
Citation: do Prado RF. Estrogen Deficiency and Bone Remodeling. Austin J Musculoskelet Disord. 2014;1(1): 
1001.

Austin J Musculoskelet Disord - Volume 1 Issue 1 - 2014
ISSN : 2381-8948 | www.austinpublishinggroup.com 
Prado. © All rights are reserved

Austin Journal of Musculoskeletal Disorders
Open Access 

Full Text Article 

Chondrocytes secrete IGF and reactto this factor in an 
autocrinesignaling pathway. Its role in bone remodeling and repair is 
not completely understood  [9]. However, Okazaki et al. [10] believe 
that the inflammatory chemical mediators, such as prostaglandins, 
secreted after a trauma can induce the expression of IGF-I. In the 
early periods of repair, messenger ribonucleic acid (mRNA) of IGF-I 
was expressed by mesenchymal cells, immature chondrocytes, pre-
osteoblasts, osteoblasts and osteocytes in bone callus. After two weeks 
of repair, osteoblasts continue to express IGF-I. This factor seems to 
be involved in the proliferation and differentiation of osteoblasts and 
chondrocytes, acting as an autocrine and paracrine mitogenic factor 
during bone repair. 

Despite being found in lesser amounts compared to IGF-II, IGF-I 
promotes increased collagen synthesis, being more active on bone 
tissue [11]. 

With respect to the functions of TGF-beta, according Finkelman 
et al. [12] thedeficiency of thisfactor in ovariectomized ratsbone, 
suggest its importance in maintenance of bone volume, since it can 
induce proliferation and differentiation of  bone cells [11]. 

Another route of action of estrogens on bone remodeling signaling 
is osteoprotegerin (OPG), receptor activator of NF-kB (RANK) and 
RANK cytokine ligand (RANKL), identified as the major factors 
involved in osteoclastogenesis. RANK is located on the surface of 
mature osteoclasts and their precursors, while RANKL is a protein 
that belongs to the tumor necrosis factor (TNF) family. Its main role 
is to inhibit apoptosis of osteoclasts and stimulate the differentiation 
and activation of these cells. OPG directly inhibit the binding RANKL 
with RANK.Its effects are antagonistic to the effects of RANKL. 

Several cytokines and compounds such as estrogens affect 
osteoclastogenesis by regulating the production of RANKL/OPG by 
stromal cells and osteoblasts [13]. Subsequently menopause, bone loss 
arises because the RANKL action is favored above the OPG. Decrease 
of the estrogen levels reduces the OPG activity and improves the 
RANKL activity, resulting in increased resorption and bone loss.

Steeve et al. [13] reported that both estrogen and TGF-β increase 
OPG production, consequently decreasing the differentiation and 
activation of osteoclasts, as well as inducing apoptosis of these cells. 

An experimental model that mimics estrogen deficiency in 
postmenopausal women is ovariectomy in rats, which results in 
decreased levels of estrogen [14]. As a result, ovariectomy causes bone 
loss. Despite differences between women and experimental animals, 
this model is considered appropriate to study osteopenia inestrogen 
deficiency [15]. An option is theexcision of testicles in male rats, but 
this type of study is less used than ovariectomy.

Avoid weight gain in ovariectomized animals is necessary because 
this, could be a protecting mechanism [16,17], which use the fat as a 
source of estrogenic hormones, and may alter bone loss desired in 
the study model sincebone, mammary glands, placenta and adipose 
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[1]. Bone remodeling plays a fundamental role in the homeostasis of 
calcium serum levels [2]. In post-menopausal osteoporosis, resorption 
is increased when comparing to bone apposition. Consequently there 
is bone loss [3]. 

The mechanisms linking estrogen and the regulation of bone 
remodeling are still unknown [4], however, in vitro studies suggest 
that this hormone acts on secretion and activity of the factors that 
regulate osteoblast precursors and prevent osteoclast formation [5]. 
Estrogen receptors of osteoblasts and osteoclasts have regulatory 
functions in these cells and consequently in bone remodeling [1]. 

Osteoblasts exert their physiological signaling function mediating 
osteoclastic resorption when its activation occurs by inducers such 
as parathyroid hormone (PTH), interleukin 1 (IL-1), tumor necrosis 
factor (TNF) or prostaglandin (PGE-2), which stimulate osteoblasts 
to secrete factors that induce osteoclasts to resorb bone. The decrease 
in estrogen levels results in increased production cytokines involved 
in bone reabsorption [6]. 

Hughes et al. [7] investigated in vitro and in vivo the estrogenic 
function in the regulation of osteoclasts apoptosis. According to the 
authors, estrogen increases the production of TGF-β by osteoclasts. 
The anti-TGF-β antibody reduces apoptosis of osteoclasts. Thus, 
estrogens may regulate resorption, limiting osteoclasts life. 

Estrogen has appreciable effect on the expression of cytokines 
and growth factors by osteoblasts and osteoclasts, which play an 
important role in itsparacrine and autocrine action. Some growth 
factors which can act in signaling, proliferation, migration and matrix 
synthesis by osteoblasts are: platelet derived growth factor (PDGF), 
insulin-like growth factors (IGF) I and II, fibroblast growth factor 
(FGF), transforming growth factor (TGF), especially TGF-ß and 
bone morphogenetic proteins (BMPs). Among these growth factors, 
the main related to estrogen are: IGF-I and II, TGF-ß and PDGF [8]. 

The IGF I and II can stimulate mitosis and collagen synthesis 
in osteoblasts, while TGF-ß displays dual effect, stimulating or 
depressing the osteogenic function. FGF and PDGF have similar 
functions, but with secondary importance. 

The IGF also promotes the synthesis of cartilage matrix. 
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tissue express the aromatase enzyme involved in the synthesis of 
estrogens [18]

New knowledge that can guide the therapeutic management 
of women with postmenopausal osteoporosis, can contribute in 
improving the quality of life of these patients. New studiesthat 
attempt to better understand the mechanisms of regulation of bone 
remodeling by estrogens areessential.
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