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Abstract

Brain damage is associated to oxidative stress in iron (Fe) and copper (Cu) 
overloads in rats, in a dose- and time-dependent accumulation of the metals in 
the organ. The generation of singlet oxygen in brain measured in vivo by in situ 
chemiluminescence indicates that Fe and Cu overloads increased phospholipid 
and protein oxidation, and decreased non enzymetic endogenous antioxidants 
content in the organ, mainly glutathione (GSH). These results fit with a Fenton/
Haber-Weiss type reaction between iron, copper and endogenously produced 
superoxide anion (O2•-) and hydrogen peroxide (H2O2) to yield hydroxyl radical 
(OH•), as well as reactions involving thiol groups of GSH and proteins.
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metal from blood to the brain. Trannsferrin (Tf) receptor-mediated 
(TfR) iron transport at the BBB is responsible for Fe entry into the 
brain parenchyma, and once within the brain, Fe is transported from 
the interstitial fluid to neurons by Tf [6,7]. 

There are differences in Fe content in different human brain areas: 
in the cortex is 45 μgg-1; in the hippocampus, 37 μgg-1; in the caudate 
nucleus, 27 μgg-1; in the putamen, 26 μgg-1 and in the substantia nigra, 
70 μgg-1 [8]. Similarly, rat brain shows differences in metal content 
in different brain areas. Of the total content of about 35–40 μg of Fe 
per g of whole wet brain and, 7 μg of Fe per g are present in the brain 
cortex and 21 μg of Fe per g in the hippocampus [9,10].

Copper in brain
Cu is a redox active metal able to undergo redox cycling and 

is thereby potentially toxic for cells. The metal transportation and 
distribution among the different tissues and cells is tightly regulated by 
a set of transporters which have just recently started to be understood. 
After ingestion, Cu reaches the intestine where it is taken up by the 
enterocytes at the lumen surface of the microvilli by copper transport 
protein (Ctr1), which forms a pore in the membrane allowing the 
passive influx of Cu(I) to the cell. Once within the cell, Cu(I) binds to 
antioxidant protein 1 (ATOX1), a Cu chaperone which mediates the 
intracellular trafficking of the metal. Another chaperone, the ATPase 
copper transporting alpha (ATP7A), is located at the basolateral 
membrane of enterocytes, where it mediates the efflux of the metal 
into the bloodstream. Ceruloplasmin is the main Cu binding plasma 
protein and its function is not only restricted to systemic copper 
transport but is also a ferroxidase involved in iron metabolism [11]. 

The normal Cu content in humans is 100–120 mg of Cu, 
approximately distributed 50% in bones and skeletal muscle, 15% in 
skin, 15% in bone marrow, 8-15% in liver an 8% in brain. About of 
95% of Cu is bond to ceruloplasmin and 5% to albumin and other 
molecules [12]. 

Abbreviations
ATOX 1: Antioxidant Protein 1; ATP7A: ATPase copper 

transporting alpha; ATP7B: ATPase copper transporting beta; 
BBB: Blood–brain barrier; C50: Metal concentration in brain for 
half maximal effects; Ctr1: Copper transport protein; Cu, Zn-SOD: 
Cytosolic copper-zinc superoxide dismutase, SOD1; GPx: Glutathione 
peroxidase; GSH: Glutathione; H2O2: Hydrogen peroxide; OH•: 
Hydroxyl radical; 1O2: Singlet oxygen; O2

•-: Superoxide anion; R•: 
Alkyl radical; ROO•: Lipidhydroperoxyl radical; ROOH: Lipid 
hydroperoxide; TBARS: Thiobarbituric acid reactive substances; t1/2 
: Time for half maximal effects; Tf: Transferrin; TfR: Transferrin 
receptor-mediated iron transport.

Introduction
The mammalian brain is a highly evolved organ with very active 

aerobic metabolism [1]. Iron (Fe) and copper (Cu) are essential 
elements widely employed due to their redox properties by enzymes 
in the catalysis of complex reactions involving electron transfer. These 
biometals are present into the active site of catalase, cytochrome 
oxidase and superoxide dismutase (Cu, Zn-SOD, and SOD1). While 
Fe and Cu show a great utility for living organisms due to its ability 
to undergo redox cycling, this would entail a potential hazard in cases 
where the cells were not able to control metal ions concentration [2]. 
For this reason, the free Fe or Cu concentration is kept at extremely 
low levels in the intracellular milieu by several proteins and small 
molecules which chelate it and prevent its potentially deleterious 
reactions.

