigdb) is used as the reference gene set. FDR<0.05 
indicates a statistically significant enrichment pathway.

PPI Network

Use STRING online database (https://cn.string-db.org//) to 
analyze DEGs to generate PPI network data with an interaction 
score >0.40 (median confidence). Then, the PPI network data is 
further processed and displayed using the Cytoscape software 
(version 3.7.2). Then the DGEs in para-carcinoma tissue and 
BLCA tissues were collected. The “cluster Profiler” R package 
was used for GO and KEGG enrichment analysis of genes. Fi-

nally, all samples were divided into low expression group and 
high expression group according to the median value of central 
gene expression. Kaplan Meier analysis was used to determine 
whether there was a difference in survival between the two 
groups. Comparison of immune cell infiltration in central genes 
related to prognosis. 

Development of a Nomogram for Predicting OS

According to TCGA, "Rms" R package was used to build a no-
mogram with age, sex, pathological stage, and prognosis risk 
score model for the prediction of BLCA-OS. We respectively 
drawed calibration curves (1 year, 3 years, 5 years) to predict 
the accuracy of the nomogram. In addition, multivariate Cox 
regression analysis was used to verify whether the prognostic 
risk scoring model can be used as an independent indicator of 
BLCA-OS prediction. Then the AUC was calculated, and the pre-
dicted value of the nomogram was represented by the online 
ROC curve.

Bioinformatic Analysis of the Target Gene

The TIMER 2.0 database (http://TIMERgenomics.org.com) 
showed the differential expression of FN1 between BLCA tu-
mors and para-carcinoma tissue. After analysis, it was found 
that FN1 in BLCA was significantly increased compared with the 
normal bladder tissues, and the paired differential expression 
analysis was conducted. We used TIMER2.0 to explore the dis-
tribution of tumor infiltrating CD8+T immune cells. In addition, 
it also proves the correlation between FN1 and immune check-
points for cancer treatment (such as CTLA4 and PD-L1).

Cell Culture

BLCA cell lines (T24, BIU87) were purchased from the Typical 
Culture Collection Center of the Chinese Academy of Sciences 
(Shanghai, China), and 10% fetal bovine serum (FBS; Biological 
Industries, Israel) and 1% penicillin/streptomycin (Gibco, Ther-
mo Fisher Scientific, USA) were included in the study. All cell 
lines were cultured at 37 ℃ in a humidified incubator contain-
ing 5% CO2.

Transfection

In order to reduce the expression of FN1 in T24 and BIU87 
cells, the transfection was constructed by HANBIO (Shanghai, 
China) and produced three independent siRNAs targeting FN1 
and a negative control siRNA. The targeted sequence follows si-
FN1 # 1 (5′-CAGUCAAAGCAAGCCCGGUUGUUAU-3′) or si-FN1 # 
2(5 ′CCAGAGUACGACUGUATT-3′). The control siRNA sequence 
was (5 ′ UUCUCCGAACGUGUCACGUTT-3′). According to the 
manufacturer's scheme, siRNA was transfected by using Lipo-
fectamine 3000 reagent (Invitrogen, Thermo-Fisher Scientific, 
USA). Then the lentivirus particles were transfected into the T24 
and BIU87 cells.  (Shanghai, China), and according to the manu-
facturer's instructions, it was transfected using Lipofectamine 
3000 (Invitrogen, Carlsbad, CA, USA) to increase the expression 
of FN1. Detection was performed 48 hours after transfection.

Clinical Specimens

Bladder cancer tissues and their matched para-carcinoma 
tissue were taken from BLCA patients who underwent surgery 
in the Affiliated Hospital of Nanjing University of Chinese Medi-
cine (Jiangsu Province Hospital of Chinese Medicine) from 2015 
to 2022. The deadline for follow-up is June 2022. All patients 
signed the informed consent form before using the clinical 
materials. The Jiangsu Province Hospital of Chinese Medicine 
proved the organization used in this study.

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://cn.string-db.org//
http://TIMERgenomics.org.com
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RNA isolation and qRT PCR 

Total RNAs were used to extract from bladder cancer tis-
sues and cell lines using TRIzol-reagent (Invitrogen, Ther-
mo-Fisher Scientific, USA) according to the manufacturer's 
instructions. Use HiScript II (Vazyme, China) to synthesize 
cDNA. qRT-PCR of mRNA was performed on StepOne Plus 
real-time PCR system (Applied Biosystems, USA). Each sam-
ple was repeated three times, and the data were analyzed 
by comparing CT values. Primer sequences include: FN1: " F: 
5′-GAGAATAAGCTGTACCATCGCAA-3′ "and" R: 5′-CGACCACATAG-
GAAGTCCCAG-3′; β-Actin: "F:GGAGATTACTGCCTGGCTCCA" and 
" R:GACTCATCGTACTCCTGCTTGCTG" , purchased from TSINGKE 
Biological Technology (Beijing, China). We calculated multiple 
changes in mRNA expression by 2-ΔΔCT method.

