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Abstract
Graphene, the profound mother of carbon nanostructures has attracted 

tremendous attention towards biosensor and biomedical research through its 
enhanced property of sensitivity and specificity. In the present study, we explore 
the biological applications of zigzag graphene nanoribbon (ZGNR) as molecular 
scale biosensors by calculating the electronic properties of zigzag graphene 
nanoribbon (ZGNR) and paracetamol drug ensemble. Here the drug is adsorbed 
at the edge of ZGNR through physisorption. The non-covalent interaction 
between ZGNR and the drug is studied by calculating the transmission spectrum 
and density of states using non-equilibrium Green’s function formalism (NEGF)
and density functional theory(DFT).We have simulated different systems like 
bare ZGNR, hybrid system consisting of ZGNR and paracetamol, hybrid system 
with central doping of nitrogen, hybrid system with edge doping of nitrogen, 
hybrid system consisting of nitrogen replacing one complete edge layer carbon 
atoms and their corresponding I-V characteristics and transmission spectrum 
are reported. Our results show a significant suppression of transmission 
spectrum supported by the variation in density of states (DOS) thereby showing 
a distinct response to the molecule for sensing action. Further, bare ZGNR 
system is chosen as the reference. The decrease in the I-V characteristics of 
all the chemically modified systems clearly indicates tuning of band gap thus 
proving the sensing effect of ZGNR for biomedical applications. 
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using fullerene-C60-modified edge plane pyrolytic graphite electrode, 
modified glassy carbon electrode and single-wall carbon nanotubes 
modified pyrolytic graphite electrode for the detection of biological 
entity in pharmaceutical formulations and human biological fluids 
[45-48]. The non-covalent interaction of graphene with biomolecules 
have been reported for loading of doxorubicin drug in cancer therapy 
[8]. 

Depending on the termination style, normally, GNR can be 
divided into two kinds: armchair graphene nanoribbon (AGNR) 
and zigzag graphene nanoribbon (ZGNR) [9]. In particular, different 
quantization rules have been predicted for pure GNR’s with zigzag 
(ZGNR’s) [10] and Armchair(AGNR’s) [11,12] edge shaped. Edge 
states present in zigzag ribbons provide a single channel for electron 
conduction which is not the case for the armchair configuration [2].

Paracetamol is a widely used  analgesic  (pain reliever) 
and  antipyretic  (fever reducer). In combination with opioid 
analgesics, paracetamol is used in palliative care in advanced cancer 
patients [13,18]. Paracetamol is not considered  carcinogenic  at 
therapeutic doses[19].

The robust nature of ZGNR makes it an interesting material 
to be utilized for biosensing and biomedical applications. The 
purpose of the study is to understand the interaction between a drug 

Introduction
Graphene is a rapidly rising star on the horizon of materials 

science and condensed matter physics [1]. Graphene is made up 
of a single layer of carbon atoms packed into a two dimensional 
honeycomb lattice [2-5]. Since its discovery in 2004, graphene 
has been extensively studied in many different fields including 
nanoelectronics, composite materials, energy research, catalysis, and 
more recently biomedicine [20]. Utilizing the interesting optical, 
electrical, and chemical properties of graphene, various graphene-
based biosensors have been fabricated to detect biomolecules with 
high sensitivities [6]. Graphene nanoribbons (GNRs) are quasi-
one-dimensional structure, which are stripes of graphene. Their 
structures and their electronic properties have been intensively 
studied both experimentally and theoretically. The properties of GNR 
can be tuned by morphology control and chemical doping. While the 
chemical modification is expected for improved specificity, structural 
modification of graphene can further improve its sensitivity [7]. 
To begin with, the development of sensitive and rapid methods for 
determination of trace amounts of various ions and molecules in 
human biological samples, serum, plasma and urine were analyzed 
by fabricating different voltammetric and potentiometric sensors and 
tested effectively for their sensing efficiency [22-44]. The advent of 
nanomaterials created the ease to fabricate highly efficient biosensors 
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(paracetamol) and zigzag graphene nanoribbon in terms of variation 
in the electrical characteristics which will be helpful while fabricating 
the biosensor devices.

Modeling and Methods
In our study, we have simulated different systems like bare ZGNR, 

hybrid system consisting of ZGNR and paracetamol adsorbed on 
one of the edges of ZGNR through   π-π interaction (physisorption), 
hybrid system with central doping of nitrogen, hybrid system with 
edge doping of nitrogen, hybrid system with nitrogen replacing 
one complete edge layer carbon atoms (Figure 1, a-e) and their 

corresponding I-V characteristics and transmission spectrum are 
reported. 

Figure 1: a) Quasi 1D structure of bare ZGNR (6,0) two probe 
device with 10 unit cells, b) Geometrical representation of two probe 
hybrid system consisting of an ensemble of ZGNR and Paracetamol 
(C8H9O2), c) Hybrid system with central doping of nitrogen, d) 
Hybrid system with edge doping of nitrogen and e) Hybrid system 
with nitrogen replacing one complete edge layer carbon atoms.