Iron in brain
The mammalian brain is the organ with the highest Fe content, 

after liver [3]. The normal Fe content in rats and humans is 35–40 μg 
of Fe g-1 of wet brain [4,5]. The movement of Fe across the blood–brain 
barrier (BBB) is regulated and there is no passive diffusive flux of the 
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Brain damage from iron toxicity
A sudden delivery of Fe (Fe2+ or Fe3+) to the brain can take place 

after hemorrhagic stroke, which is the bleeding in the brain or within 
the subarachnoid space as a consequence of a ruptured cerebral 
aneurysm or head injury. Here, an acute delivery of Fe to the brain 
occurs when the blood spilled into the brain is metabolized by heme-
oxygenases yielding biliverdin, carbon monoxide and Fe. This sudden 
iron overload in brain areas overwhelms cellular ferritin storage, 
generating oxidative stress and further contributing to the damage of 
the affected tissue [13]. 

Currently, researchers have reported that deregulated Fe and Cu 
in the brain cortex of patients with Alzheimer’s disease, is associated 
with amyloid plaques deposition and protein aggregation in affected 
tissue [14-16], and in Parkinson’s disease [17,18]. Because of this, is 
interesting to study the Fe and Cu effect in brain by characterizing 
the oxidative stress and damage that it produces by free radical 
production through Fenton/Haber-Weiss reaction mechanism.

Brain damage from copper toxicity
Wilson’s disease is a autosomal recessive disorder, with an 

incidence of 1:30.000 to 1:100.000, characterized by the excessive 
accumulation of Cu in liver that leads to cirrhosis and chronic 
hepatitis, which ultimately end in liver failure, and in brain, 
neurological defects (parkinsonian features, seizures) and psychiatric 
symptoms (personality changes, depression, and psychosis). The 
genetic alteration underlying the pathology involves a defective 
pump, the ATPase copper transporting beta (ATP7B), required 
for excretion of Cu from the hepatocytes to the bile. The impaired 
or absent function of ATP7B leads to an increased intracellular 
concentration of Cu within the hepatocytes, and toxic biochemical 
oxidation process that end in cell death [13]. 

Toxic mechanism of iron and copper overload in rat brain
The toxicity of Fe and Cu are mainly due to their ability to change 

oxidation states when taking part in redox reactions such as Fenton 
[19] and Haber-Weiss [20] involved in the HO• generation [21,22]. 
An examination of the intracellular steady-state concentrations of the 
reactive oxygen species: O2

•- (10-11-10-10 M), H2O2 (10-7-10-6 M), HO• 

(10-17M), alkyl radical (R•, 10-12M), lipid hydroperoxyl radical (ROO•, 
10-10M), lipid hydroperoxide (ROOH, 10-7-10-6 M), singlet oxygen 
(1O2, 10-14M) clearly indicates that H2O2 and ROOH are quantitatively 
the predominant species by factor of 10-106 in physiological 
conditions [23]. However, in a non-physiological situation the steady 
state concentration of specific oxygen reactive species may rise above 
others and led to the oxidative stress condition.

The classical concept of oxidative stress was the idea of an 
unbalance between the production of oxidants and the antioxidant 
defenses in cells and tissues [24]. The increase in oxidants, usually 
free radicals and related species, and the shift in the –SH/-SS- redox 
couple occur simultaneously and have synergistic effects. The process, 
if sustained, leads to molecular and cellular damage, eventually to 
neuronal death [25]. 

The toxicological effects of Fe and Cu overloads were studied in 
rat brain by the kinetic and holistic analysis, considering the time and 
metal concentration in brain for half maximal effects (t1/2 and C50). 

Oxidative damage in brain: Toxicity and oxidative 
processes in iron and copper overloads

Sprague Dawley male rats (200-210 g) received once a day: (a) for 
Fe t1/2 determination, 6 mg  Fe element; (b) for Fe C50 determination, 
1-12 mg of Fe element; (c) for Cu t1/2 determination, 2 mg Cu element; 
and (d) for Cu C50 determination, 0.6-6.0 mg of Cu element. The 
indicators of oxidative damage in brain and toxic effects of Fe and Cu 
are summarized in Table 1. 