Cell Proliferation and Colony Formation Assay

For cell proliferation assay, cells were evenly spread in a 96-
well plate with the density of 2000 cells/well. At 24, 48, 72 and 
96 hours after inoculation, the cells were incubated in 10μl /
well CCK-8 diluted for 1 hour. We use a microplate reader (Te-
can, Switzerland) to measure the absorbance of cells at 450nm. 
For colony formation assay, cells were inoculated on 6-well 
plates at the rate of 1000 cells/well (T24), and incubated in 5% 
CO2 at 37°C for 2 weeks. After fixed with methanol, the cells 
were stained with 0.1% crystal violet for 30 minutes, and then 
the colonies were imaged and counted.

Wound Scratch Assay 

To determine the effect of FN1 on cell migration. We uni-
formly inoculate the transfected T24 cells in a 6-well plate. 
When the cell density reaches 90-95%, using 200 μl tip of the 
pipette draws a straight wound through the cell layer. The cells 
were washed with Phosphate Buffered Saline (PBS) to remove 
the isolated cells and kept at 37˚C in a humidified incubator 
containing 5% CO2. The digital camera system (Olympus, Tokyo, 
Japan) was used to take images of wound closure at 0 and 24 
hours.

Protein Extraction and Western Blot

Tissues or cells are lyzed by RIPA buffers (Sigma, USA). The 
concentration of total protein extract was determined by BCA 
assay (Beyotime, China). The proteins were isolated and trans-
ferred to Polyvinylidene Fluoride (PVDF) membrane (Millipore, 
USA) by SDS-PAGE. The PVDF membranes were incubated with 
primary (Cell Signaling and Technology, USA) and secondary an-
tibodies (Protech, USA) after blocking with 5% skim milk. The 
protein levels were evaluated using Chemiluminescence (Bio-
Rad, USA) and Image Lab Software.

Enzyme-Linked Immunosorbent Assay (ELISA)

FN1 were mock-infected or infected with lentivirus to ex-
press the FN1 gene, followed by collection of cell culture media 
at 2 days and analysis for IL-6 protein levels by Enzyme-Linked 
Immunosorbent Assay (ELISA) according to the manufacturer’s 
instructions (R&D Systems, Minneapolis, MN, USA, #Q6000B).

Statistical Analysis

Rank sum test was used to compare the differences between 
the two groups. K-W test was performed to compare three or 
more groups. Kaplan Meier analysis was used to evaluate the 
survival difference between low rating group and high rating 
group. Multivariate Cox regression analysis was performed to 

determine independent indicators for predicting BLCA-OS, ROC 
curve was drawn to evaluate the predictive effect of the prog-
nostic risk scoring model and nomograph. All statistical analyses 
were performed using R 4.1.2 (p<0.05). 

Results

Enrichment Analysis of Normal and Cancer Tissue Samples

We identified DEGs between normal and BLCA samples in 
the TCGA database. Taking p value <0.05 as the critical crite-
rion, a heat map (Figure 2a) was drawn to visualize the expres-
sion difference of DEGs in TCGA database in tumor samples and 
normal samples. In addition, by comparing the differences in 
gene expression between tumor samples and normal samples, 
a volcano map (Figure 2b) was drawn to visualize the changes in 
DEGs expression in TCGA database. Then, GO enrichment analy-
sis was performed on DEGs. Fatty acid metabolism, fatty acid 
catabolism, and nucleoside diphosphate metabolism processes 
are highly enriched in GO terms in biological processes (Figure 
S1 a-c). The results of enrichment analysis of KEGG show that 
fatty acid degradation, metabolism, biosynthesis, and elonga-
tion are highly enriched KEGG terms (Figure S1 d-f). These re-
sults indicate that fatty acid metabolism plays an important role 
in the development of BLCA.

