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Abstract

Mutations in KRAS are among the most commonly observed mutations in 
Non-Small Cell Lung Cancer (NSCLC) patients. However, different therapeutic 
approaches targeting mutant KRAS so far were not efficient. Targeting KRAS 
downstream signaling pathways such as MAPK, ERK is a promising tool to 
control the disease. In the current review, the different therapeutic strategies 
are briefly discussed. 
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Response Rate (ORR) and Progression Free Survival (PFS) [18]. An 
earlier retrospective analysis demonstrated a limited role of KRAS 
mutation in Asian patients with advanced NSCLC [19].

G12C and G12V mutations activate several downstream signaling 
cascades including RAL pathway and thus are associated with poor 
prognosis [20]. On the other hand, G12D mutation induces RAF/
MAPK/PI3K signaling [20]. Collectively, mutations in KRAS result 
in constitutively active protein independent of upstream signals 
due to loss of GTPase activity with subsequent activation of several 
downstream pathways such as MAPK, and AKT/mTOR. Therefore, 
targeting these signaling pathways is the preferred approach to treat 
lung cancer patients with KRAS mutations.

RAS Signaling
In normal cells, RAS is usually inactive and bound to GDP until it 

is triggered by external stimuli that exchange GDP for GTP forming 
an active molecule. Consequently, GTPase activating proteins 
inactivate RAS through hydrolysis of GTP. Mutations in KRAS are 
associated with loss of GTPase activity leading to constitutively active 
protein [21]. The signaling pathways downstream of KRAS (Figure 1) 
are in turn switched on including MAPK, ERK, AKT/mTOR leading 
to increased proliferation, angiogenesis, and resistance to apoptosis 
that favors tumor growth [21].

KRAS-Targeted Therapeutic Approaches
Most of therapeutic strategies that were developed to treat 

NSCLC patients with KRAS mutations are targeting its downstream 
signaling pathways such as RAF, MEK, ERK, PI3K. However, 
thorough understanding of these signaling pathways is crucial before 
developing therapeutic agents. For instance, MEK is activated by 
RAF, which in turn activates ERK that stimulates several downstream 
targets including transcription factors and protein kinases responsible 
for resistance of apoptosis, cell invasion, proliferation, and cell cycle 
progression [21]. Therefore, it is a real challenge to identify which 
arm in the signaling pathway is needed to be targeted to inhibit 
tumor progression. In addition, understanding of the main signaling 
pathways driven within the context of different KRAS mutations is 
indispensable for developing effective therapeutic strategies of NSCLC 
patients [21-23]. Over the past twenty years, several therapeutic 

Introduction
Lung cancer is associated with the highest cancer-related 

mortalities all over the world [1]. Several oncogenic mutations have 
been linked to the development of lung cancer. KRAS mutations are 
among those mutations that exist in about quarter of Non-Small Cell 
Lung Cancer (NSCLC) patients [2]. Mutations in Epidermal Growth 
Factor Receptor (EGFR) have also been observed in NSCLC patients. 
Mutations in EGFR and KRAS have been shown to be mutually 
exclusive in patients with NSCLC [3]. However, double mutations 
have recently been reported in some cases [4]. KRAS mutations can 
also coexist with other mutations such as p53and STK11 [5,6].

RAS is a GTP kinase that has been discovered almost 60 years 
ago. In NSCLC, KRAS missense substitutions mutations are mainly 
observed at codon 12, codon 13, and to a lesser extent at codon 61 
[7]. G12C is the main KRAS mutation found in lung cancer patients 
that accounts for about 40% and is mostly observed in smokers. Other 
mutations include G12V and G12D that account for 22% and 16% 
of mutations, respectively [8,9]. The available information regarding 
the prognostic significance of KRAS mutations in NSCLC patients 
are scarce and elusive. In an earlier report, NSCLC patients with 
KRAS mutations has been shown to have a shorter overall survival 
(OS) compared to patients with wild-type KRAS [10]. In another 
study conducted on patients treated with first-line platinum-based 
chemotherapy, KRAS mutations have been shown to mildly affect OS 
[11]. However, in a recent study, analysis of data from patients treated 
with EGFR-tyrosine kinase inhibitor failed to demonstrate any 
difference in survival between wild-type and mutant KRAS tumors 
[12]. Moreover, KRAS mutation has recently been shown to be 
associated with poor prognosis in patients with lung adenocarcinoma 
with bone metastasis [13]. The type of mutated codon could also 
affect the disease outcome [9]. Codon 12 mutation, G12V, has been 
shown to be associated with poor prognosis [10,14]. 

Similar to its prognostic value, the predictive role of KRAS 
mutations in response to chemotherapy is also contradictory. Several 
studies did not show any predictive role of KRAS mutations in 
efficient response to chemotherapy [15-17]. A recent meta-analysis 
conducted on patients with advanced NSCLC following first line 
chemotherapy demonstrated that KRAS mutations decreased Overall 
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agents against KRAS have been tested either by using pharmacologic 
inhibitors or its downregulation by siRNA. In addition, targeting 
KRAS downstream signaling pathways has also been examined. 

