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Abstract

In clinical practice today, only symptomatic therapeutic approaches are 
available to patients with mitochondrial myopathies. A possible innovative 
strategy to ameliorate oxidative phosphorylation deficiency would be to increase 
the mitochondrial load of the patient’s muscle tissue. Some of the most promising 
stimulators of mitochondrial biogenesis: resveratrol, quercitin, catechins and 
fibrates, are evaluated in this review. Results so far are promising, but there 
is need to determine if sufficient mitochondrial proliferation can be achieved to 
normalize OXPHOS function in patients with mitochondrial myopathy. 
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mitochondrial proliferation necessitates the coordinated expression 
of mitochondrial and nuclear genes and is governed by a complex 
system of transcription factors and co-activators, of which the 
peroxisome proliferator-activated receptor-γ coactivator α (PGC-
1α) seems the master regulator [3,4]. Stimulation of PGC-1α activity 
results in increased mitochondrial mass and function. PGC-1α 
expression is controlled by the peroxisome Proliferation Activated 
Receptor (PPAR) family [5], and by deacetylation mediated by 
NAD+-dependent protein deacetylase Sirtuin (SIRT) 1 [6,7]. 

So far, the development of effective therapies for OXPHOS 
deficiencies has been extremely limited [8]. A proposed therapeutic 
approach for OXPHOS patients would be to increase the number 
of mitochondria per cell, which could result in greater capacities 
to produce ATP (Figure), higher mitochondrial DNA content 
and increased mitogenesis has recently been suggested to protect 
mutation carriers from developping Leber’s hereditary optic 
neuropathy [9]. In cybrids harbouring the classical m.3243A>G 
mitochondrial encephalomyopathy, lactic acidosis and stroke-like 
episodes (MELAS) mutation, PGC-1α overexpression improved 
OXPHOS complex III and complex IV deficiency [10]. 

This mini review will focus on some of the most promising 
stimulators of mitochondrial biogenesis, in relation to their potential 
to treat OXPHOS deficiencies. 

Exercise 
Physical activity results in increases in both mitochondrial 

content and function in skeletal muscle tissue [11], typically doubling 
the amount of muscle mitochondria. In elderly subjects, 8 weeks of 
high-intensity exercise training increased expression of PPARγ-1α 
and various OXPHOS components, and resulted in increased exercise 
endurance [12]. Significantly increased citrate synthase and OXPHOS 
complex I, III and IV activities were described in vastus lateralis of 
young and elderly healthy subjects [13]. A study monitoring patients 
with heteroplasmic mitochondrial DNA defects showed that, in 
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Introduction
In humans, skeletal muscle is one of the tissues with the 

highest energetic demand. The majority of the necessary cellular 
energy is supplied by the mitochondria through Oxidative 
Phosphorylation (OXPHOS). The OXPHOS system consists of five 
multiprotein complexes embedded within the inner mitochondrial 
membrane: complex I (NADH:ubiquinone oxidoreductase), 
complex II (succinate:ubiquinone oxidoreductase), complex III 
(ubiquinol:cytochrome c oxidoreductase), complex IV (cytochrome 
c oxidase) and complex V (ATP synthase). Defects in the OXPHOS 
system are associated with a broad spectrum of clinical manifestations, 
not surprisingly often with prominent muscular problems [1]. 
Muscular complaints range from relatively benign myalgias to severe 
disabilities. The estimated incidence of OXPHOS defects in humans 
is approximately 1 in 5,000 live births. OXPHOS defects are complex 
due to the dual origin of genes involved and the specific nature of 
the mitochondrial genome. The mitochondrial DNA is present in 
multiple copies in individual cells, and co-existance of mutated and 
wild type variants, termed heteroplasmy, can occur. Due to this 
genetic complexity, pinpointing the origin of the defect is often a 
time-consuming process that requires thorough biochemical and 
molecular characterization of patient tissues. Diagnostic testing for 
OXPHOS deficiencies includes spectrophotometry and blue native-
polyacrylamide gel electrophoresis, evaluating the activities of the 
individual OXPHOS complexes I-V [2]. 

Under physiological conditions, mitochondrial biogenesis is 
synchronized with changing energetic demands. The process of 
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response to exercise, levels of the mitochondrial marker citrate 
synthase increased 50%, while OXPHOS activities went up 20% on 
average [14], resulting in improved muscle symptoms [15]. In a 
cohort of patients with chronic progressive external ophtalmoplegia 
due to single, large-scale mtDNA deletions, 12 weeks of resistance 
training led to increased muscle strength and a 2-fold significant 
increase in satellite cell numbers [16]. These data offer promising, 
yet somewhat unequivocal findings, as different types of exercise 
were performed and the number of patients enrolled often was low. 
Although exercise training is regarded a highly efficient means of 
increasing muscle function, there is an important drawback. Many 
patients have difficulties maintaining a regular exercise program, 
which makes other strategies involving nutritional supplements and 
drugs an attractive alternative.