Prognostic Risk Score Model Development in the Training 
Set

Samples from the TCGA cohort were classified into training 

Figure 2: Different expression of fatty acid metabolism genes in 
BLCA. 
(a) A Heat map of DEGs related to fatty acid metabolism. (433 BL-
CAs and 19 para-carcinoma tissues from TCGA database) Red to 
blue bars indicate high to low gene expression. (b) Volcanic map 
of DEGs in TCGA-BLCA cohort. The red dot represents the upregu-
lated gene, and the green dot represents the downregulated gene. 
(c) Forrest plot of 18 fatty acid metabolism-related genes related 
to prognosis. (d) Mutation frequency of 18 fatty acid metabolism 
related genes in 433 BLCA patients from TCGA cohort. (e) Analysis 
of co-occurrence and exclusion of mutations in 17 fatty acid me-
tabolism-related genes. Co-occurrence: green; Exclude: brown. (f) 
LASSO coefficients of 17 genes related to fatty acid metabolism. 
(g) Identification of genes for the development of a prognostic risk 
score model. (h) Principal component analysis based on all fatty 
acid metabolism-related genes BLCA. (i) Principal component anal-
ysis based on fatty acid metabolic risk score to distinguish between 
tumor and normal samples in TCGA cohort. The groups marked red 
represent high-risk patients, and the groups marked blue represent 
low-risk patients.
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sets. Univariate Cox regression analysis was performed on 91 
differentially expressed fatty acid metabolism related genes. A 
total of 18 genes related to prognosis were identified, with a p 
value <0.05 (Figure 2c). The somatic mutation spectrum of 18 
fatty acid metabolism-related genes related to prognosis was 
summarized. A total of 55 of the 412 BLCA samples had fatty 
acid metabolism-related gene mutations, with a frequency of 
13.35%. A waterfall chart (Figure 2d) was drawn according to 
the mutation frequency and mutation type of patients, show-
ing the gene mutations of metabolism-related deg. Gene muta-
tions occur in BLCA patients, and FASN shows the highest mu-
tation frequency. It is noteworthy that missense mutations are 
the main mutation type. In addition, the top 10 mutated genes 
are: FASN, SLC27A2, ACSBG2, ACLY, ACSF2, ME1, ACAT1, FAAH, 
HPGDS, CYP1B1. In BLCA samples, there was a mutation co-oc-
currence positive correlation between ACSF2 and PTGIS, ACLY 
and DHCR24, SLC27A2, and CYP1B1 (p<0.05) (Figure 2e). The 
minimum absolute shrinkage and selection algorithm (lasso) 
Cox regression analysis was then used to narrow the number of 
genes. Finally, 11 genes (CYP1B1, FAAH, ACSBG2, ACSF2, ME1, 
FASN, ACAT1, ACIY, HPGDS, PTGIS, and SLC27A2) were used to 
construct the prognostic risk scoring model (Figure 2f-g). The 
risk score of each sample was calculated using the following 
formula:

Risk score = (0.0560435202144054)×CYP1B1+(-
0.0154535814114674)×FAAH+(-1.07303447229439) ×AC
SBG2+(0.0329125914816619)×ACSF2+(0.016513121140
0006)×ME1+(0.216902277328225)×FASN+(0.016943051
5663676)×ACAT1+(0.251261830518137)×ACLY+(0.11612-
6373391904)×HPGDS+(0.049187062817117) ×PTGIS+(-
0.0709584697172027)×SLC27A2. The risk scoring model was 
used to completely distinguish BLCA samples (low-risk or high-
risk) (Figure 2h and Figure 2i).

The Relationship between Risk Score and Clinical Features

The critical value is the median value of the risk score in 
the training set. According to the above cut-off values, the risk 
scores of the samples were sorted and divided into low-risk 
score group (and high-risk score group). The risk score distri-
bution of the age, sex, pathological stage, and TNM stage of 
the American Joint Committee on Cancer (AGCC) of the cor-
responding samples was analyzed. Although there was no sig-
nificant difference between risk scores and gender, higher risk 
scores were associated with higher age, high grade, advanced 
pathological stage, and AGCC-T (tumor invasion) stage, AGCC-
N (lymphatic metastasis), AGCC-M (distal metastasis) (Figure 
3a-g). In addition, we found that the risk score was related to 
the immune classification (p<0.05; Figure 3h). The prognosis of 
samples in the high-risk group was worse than that in the low-
risk group (P<0.001; Figure 3i), indicating that the prognostic 
risk score model can predict the Overall Survival rate (OS) of 
BLCA (P=0.001; Figure 3j). The time-dependent subject operat-
ing characteristics (ROC) at 1, 3 and 5 years were plotted (Figure 
3k) to verify the sensitivity of the prognostic risk scoring model 
(Figure 3l). For the validation of the prognostic risk score mod-
el, the test group samples from GEO were divided into low and 
high-risk score groups according to the threshold determined 
by the training set. Among the factors related to OS in univari-
ate analysis, including age, pathological stage, and risk score 
(p<0.001; Figure 3m). Nevertheless, in multivariate analysis, risk 
score and pathological stage were independent predictors of OS 
(p<0.001; Figure 3n).