Different strategies have been developed to target activated 
oncogenic GTP-RAS protein. First, by a competitive inhibitor 
that interferes with KRAS interaction with GTP [24-27]. The other 
approach was by targeting membrane binding of RAS [28]. However, 
inhibiting the membrane localization of RAS by an inhibitor, 
salirasib, was not efficient in phase II clinical trial [29]. A prospective 
trial study conducted in 2011 showed a remarkable effect of sorafenib 
treatment of NSCLC patients with KRAS mutation than those treated 
with erlotinib [30]. However, due to its toxicity, it is uncertain that 
sorafenib will be a good therapeutic agent for NSCLC patients with 
KRAS mutations.

Recently, a small inhibitor molecule that specifically binds to 
G12C mutant KRAS with no effect on wild-type protein has been 
developed that renders mutant protein to bind GDP instead of GTP 
[27]. That pre-clinical finding could pave the road to develop a second 
generation of the inhibitor to be used for phase I or phase II trials. 

Immunotherapy
Immunotherapy is considered as a breakthrough therapeutic 

approach for cancer. The recent advanced immunotherapeutic 
strategies are based on the inhibition of protective mechanisms 
employed by cancer cells against immune cells. This is achieved by 
blocking certain immune checkpoints, such as Programmed cell 
Death-1 (PD-1). Recently, targeting PD-1 and its ligand PDL-1in 
clinical trials has demonstrated exceptional responses in NSCLC 
patients [31,32]. However, the response to immunotherapy is 
currently limited to a small number of patients [33]. Interestingly, 
It has recently been shown that patients with lung adenocarcinoma 

with KRAS and or/TP53 mutations exhibited more sensitivity to PD-1 
targeted immunotherapy [34]. These findings suggest a potential 
predictive significance of KRAS mutation in immunotherapy. 

Alternative Therapeutic Approaches
Since targeting KRAS has been shown to be inefficient, an 

alternative approach by inhibiting its downstream target such 
as MAPK could be more effective. Therefore, using sorafenib, a 
multidrug TKI, in a phase II trials was promising in controlling the 
disease [30,35,36]. However, in phase III MISSION trial, the analyses 
of group with KRAS mutations did not show any effectiveness of 
sorafenib [37]. 

Another candidate downstream of RAS is MEK1/2. An oral non-
ATP competitive MEK1/2 inhibitor, selumetinib was developed [38]. 
Treatment of advanced cancer patients with that inhibitor achieved 
a good tumor response in early phase [39]. However, it showed little 
effect in phase II trials [40]. Combined treatment of selumetinib 
and docetaxel exhibited a good synergistic tumor regressive effect 
in vivo [22]. When similar strategy applied in an early phase study, 
manageable side effects were observed [41]. Therefore, a phase II 
study was performed in NSCLC patients with KRAS mutations who 
received combined selumetinib and docetaxel therapy and it showed 
improvement in PFS [42]. However, results of a subsequent phase III 
study did not show any effect of combined selumetinib and docetaxel 
therapy on OS, PFS, or ORR [43]. Therefore, the production of 
selumetinib was stopped by AstraZeneca.

A second allosteric MEK1/2 inhibitor, trametinib was also tested 
in a phase I trial in NSCLC patients with mutant KRAS and exhibited 
a stable disease response in 53% of patients [44]. Consequently, in 
a phase II trial, trametinib-treated patients had no effect on PFS. 
However, in three patients, 80% tumor regression was observed [45].

Cyclin Dependent Protein Kinases (CDKs) are the main regulators 
of cell cycle and therefore are potential therapeutic targets in NSCLC 
with KRAS mutations. Synthetic lethality was induced after targeting 
CDK in KRAS mutant NSCLC in in vitro and in vivo preclinical 
studies, suggesting that CDK plays a key role in tumorigenesis [46]. 
The first CDK inhibitor, flavopiridol was developed that showed little 
effect in phase II trials [47]. A new CDK inhibitor palbociclib has 
been shown to have a good effect in ER+ breast cancer patients [48]. 
However, its use in clinical trials for treatment of NSCLC patients is 
ongoing.

Another CDK inhibitor, Roscovitine was evaluated in NSCLC 
patients. However, it had no effect on survival [47]. Another cell 
cycle inhibitor, LY2835219 has been tested in xenografts and showed 
a good effect. A phase III trial (NCT02152631) is currently ongoing 
and recruiting patients. 

Focal Adhesion Kinase (FAK) is another candidate to be 
targeted in NSCLC with KRAS mutation. FAK is a tyrosine kinase 
that is involved in cellular adhesion, invasion in different cancer 
types. FAK inhibition has been shown to induce tumor regression 
in KRAS mutant mice [49]. Defactinib is a FAK inhibitor that has 
recently been tested in Asian phase I study in Japanese patients with 
advanced solid tumors and showed good tolerability [50]. Defactinib 
has also been used in phase II trial in KRAS mutant NSCLC patients 

Figure 1: KRAS signaling in NSCLC. Mutations in KRAS are associated 
with a constitutively active RAS protein with the induction of downstream 
signaling cascades such as MEK/ERK1, 2 and PI3K/AKT/mTOR pathways 
that leads to proliferation, migration, invasion, and angiogenesis.
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(NCT01951690). However, negative unpublished results were 
reported at the 16th World Conference on Lung Cancer.

Conclusion
Although KRAS mutations are frequently observed in NSCLC 

patients, it is apparent that targeting mutant KRAS is a real challenge. 
The complexity of its downstream signaling pathways and the absence 
of oncogenic addiction made it difficult to develop an effective 
therapeutic approach. However, currently there are promising 
therapeutic trials that could effectively improve the overall survival 
of patients.
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