After intraperitoneal injection, Fe and Cu were accumulated in the 
brain in a dose- and time-dependent manner, reaching the maximal 
metal content in the organ (110±3 µg Fe/g and 32±2 µg Cu/g) at 
the time of 16 h after the acute metal overload [26] (Table 1). The 
intracellular accumulation of the metal might involve an enhanced 
rate of homolytic cleavage of H2O2 by Fe2+ and Cu1+ which would 
yield OH•, thus initiating the phospholipid and protein oxidation 
which show a good correlation with the accumulation of the metal 
in the brain. 

In situ brain chemiluminescence is used as a sensitive indicator 
of oxidative damage to phospholipid membranes. From a kinetic 

Fe Cu

Property Effect %)2 t1/2 (h) C50(µg Fe/g)3 Change (%)2 t1/2 (h) C50(µg Cu/g)3

Metal content (+) 225 10 75 (+) 850 12 20

In situ brain chemiluminescence (+) 200 12 40 (+) 100 15 20

Lipid peroxidation (+) 56 9 40 (+) 35 15 20

Protein oxidation (+) 45 12 40 (+) 18 12 15

Hydrophilic antioxidant (-) 50 10 33 (-) 70 12 10

Lipophilic antioxidant (-) 75 15 38 (-) 60 10 15

GSH content (-) 89 8 30 (-) 45 12 10

GSH/GSSG ratio (-) 75 4 30 (-) 75 2 4

SOD1 activity (+) 200 10 50 (+) 90 12 25

Catalase activity (+) 150 8 20 (+) 90 10 40

GPx  activity (-) 73 8 30 (-) 27 15 20

Table 1:  Rat Brain Oxidative Damage after Fe and Cu overlods1.

1Adapted from refs. [26-27]: 2in % of increased (+) or decreased (-) property compared with control rats; 3determined by atomic absorption.
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approach, brain in vivo chemiluminescence was observed earlier for 
Fe than Cu, and simultaneously with decreasing concentration of 
hydrophilic and lipophilic antioxidants and glutathione peroxidase 
(GPx) activity (Table 1). Increased in in vivo chemiluminescence 
indicates overproduction of singlet oxygen (1O2), as a consequence 
of lipid peroxidation, oxidation of phospholipids (measured as 
thiobarbituric acid reactive substances, TBARS) and protein 
(measured as carbonyl groups). The phospholipid oxidation is earlier 
in Fe than Cu toxicity and protein oxidation follow similar kinetics 
with both metal overloads, pointing out a common mechanism of 
oxidative process to proteins (Table 1).

Antioxidants are species which function is to decrease the level 
of oxidative chemical species. The non enzymatic (hydrophilic 
and lipophilic) antioxidant consumptions exhibit, from a kinetic 
approach, similar t1/2, coincident with the biochemical markers 
of oxidative damage and changes for enzymatic activities [27], 
showing that Fe and Cu toxicities could be responding to a common 
mechanism of adaptive response in brain (Table 1). 

GPx activity was decreased in rat brain with acute Fe and Cu 
overload [27] in a dose- and time- dependent manner, with different 
t1/2, indicating that the oxidative processes may be due to the toxic 
products of decomposition of ROOH, that are not detoxified by Gpx, 
mainly in the case of Cu overload (Table 1). 

GSH intracellular content in brain is 2 mM [28]. The endogenous 
antioxidant GSH shows a sharp decrease in its brain concentration as 
the Fe and Cu concentration in the organ increases, with a maximal 
decrease of 89-45% in the GSH content with 80 µg Fe/g brain and 30 
µg Cu/g brain, respectively, after 16 h after the acute overload [27].

Conclusion
Fe and Cu accumulate in brain in a dose- and time-dependent 

manner. However, there is a lag phase of around 16h before the 
Cu concentration in the organ shows a significant increase, likely 
due to the presence of the blood brain barrier, which prevents the 
metal from freely diffusing into the interstitial space of the brain and 
allows its entrance only through specific transporters. The increased 
in situ chemiluminescence indicates an enhanced steady-state of 
1O2 along with an increased production of products of phospholipid 
peroxidation and protein carbonyl groups as a consequence of 
oxidative modifications of certain protein amino acids. The GSH 
concentration decays quickly after Fe and Cu overload, indicating 
an oxidative stress situation which shows a good correlation with the 
concentration of Fe and Cu in the organ. 
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