Construction of a Nomogram for Predicting the Survival of 
BLCA Patients

The Nomogram integrating age, sex, pathological stage, clini-
cal grade, AGCC -T, N, M level, and prognostic risk score model 
was used for OS prediction of BLCA samples (Figure 4a).The cali-
bration curves at 1, 3, and 5 years proved that the nomogram 
integrating age, sex, pathological stage, clinical grade, AGCC-T, 
N, M level and prognostic risk score model is used for OS predic-
tion of BLCA samples (Figure 4b). Uniforest showed that clini-
copathological stage (p<0.001) and Nomogram (p<0.001) were 
independent prognostic indicators (Figure 4c). The results of 
multiforest analysis show that Nomogram is a prognostic target 
(p<0.001; Figure 4d). The Area Under ROC Curve (AUC) shows 
that Nomogram (AUC=0.840) has better prognostic value than 
single indicators, such as age (AUC=0.609), stage (AUC=0.674) 
and prognostic risk scoring model (AUC=0.775) (Figure 4e-f). 
Gsva enrichment was performed using the "c2.cp.kegg.v7.2" 
gene set downloaded from the molecular characterization da-
tabase (MSIGDB) to explore the biological behavior of the two 
groups. We found that most metabolic pathways, including fatty 
acid metabolism, were enriched in the high-risk score (Figure 
4g). The enrichment pathway of the high-risk population was 
positively correlated with the tumor progress and immune bio-
logical processes, such as the WNT signaling pathway, B cell re-
ceptor signaling pathway, and Mammalian Target of Rapamycin 
(mTOR) signaling pathway.

Immune-Related Characteristics in the Low- and High-Risk 
Score Groups

Figure 3: The predictive value of fatty acid metabolism score model 
for the survival status of patients with bladder cancer. 
(a-h) The relationship of risk score and clinicopathological features, 
including age (a), gender (b), tumor invasion (c), stage (d), AGCC-
T (tumor invasion) stages (e), AGCC-N (f), AGCC-M (g), immune 
subtype (h). (i) The comparison progression-free survival (PFS) be-
tween low- and high- risk score groups in the training set and the 
test set, p value <0.05. (j) The comparison of OS between low- and 
high- risk score groups in the training set and the test set, p value 
<0.05. (k) The predictive values of the risk score measured by ROC 
curves in the training set. The AUC are 0.718 and 0.559. (l) The pre-
dictive value of the risk score measured by ROC curves. The test set, 
The AUC are 0.718 and 0.559. (m) The forest plot of the univariate 
Cox regression analysis in TCGA cohort. (n) The forest plot of the 
multivariate Cox regression analysis in TCGA cohort.
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The correlation between risk characteristics and immune 
classification of BLCA was evaluated. The risk scores were dif-
ferent for different immune classifications. The risk scores of 
C1 and C2 were higher than those of C3 and C4 (Figure 3h). 
Through analysis, it was found that the expression of genes 
related to fatty acid metabolism in bladder tumor tissue was 
correlated with immune cell infiltration. The genes with high 
expression of multiple immune cell infiltration in bladder tumor 
tissue were ACTA2, COL5A1, CXCL12, DCN, TPM2, and so on. 
In the analyzed genes related to fatty acid metabolism, it can 
be seen that B cells, Plasma cells, T cells CD4 memory reset-
ting, mono-cells, macrophages M2, and Mast cells resetting 
are infiltrating immune cells in the high-risk group, and naive 
B cells, CD4 memory resetting, CD4 memory resetting, macro-
phages M2, Mast cells resetting, and neutrophils are enriched 
higher than those in the low-risk group (Figure 5a). In addition, 
APC co inhibitory response, APC co stimulatory response, CCR, 
checkpoint, cytolytic activity, para-inflammation, inflammation-
promoting, T cell co-stimulation, T_ cell_ Co-inhibition and 
para-inflammation were also activated in the high-risk group, 
which indicated that patients in the high-risk group with im-
munosuppression could respond to immunotherapy (Figure 
5b). CIBERSORT analysis showed that in BLCA, the correlation 
between the level of immune cell infiltration and differential 
gene expression was significant (Figure 5c-g). Quantification of 
fatty acid metabolism risk score is a new and reliable biomarker 
used to evaluate the prognosis and clinical response of immu-
notherapy.

Protein-Protein Interaction (PPI) Network of DEGs in the 
Low and High Risk Score Groups

The string online database was used to analyze the expres-
sion profile of DEG in the low-risk and high-risk scoring groups. 
The Protein-Protein Interaction (PPI) network was constructed 
using DEGs as shown in Figure 6a. The total genes in the net-
work were selected, as shown in Figure 6b. By comparing the 
gene expression differences between normal and tumor, a total 
of 11 core genes in the network were selected: FN1, EGFR, CO-
L1A2, ITGAM, DCN, ALB, COL3A1, ACTA2, TPM2, COL5A1, and 
CXCL12. The core genes at the center of the protein interaction 
network are FN1, COL1N3, COL1A2, and EGFR.

