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Editorial
After the greatest moment for a couple, the birth of their baby, it 

takes tremendous effects to educate this baby from a human-shaped 
animal to a civilized modern human who can not only survive but also 
make significant contribution to the society. This education process 
may take twenty years, sometimes even thirty years. Therefore, it has 
been a beautiful dream for centuries, that one day we create ways to 
install instantly most important knowledge and skills into the brain 
of a child, thus remarkably reducing the period for education and 
training processes.

The so-called Brain-Computer-Interface (BCI) is one of the 
dreaming approaches. As a brain memories and deals daily with a 
huge volume of information, the functions of BCIs are not limited 
to input external information to a brain. They are used to monitor 
or capture the information of activities of a brain, and even to read 
information memorized in brain. A BCI may also be applied as a 
clinical therapy to adjust or interfere particular brain functions.

Currently, many techniques have been developed to obtain 
information and activities of a live brain. Among them, non-invasive 
methods such as MRI, fMRI, MEG, PET and SPET, etc., work well 
for diagnosing diseases or disorders of the brain, and for determining 
the size and location of a brain tumor. But they all have a poor spatial 
resolution, not capable of obtaining detailed information of the brain 
at the cell level. Various electrode-based techniques, such as non-
invasive EEG, and invasive or partially invasive electrode families 
[1], such as neuropixel electrodes [2], neurotassels [3], dense 3D 
silicon probe [4], highly scalable mesh electronics [5], Utah array 
[6], transparent intra-cortical microprobe array [7], injectable mesh 
electronics [8], Flexible ECoG electrode array [9], etc., have been 
developed to obtain real time information of the brain under test. 
It is expected to monitor the neural signals of thousands of neurons 
simultaneously. Yet the obtained data are still by far not sufficient for 
analyzing the details of what is seen, what is heard, what is tasted, or 
what is memorized in a brain.

The main reason is that we do not know much about the memory 
mechanism, what the exact form of information data is and how the 
data are processed and stored in the brain. The cortex of an adult 
human brain consists of a few tens of billions of neurons, and around 
two hundred different functional areas have been recognized in 

the cortex [10]. When stretched out, the cortex looks like a three-
millimeter thick sheet of with six layers of distinguishable neurons 
and a surface area over a thousand square centimeter.

We suggested that memory functions of the brain for human and 
other animals might share the same or similar mechanism, and the 
basic information data of memory in a brain are stored in the form 
of 2D Codes. Each 2D code consists of a number of neurosomes that 
are strongly connected with electrical synapses, forming a 2D pattern. 
Any one neurosome in this pattern triggered to excite will lead to 
excitement of the whole pattern shortly. An echoing mechanism 
between two neighboring layers of neurosomes was proposed to 
establish temporary memory, and repeating the echoing process 
was suggested to enhance the temporary memory and to develop 
long-term memory. To avoid interference between neighboring 2D 
networks of strongly connected neurosomes, it was assumed that 
each neurosome is only involved in one 2D code, thus leading to 
limited storage capacity of a brain [11].

The data recorded by techniques of EEG, Utah array or ECoG 
show either collective weak signals of the whole brain, i.e., from 
billions of neurons, or, signals of limited number of neurons (tens to 
thousands). If 2D Code mode is valid, then one need up to millions 
of electrodes to obtain the detailed status of the memorized or 
processing data carried by the neurosome patterns. The number of 
electrodes used in current recording techniques is insufficient.

On the other hand, several kinds of DBS techniques [12,13] have 
been developed for curing Parkinson’s disease and depression, and 
made remarkable achievements, though it is far away from realizing 
the dream of inputting knowledge into a brain. For the purpose to 
mutual communication between a human brain and a computer or 
internet, many proposals were presented in scientific fiction movies. 
In Matrix, the BCI device was imagined as a centimeter thick, 
finger size long plug that could be inserted directly through a socket 
embedded at the back of head. Well, in reality this configuration 
could cause immediate death of Neo, the hero in the movie. In 
Inception, the BCI device was presented as a flat electrode wrapped 
on the wrists of several persons, and via a receiving instrument, they 
shared a common dream of one of them. However, the wrist is too 
far away from the brain and most likely; no information of the brain 
could be captured at this point. With a deep belief in the concept of 
cyborg, Mr. Elon Mask set up the company Neuralink in 2016, aiming 
at finding the cures for Alzheimer’s disease, Parkinson’s disease, etc., 
as well as obtaining enhanced brain functions via implantation of 
“AI chips” into a brain. This is one of many similar companies set 
up recently.

The myth of BCI may still last for years. The dream for instant 
installing knowledge and reading memory may last for years. Based 
on the 2D Code model we suggest that a piece of memory may 
involve a large number of individual neurons, and the detailed 
patterns (2D codes) of groups of strongly connected neurons that 
carry, information and memory are personalized and are different 
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between any two brains. Thus, it is very hard to read the memorized 
information, for which optical method capable of observing a large 
number of neurons at the cell scale seems more hopeful than current 
electrode-based BCI techniques.

It is feasible to interfere the functions of neurons in the limbic 
system by BCI (such as DBS devices) or chemicals (such as drugs). It is 
also feasible to erase part of memorized information at the neocortex 
and/or limbic system by BCI and chemicals, e.g., through changing 
the connection status of synapses, and it may work like a refreshment 
to related groups of neurons, leaving more memory space for new 
events and recovering the disordered part of a brain.
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