Caloric restriction
Myriad animal studies have taught us that caloric restriction 

has the potential to prolong lifespan and diminish aging-associated 
changes. In the mechanisms responsible for these beneficial effects, 
increased mitochondrial biogenesis and activity are important players 
[17]. Caloric restriction increased PGC-1α expression significantly 
in the gastrocnemius of rats [18]. In a cohort of healthy overweight 
patients, 25% caloric deficit was shown to increase mitochondrial 
content and associated makers of biogenesis in vastus lateralis, 
however, without changing OXPHOS complex IV activity [19]. It 
needs said that in human due to poor compliance, implementing 
caloric restriction is not a reliable therapeutic approach. 

Resveratrol
Resveratrol (3,5,4’-trihydroxystilbene) is a natural polyphenol 

present in the skin of red grapes presumed to boost mitogenesis 
by activating PGC-1α via SIRT1 [20,21]. Significantly increased 
mitochondrial biogenesis was shown in resveratrol fed mice [21], an 
effect comparable to the one achieved in PGC-1α overexpressing mice 
[22]. An in vitro study assaying the effect of resveratrol in cultured 
skin fibroblasts from patients with OXPHOS complex I and complex 
IV deficiency showed stimulated mitochondrial biogenesis and 
increased OXPHOS protein levels, resulting in corrected deficiency 
(measured through oxygen uptake rates) in 6 out of 16 patients’ cell 
lines [23]. In our own in vitro study however, resveratrol was unable 
to normalize mitochondrial enzyme activities in a series of fibroblast 
cell lines from patients with isolated complex II and complex IV 
deficiencies, and seemed to necessitate a threshold of residual 
OXPHOS activity to generate a response [24]. At this time, the first 
results are beginning to surface addressing the effects of resveratrol in 
patients. A study evaluating the benefits of exercise in elderly healthy 
subjects showed no additional gain of adding resveratrol to the study 
protocol [12].

Quercitin
Quercitin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-

chromen-4-one) is a widely distributed plant pigment that gets 
its name from the oak tree (quercus). It is present in many foods, 
including red onions, apples and berries [25]. Seven days of quercitin 
feedings significantly increased a set of mitochondrial markers in 
murine soleus muscle, among which PGC-1α and SIRT1 expression, 
and resulted in increased maximal endurance capacity and voluntary 
wheel-running activity [26]. In humans four-week quercitin treatment 
achieved a small but significant performance effect in young healthy 
adults [27]. Combined with additional antioxidants and caffeine, a 
six-weeks supplement has been shown to improve endurance in a 
bicyle test [28]. 

Catechins
Epigallocatechin-3-Gallate (EGCG) is known for its anti-cancer 

and mitogenetic properties. It is present in large quantities in tea 
leaves and protects mitochondria from oxidative stress. The reduced 
OXPHOS complex I and complex V activities observed in EBV-
immortalized lymphoblasts and fetal skin fibroblasts from subjects 
with Down’s syndrome, were restored to normal levels by treating the 
cells in vitro with 20µM EGCG for 24h [29]. 

Fibrates
Fibrates are amphipathic carboxylic acids that act as PPAR 

agonists. They are routinely used for treating diabetes mellitus and 
metabolic syndrome. Bezafibrate was reported to boost residual 
OXPHOS enzyme activity that lead to normal oxygen consumption 
rates in the treated cells [30]. Four-day bezafibrate treatment of 
cybrids carrying homoplasmic mitochondrial tRNA gene mutations 
resulted in increased PGC-1α mRNA expression and ATP synthesis. 
It also increased activities of citrate synthase and OXPHOS complex 
IV [31].

Conclusion
Based on the literature reviewed, one can conclude that stimulators 

of mitochondrial biogenesis could be of benefit to patients with 

Figure: Rationale for treating oxidative phosphorylation (OXPHOS) 
deficiencies by stimulating mitochondrial biogenesis. Therapeutic 
measures stimulating mitochondrial proliferation include exercise and 
administering mitogenetic compounds, resveratrol, quercitin, cathechins and 
fibrates. In theory, they enhance the OXPHOS capacities, but  this needs to 
be proven in a therapeutic setting.
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inborn OXPHOS deficiencies. However, this remains to be tested 
thoroughly in humans. Also, development of potent derivatives of the 
known mitogenetic compounds could increase therapeutic responses 
further. 
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