Analysis of Single Gene Prognosis and Clinicopathological 
Characteristics 

We conducted a single gene survival analysis of BLCA pa-
tients. The analysis showed that the survival rates of FN1 
(p<0.001), ACTA2 (p=0.002), ALB (p=0.019), COL1A2 (p=0.002), 
COL3A1 (p=0.004), COL5A1 (p=0.002), CXCL12 (p=0.004), DCN 
(p=0.008), EGFR (p<0.001), and TPM2 (p=0.014) high expression 
groups were lower than those of low expression groups (Figure 
S2a-i). The level of single gene expression was significantly neg-
atively correlated with the survival prognosis of BLCA patients. 
In addition, the above genes were analyzed for clinical charac-
teristics (age, gender, classification, clinical stage, TNM stage). 
The analysis found that the expression of ACTA2 (p=0.003), CO-
L1A2 (p=0.043), COL3A1 (p=0.036), COL5A1 (p=0.044), CXCL12 
(p=0.00011), DCN (p=0.019), FN1 (p=0.047), TPM2 (p=0.014) 
increased with age (Figure S3a-h). Among them, the expression 
of ACTA2, COL1A2, COL3A1, COL5A1, CXCL12, DCN, FN1, TPM2 
is positively correlated with the stage (FigS4a-h) and grade 
(FigS5a-h) of BLCA. It is proved that the expression of ACTA2, 
COL1A2, COL3A1, COL5A1, CXCL12, DCN, FN1, TPM2 is associ-
ated with poor prognosis.

Correlation between FN1 and Prognosis of BLCA 

Through bioinformatics analysis, FN1 is related to the clini-
copathological characteristics and prognosis of BLCA. Through 
extensive cancer analysis found that FN1 is high expression of 
urinary epithelial tumors (Figure S 6i). In BNCORI database, 411 

Figure 4: The predictive value of fatty acid metabolism score in 
combination with clinical pathological characteristics in OS of pa-
tients from TCGA cohort.
(a) Nomogram predicting OS of patients from TCGA cohort. (b) The 
calibration-plots of the nomogram. The x axis is nomogram-predict-
ed survival, and the y axis is actual survival. (c) Univariate Cox re-
gression analysis of the nomogram. (d) Multivariate Cox regression 
analysis of the nomogram. (e) ROC curves for fatty acid metabolism 
score and the nomogram. (f) ROC curves for fatty acid metabolism 
score and clinical pathological characteristics. (g) The heatmap of 
GSVA enrichment between low- and high-risk score groups.

Figure 5: Fatty acid metabolism model in immunotherapy.
(a)The immunity infiltration difference between high-risk score 
(red) and low-risk score(blue) (p value <0.05). (b)The known func-
tion associated with immunity regulation difference between pa-
tients with high-risk score and low-risk score, p value < 0.05. (c-g) 
CIBERSORT analysis showed that in BLCA, the correlation between 
the level of immune cell infiltration and DGEs.
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cases of BLCA and 19 cases of para-carcinoma tissue were select-
ed for comparative verification. The expression of FN1 in BLCA 
tissues was higher than that in para-carcinoma tissue (p<0.05; 
Figure 7a). Via online bioinformatics analysis (http://www.gen-
ecards.org/)showed that FN1 expressed in bladder cancer risk 
(p<0.05; Figure 7b). The biological information analysis showed 
that FN1 in the TCGA database correlation with prognosis of 
bladder cancer OS performance, the conclusion in GSE13507 
data (Figure 7c). Although there was no significant difference 
in gender-related risk scores (p=0.17; Figure S 6d), higher risk 
scores were associated with higher age (>65;p=0.047; Figure 
7d), high grade(p=4.2e-10; Figure 7e), late pathological stage 
(p=0.047; Figure S6f), AJCC-T (tumor invasion) stage(p<0.05; 
Figure S6e), AJCC-M (distal metastasis) (p=0.026; Figure 7f), 
AJCC-N (lymph metastasis) (p<0.05; Figure 7g). Compared with 
the low-risk scoring group, the patients in the high-risk scoring 
group had a poor prognosis (p<0.001; Figure S2c). Because the 
expression of FN1 is related to the poor prognosis of BLCA, we 
discussed the relationship between the expression of FN1 and 
clinical drug sensitivity. "TIMER2.0" was used to analyze the 
relationship between FN1 expression and axitinib or cisplatin 
sensitivity. It was found that the sensitivity of axitinib (p=0.063; 
Figure S6g) or cisplatin (p=0.073; Figure S6h) for clinical treat-
ment decreased with the increase of FN1 expression in BLCA 
tissue. To validate the bioinformatic analysis, we obtained RNA 

in BLCA and adjacent tissues of patients from 50 pairs of sample 
tissues obtained clinically, and carried out reverse transcription. 
Real time quantitative PCR was used to verify the change of FN1 
mRNA expression in BLCA and adjacent tissues, we were sur-
prised to find that FN1 expression in BLCA tissues was higher 
than that in adjacent tissues (p<0.0001; Figure 7i). Bioinformat-
ics analysis (https://www.proteinatlas.org/) indicated that low 
expression of FN1 in immunohistochemical sections of low-
grade bladder cancer (Figure 7j; Figure S6j). High expression 
of FN1 in immunohistochemical, by contrast, sections of high-
grade bladder cancer (Figure 7k; Figure S6j).