Our calculations were performed based on non-equilibrium 
Green’s function formalism (NEGF) and density functional theory 
(DFT) using ATOMISTIX TOOL KIT-Virtual Nano Lab (ATK-
VNL) [14,21]. The modeled device consists of 10 unit cells of ZGNR 
(6, 0), passivated by hydrogen at the edges in order to remove the 
effect of dangling bonds. The C-C and C-H bond lengths are set to 
be 1.42 and 1.1 Å. As an exchange correlation function, the local 
density approximation (LDA) was used to perform the total energy 
calculations. For convergence; the Brillouin zone is sampled by 
1x1x300 k-points in the direction of x, y, z where z is the transport 
direction. The force tolerance was set to be 0.05 eV/Å. Our system 
had a complex structure of ZGNR and paracetamol drug consisting 
of 99 atoms, hence single zeta polarized basis set was used to save the 
computational time. The lattice parameters were set to be ≥ 10 Å in 
order to avoid the interaction between simulation cell and the device. 
The following program parameters used in the present study are;

Figure 1(a):

Figure 1(d):

Figure 1(e):

Figure 1(b):

Figure 1(c):
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The iteration mixing parameter: Pulay Mixer, Diagonal mixing 
parameter =0.1

Energy contour integral parameters: Circle points =30, Integral 
lower bound=3 Ry, Real axis infinitesimal=0.01eV and Real axis point 
density=0.02 eV. 

Iteration control parameters: Tolerance=10-5

Device algorithm parameters: Electrode constraint = off and 
Initial density type =Equivalent Bulk

Basic settings: Temperature=300 K, Density mesh cut-off=150 
Ry.

The NEGF-DFT description of electron transport is based on the 
Kohn–Sham equations which introduce an equation of motion for 
each electron through the one-electron Schrödinger equation given 
by,

where ψα(r) is the wave function of the electron in orbital α and 
Veff(r) is the DFT mean field potential from the other electrons [15].

Using NEGF theory, the transmission coefficients can be obtained 
as,

Here the subscripts C, L, and R are used to denote central 
scattering, left electrodes, and right electrodes, respectively. GC and 
L(R) denote the corresponding Greens functions and imaginary parts 
of the self-energies, respectively [17]. 

The current passing through the device is calculated by the 
Landauer formula [16].

Here μL and μR are the chemical potential of the left and right 
electrodes, kB is the Boltzmann constant, Ttemp is the temperature,                         
  

   is the Fermi-Dirac distribution 
function, and T (E) is the transmission function.

Results
The transmission spectrum of all the five systems have been 

studied at zero bias as shown in Figure 2. Significant reduction in 
transmission coefficient was observed for all the five systems. The 
reduced probability of electron transmission is due to the effective 
blocking of edge states of ZGNR created by chemical modification 
and by using substitutional impurity like nitrogen. By analyzing 
the transmission spectrum of the five systems we observe that, the 
effective reduction in transmission at the Fermi level (EF=0) was 
more pronounced for edge doping than central doping of nitrogen 
leading to the strong physisorption of the drug with ZGNR edges. 
Thus we observe that the doped system was effective in reducing the 

Figure 2: Transmission spectrum at zero bias of ZGNR with drug and 
dopant 

Figure 3: Density of states at zero bias of ZGNR with drug and dopant

conduction compared to the undoped system.

The density of states (DOS) for the five systems is shown in Figure 
3. We observed large DOS for all the systems near the Fermi level at 
zero bias; this is due to the intrinsic property of ZGNR.

The presence of peaks at the (Highest occupied molecular orbital) 
HUMO and LUMO levels (Lowest unoccupied molecular orbital) 
proves the excellent conduction property arising due to effective 
tunneling of electrons of ZGNR at zero bias. The suppression of DOS 
at Fermi level (EF=0) is more pronounced with the edge doping of 
nitrogen compared to the hybrid system. Edge doping along with 
chemical modification (using the drug) is effective in opening of 
band gap of zigzag graphene nanoribbon thereby showing the sensing 
effect of ZGNR. 

In addition, the total energy calculations (ETOTAL) were performed 
for all the five systems at zero bias and it is reported in table 1. The 
variation in total energy with reference to bare ZGNR was more 
pronounced for the doped system compared to all the other device 
configurations.

The I-V characteristics as shown in Figure 4 performed with an 
applied bias range of 0.0 to  0.4 V show a linear response along with 
decrease in the electrical characteristics (current) for the five different 
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systems. We find that the reduction in current is more pronounced 
for the hybrid system having edge doping of nitrogen with respect to 
the bare ZGNR as reference system. Thus, doping with substitutional 
impurity plays a major role in controlling the transmission and I-V 
thereby creating a significant sensing action.

Conclusion 

In summary we have designed different biosensing systems by 
chemical modification of ZGNR with a drug molecule. Parallely 
substitutional impurity (nitrogen) is added to the hybrid system and 
the current-voltage characteristics were analyzed. We see a significant 
variation in the transmission spectrum and I-V characteristics which 
shows effective biosensing of ZGNR devices. Thus the study provides 
a valuable tool for understanding the interaction of drug and ZGNR, 
which could be used for the development biosensor applications to 
check for the dosage levels when used in palliative care for the patients 
suffering from Cancer.
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Figure 4: I-V characteristics of ZGNR with drug and dopant

SENSOR ETOTAL
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centre -8990.94447 eV
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Hybrid system with nitrogen decoration  at one 
of the edges -9671.75750 eV

Table 1: ETOTAL (eV) at zero gate bias of ZGNR with drug and dopant
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