The Change of FN1 Expression Affects BLCA Cells

 We have established a BLCA cell line with FN1 overexpres-
sion and knockdown, In BLCA cells transfected with si-FN1, the 
efficiency of q-PCR verification showed that the mRNA expres-
sion of FN1 decreased, including T24 cell line was knocked out 
to 10% to 25% (Figure 8a, Figure S6b) and BIU87 to 43% to 46% 
(Figure 8b, Figure S6b). We further overexpressed FN1 in T24 
(Figure 8c, Figure S6b) and BIU87 (Figure 8d, Figure S6b) cells. 
The efficiency of overexpression and knockout was verified at 
mRNA levels, so we chose T24 for analysis. Colony formation 
experiments revealed that FN1 silencing could suppress the 
colony formation of T24 cells (Figure 8e). In the migration ex-
periment, the silencing of FN1 inhibited cell migration, whereas 
the invasion of bladder cancer cells was enhanced (Figure 8f). 
In wound healing test, the silencing of FN1 inhibited the heal-
ing of cell scratches, whereas the healing of cell scratches was 
enhanced when FN1 was highly expressed (Figure 8g). The veri-
fication of cell proliferation experiment shows that FN1 silenc-
ing inhibits the proliferation of T24 cells, and conversely, FN1 
overexpression promotes cell proliferation and colony forma-
tion (Figure 8h).

The Relationship between FN1 Expression and Immune In-
vasion in BLCA

FN1 expression is associated with poor prognosis. Using the 
median expression value of FN1 as the cut-off value to explore 
the specific difference of TME immune cell infiltration between 
patients with high and low expression of FN1. Compared with 
patients with low expression of FN1, tumors with high expres-
sion of FN1 have significantly less infiltration of Tregs (Figure 
9a). In addition to only a few significantly increased immune 
infiltrating cells: B cells naive, B cells memory, Plasma cells, and 
Macrophages-M2. K–M survival analyses showed that patients 
with higher M2 macrophage infiltration had poor survival [14]. 
Most of the immune cell infiltration is negatively related to FN1 
expression, especially the CD8+T cells with tumor cell killing 
function that we are concerned about. 

TIMER2.0 correlation analysis showed that the infiltration 
level of CD8+T cells was negatively correlated with the expres-
sion of FN1 (Figure 9b-d). The above evidence shows that FN1 is 
related to the different distribution of immune cells, especially 
the CD8+T cells in BLCA (Figure 9e). To test this hypothesis, we 
analyzed the correlation between CD8+T cell division and its key 
markers PD-L1 (CD274, Figure 9f) [15-19], CTLA4 [20,21] (Figure 
9g) and FN1 respectively. Finally, we conclude that the expres-
sion level of FN1 is negatively correlated with the infiltration 
level of CD8+T cells, and positively correlated with the expres-
sion levels of PD-L1(Figure 9h) and CTLA4 (Figure 9i). We have 
reason to believe that the high expression of FN1 is related to 
the immune escape of BLCA cells (Figure S6a). Online biogenic 
analysis showed that FN1 expression was inversely proportion-

Figure 6: Protein-protein interaction (PPI) network of DEGs. 
(a) PPI network processed by Cytoscape. red: DEGs that expressed 
highly in the high-risk score group; blue: DEGs that expressed 
highly in the low-risk score group. (b) Top 10 hub genes selected 
by cytoscape.

Figure 7: Clinical characteristics of FN1 expression.
(a) ENROCI analyzed the expression of FN1 in bladder cancer tissues 
compared with paracancerous tissue.(b) FN1 expression increased 
the risk of bladder cancer (p< 0.05). (c) Cox regression analysis of 
FN1 expression and prognosis of bladder cancer (p<0.05). (d-g) The 
relationship of FN1 expression and clinicopathological features, 
including age (d), grade (e), AGCC-M (f), and AGCC-N (g). (h) Sur-
vival of bladder cancer patients with low and high expression of 
FN1(p<0.05). (i) Expression of FNI in bladder cancer and paracan-
cerous tissue. (j) Low expression of FN1 in immunohistochemical 
sections of low-grade bladder cancer. (k) High expression of FN1 in 
immunohistochemical sections of high-grade bladder cancer.
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Figure 8: FN1 promotes BLCA cell migration and invasion.
(a) FN1 mRNA expression were decreased in T24 (b) FN1 mRNA ex-
pression were decreased in BIU87 (c) FN1 mRNA expression in T24 
cells increased. (d) FN1 mRNA expression in BIU87 cells increased. 
(e) Cloning assay showed that FN1 knockdown inhibited the prolif-
eration of T24 cells, and FN1 overexpression promoted the prolif-
eration of T24 cells. (f) Transwell migration assay and invasion assay 
showed that FN1 knockdown inhibited the migration and invasion 
of T24 cells. (g) Wound healing assay showed that FN1 knockdown 
inhibited the migration of T24 cells; FN1 overexpression promotes 
T24 cell migration. (h) Cell proliferation experiment showed that 
FN1 knockdown inhibited the proliferation of T24 cells; FN1 overex-
pression promotes the proliferation of T24 cells.

Figure 9: Expression of FN1 in BLCA tissues and FN1’s correlation 
with immune. 
(a) FN1 expression and immune cell infiltration in bladder cancer 
tissue. blue: low expression; red: high expression. (b) Correlation 
between FN1 expression and CD8+T cells in bladder cancer tissues. 
(c) Correlation between FN1 expression and quantiseq of CD8+T+ 
cells in bladder cancer tissues. (d) Correlation between FN1 expres-
sion and mcpcounter of CD8+T cells in bladder cancer tissues (e) 
TIMER2.0 verified the correlation between FN1 expression and 
CD8+T cell infiltration in different tumor tissues, including 408 cas-
es of bladder cancer. (f) TIMER2.0 verified the co expression of FN1 
and CD274 in different tumor tissues, including 408 cases of bladder 
cancer. (g) TIMER2.0 verified the co expression of FN1 and CTLA4 
in different tumor tissues, including 408 cases of bladder cancer. 
(h) ENCORI verification: the co expression of FN1 and CD274 in 411 
cases of bladder cancer tumor tissue was correlated. (i) ENCORI 
verification: the co expression of FN1 and CTLA4 in 411 cases of 
bladder cancer tumor tissue was correlated. (j) GSE19750: FN1 ex-
pression and immune cell infiltration in BLCA tissue. (k) GSE33371: 
FN1 expression and immune cell infiltration in BLCA tissue.

Figure 10: FN1 regulates the correlation of PD-L1 expression 
through the IL6-STAT3 pathway 
(a)-(b) In bladder cancer, GSEA database predicted the correlation 
between FN1 expression and IL6-JAK-STAT3 pathway. (c) Cor-
relation between FN1 expression and the degree of activation of 
IL6-JAK-STAT3 pathway in bladder cancer tissues. (d) Correlation 
between FN1 expression and IL6 expression in bladder cancer tis-
sues. (e) The expression of FN1 was positively correlated with the 
secretion of IL6 in bladder cancer.in BLCA tissue.

al to that in bladder cancer tumor tissue infiltrated by CD8+T 
cells in the database GSE19750 (Cor=-0.079,p=5.9e-01, Fig-
ure 9j). The above conclusions were repeated in the database 
GSE33371 (Cor=-0.190,p=1.7e-01, Figure 9k).

The Interaction between FN1 and IL6-JAK-STAT3 Pathway 
Predicted Susceptibility to BLCA Immunotherapy

Bioinformatics analysis (https://rookieutopia.com/) indicat-
ed that the correlation between FN1 and IL6-JAK-STAT3 path-
way (p<0.05, Figure 10a). GSEA enrichment analysis of single 
gene pathway revealed that high expression of FN1 was ac-
companied by activation of IL6-JAK-STAT3 pathway (Figure 10b). 
Bioinformatics analysis (https://rookieutopia.com/) indicated 
that the expression level of FN1 in BLCA tissues was positively 
correlated with that of IL6 (Figure 10 d; S6c). These data suggest 
that FN1 may play its role by interacting with the IL6-JAK-STAT3 
pathway in BLCA. We verified in high or low expression FN1 cell 
lines and found that the activity of the IL6-STAT3 pathway was 
decreased when the expression level of FN1 was low. On the 
contrary, the pathway was activated (Figure 10c). In addition, 
we verified the effect of IL6 secretion in the supernatant of FN1 
knockdown and overexpressed cell lines by ELISA, and found 
that knockdown of FN1 inhibited IL6 secretion (Figure 10e). In 
addition, previous studies have verified that activation of the 
IL6-JAK-STAT3 pathway promotes the expression of PD-L1 in 
BLCA. Therefore, western blotting experiments were conducted 
in IL6-JAK-STAT3 pathway activated cell lines, and it was con-
firmed that with the over expression of FN1, the expression of 
PD-L1 was increased. Conversely, the expression level of PD-L1 
will decrease (Figure 10c). Therefore, it is reasonable to specu-
late that FN1 is co-correlated with PD-L1 expression through 
IL6-JAK-STAT3 pathway in BLCA.

Discussion

BLCA is estimated to cause 500000 new cases and 200000 
deaths worldwide [22]. The majority of newly diagnosed pa-
tients with BLCA are male, which is considered to be related 
to an increased rate of smoking and occupational exposure. It 
represents a series of diseases. According to the degree of inva-
sion, it can be divided into muscle invasive and non muscle in-
vasive bladder cancer. The two types of bladder cancer have dif-
ferent treatment methods. At present, the understanding of the 
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potential biology of bladder cancer has fundamentally changed 
the diagnosis methods and management recommendations of 
the disease [23]. 

The reprogramming of cell metabolism is crucial in the de-
velopment of tumors [24,25]. The special environment of the 
tumor has once again overturned our previous understanding 
of normal cell metabolism. For example, the hypoxia microen-
vironment of tumors causes the accumulation of lactic acid, 
which changes the traditional metabolic mode of cells in the 
past [26,27]. Current research shows that the tumor microen-
vironment under hypoxia is closely related to tumor formation, 
development and therapeutic resistance [28].The change of 
cell metabolic activity is an important sign of cancer [29]. For 
example, up-regulation of glycolysis is one of the physiological 
characteristics of human malignant tumors [30]. The interaction 
between tumor cells and immune cells within the tumor mi-
croenvironment has also undergone subtle changes due to the 
change of tumor metabolism [31]. At present, immunotherapy 
is gradually widely used in the clinical application of BLCA [32], 
and immunotherapy also plays an important role in the treat-
ment of BLCA. However, some patients are not completely satis-
fied with the response to the current immunotherapy. It is very 
significant to find appropriate targets to enhance the response 
of BLCA to immunotherapy.  Although most studies have proved 
the role of fatty acid metabolism in cancer [12,33-37], the role 
of multiple genes related to fatty acid metabolism is still unclear. 
To explore the role of different fatty acid metabolism genes in 
BLCA is helpful to understand the role of fatty acid metabolism 
in the progress of BLCA, to guide effective treatment strategies.

In this study, we used univariate Cox regression analysis to 
establish a prognostic risk score model in TCGA cohort and GEO 
cohort, who includes fatty acid metabolism related genes dif-
ferentially, expressed in tumor and normal BLCA tissue samples. 
Prognostic risk score model is used to predict OS of BLCA pa-
tients in the training set, to better understand the role of these 
genes in BLCA. The survival rate of BLCA patients in low-risk 
scoring group and high-risk scoring group was different. The 
same results were reported in the trial data set, indicating that 
the prognostic risk scoring model can screen patients with low 
survival rates. 

This confirmed the necessity of establishing a fatty acid me-
tabolism gene model in the clinical prognosis of patients. In 
multivariate analysis, the prognostic risk score model is an in-
dependent prognostic factor. In addition, by combining some 
selected clinicopathological features in the risk assessment no-
mogram, the predictive potential of the prognostic risk scoring 
model is further improved. Because there are significant differ-
ences between low-risk and high-risk scoring groups, we further 
explored the different genes in the two groups and finally found 
that FN1 plays an important role. FN1 mRNA expression was not 
only positively correlated with clinical stage, but also with poor 
prognosis. There was a significant correlation between the high 
expression of FN1 and the low survival rate. Then we found that 
FN1 promoted the growth, proliferation, and migration of BLCA 
tumor cells. 

Although immunotherapy is widely used in the clinical treat-
ment of BLCA at present [38,39], some patients are suitable 
for immunotherapy (immunocheckpoint blocking (PD-L1 and 
CTLA4)) [20], but some patients with BLCA are not suitable. 
Therefore, it is essential to distinguish patients suitable for im-
munotherapy in clinical practice [40]. Patients with high-risk 
scores are rich in suppressive immune cells, including Tregs 

and MDSCs, and immune inflammatory cells. In addition, we 
explored the correlation between FN1 expression and the im-
mune microenvironment. It was also found that the high ex-
pression of FN1 was positively correlated with the blocking of 
immune checkpoints, which convinced us that the expression of 
FN1 was positively correlated with immune escape during the 
treatment of BLCA. 

This indicates that BLCA patients with high FN1 expression 
are suitable for immunotherapy. In addition, bioinformatics 
analysis revealed the correlation between the expression of FN1 
and the IL6-JAK-STAT3 pathway. Then we experimentally veri-
fied that the expression of FN1 would promote the activation 
of this pathway in bladder cancer tissues. According to previous 
studies, activation of this pathway will promote the expression 
of immune checkpoint: PD-L1. Therefore, we speculate that the 
expression of FN1 is related to the escape of PD-L1 mediated 
immunotherapy for bladder cancer, which will be further stud-
ied and explored in the later stage.

Nevertheless, it should be noted that the detailed mecha-
nism of FN1 in the progression of BLCA and its correlation with 
immune escape needs to be further explored. Hence, FN1 is ex-
pected to become a new target in the treatment of BLCA.

Conclusion

In conclusion, our bioinformatics data show that FN1 is up-
regulated in BLCA as an independent risk factor. Its expression 
is related to BLCA grading and staging, interacts with a variety of 
proteins and genes, involves a variety of pathways and immune 
activities, and ultimately leads to poor prognosis. Our research 
further proves that FN1 plays a carcinogenic role, accelerates 
the growth of tumor cells, and enhances the invasion and mi-
gration of BLCA. FN1 could activate IL6- JAK - STAT3 pathway, 
promote PD - L1 expression, which will serve as a bladder can-
cer immune escape potential factors. Therefore, FN1 may be 
the oncogene of BLCA. It can also be used as a biomarker for the 
diagnosis and treatment of BLCA.
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