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anticoagulant system needed to limit the host damage, and the lack of 
homeostatic interactions between these systems leads to thrombosis 
[14-17]. This could occur in people with genetic or environment-
induced impaired anti-coagulant, and/or anti-oxidative system or 
during prolonged inflammatory-thrombotic processes. In any case, 
the presence of thrombotic events indicates an excessive activation of 
innate immunity.

Since extensive reviews have already described in detail the 
involvement of innate immunity cells in MS and in experimental 
allergic encephalomyelitis (EAE) [2,5-8], this editorial aims to 
emphasize also the important role of the coagulant component 
of innate immunity in MS and EAE. It is not negligible that such 
component could be an easily reachable target for a possible 
therapeutic intervention.

In fact, while many efforts have been aimed to better define the 
function of innate immune cells in MS [6,7], the role and impact of 
the coagulant component of innate immunity are still unclear, though 
there is ample literature on the presence of systemic thrombosis 
in MS [18-23]. Furthermore, recent studies provided evidence 
for involvement of platelets [24-26] and complement [27-29] in 
MS, which participate in the innate immune response by linking 
inflammation and coagulation.

In addition to systemic thrombosis, several data in the literature 
have shown the presence of brain thrombotic processes in MS and 
in EAE. In 1935, Putnam had already considered the role of venule 
thrombosis in CNS demyelination [30]. A pathological study in 
acute MS reported fibrin deposition on endothelial cells in many thin 
veins and capillaries, with some thrombosed vessels, in areas without 
myelin damage or reactive parenchyma changes [31]. The areas of 
microglial activation associated with fibrin deposition were found in 
acute or early MS and in rat EAE, representing a first stage of tissue 
injury before active demyelination and massive T-cell infiltration 
[9]. Coagulation proteins were highlighted within the chronic active 
plaque in MS by the proteomic analysis [32]. In vivo, some proteins 
involved in coagulation such as β2glicoprotein I, fibrinogen and 
complement C4, were found in most abundant quantities in the 
cerebrospinal fluid of fulminant MS compared to controls [33]. 
Another paper reported an increase of soluble thrombomodulin 
in relapsing-remitting MS, released from the surface of damaged 
cerebrovascular endothelial cells, reducing their normal function in 
promoting the activation of anticoagulant protein C [34]. This leads 
to a reduction in the inhibitory function of protein C on inflammatory 
cell migration across the blood-brain barrier (BBB).

Also in EAE, fibrin deposition preceded and regulated 
inflammatory demyelination, while its genetic or pharmacologic 
depletion ameliorated both clinical symptoms and inflammatory 
response [35]. It has been demonstrated that early perivascular 
microglial clustering, triggered by fibrinogen leakage after BBB 
disruption, contributed to axonal damage in EAE before myelin loss 
or paralysis onset, and that this process was blocked by anticoagulant 
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disease of the central nervous system (CNS) affecting prevalently 
young adults and with multi-factorial pathogenesis that includes 
genetic and environmental factors [1-3]. The pathogenesis of MS has 
been long attributed to self-reactive T cells but recently the relevant 
role of B cells, another component of adaptive immunity, has been 
recognized [4]. It has been demonstrated that innate immunity also 
contributes significantly to MS pathogenesis both in the initial and 
in the advanced stages of the disease [5-8]. In particular, activation 
of microglial cells, which physiologically act as cleaners of the 
brain microenvironment in response to injury and infections, has 
been widely reported in both white matter and gray matter tissue 
in MS [3]. Microglial activation in the absence of lymphocytes or 
myelin phagocytosis, has been observed in early MS lesions [9,10], 
expression of a primary involvement of innate immunity. Likewise, 
predominant microglia activation into newly formed cortical lesions 
has been detected in the progressive MS phase [11]. Widespread 
damage of normal appearing white matter (NAWM) seems to be 
related to chronic microglial activation with marked expression of 
i-NOS and myeloperoxidase [3]. Moreover, it has been hypothesized 
that the progressive phase of MS could be mainly driven by the innate 
immune system contributing to the neurodegenerative changes of 
the disease [7]. In vivo positron emission tomography studies using 
radioligands that selectively target the translocator protein (TSPO), 
expressed in activated microglia and macrophages, have recently 
demonstrated increased TSPO expression in NAWM and cortex of 
patients from the earliest to the progressive MS stages [12].

Innate immunity represents the immediate, nonspecific defense 
against infections and dangerous agents. Adaptive immunity 
develops a specific immunological memory after the first contact 
with a pathogen, exponentially enhancing its successive responses 
[13]. There are close interrelationships between both types of 
immunity, and innate immunity stimulates and modulates the 
adaptive one. Innate immunity acts through its essential processes 
such as inflammation and blood coagulation [14-17]. The coagulation 
cascade has had primordially the function of limiting invasiveness 
of potential pathogens by trapping them in the fibrin network [15]. 
Physiologically, coagulant processes are balanced by the natural 
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treatment or by genetic deletion of fibrinogen [36]. Likewise, hirudin 
or recombinant activated protein C (rAPC) improved EAE and 
suppressed pro-inflammatory T-helper1 and T-helper17 cytokines in 
astrocytes and immune cells [32]. Both anticoagulant and signaling 
functions of rAPC have been demonstrated necessary for improving 
EAE [32].

Chapman stressed the importance of thrombin in inflammatory 
brain diseases [37,38]. Thrombin converts circulating fibrinogen to 
fibrin, and has numerous hormone-like functions affecting, among 
others, microglia and astrocytes [39]. The activity of thrombin in the 
brain is regulated by endogenous thrombin inhibitors such as serum 
antithrombin III, expressed in the liver and less in the brain, and brain 
protease nexin-1 (PN-1) secreted by glial cells and neurons [37,38]. 
It has been demonstrated that the plasma thrombin-antithrombin 
complexes were associated with EAE severity, increasing immediately 
prior to EAE symptoms and decreasing in relation to their 
improvement [40]. Similarly, an increase of brain PN-1 has been 
shown at the preclinical stage in mouse EAE [41]. The suppression 
of EAE by dermatan sulfate [42] or low doses of heparins [43] has 
been also demonstrated, as a result Chapman proposed thrombin as a 
therapeutic target in MS [37].

In conclusion, involvement of the coagulant component of innate 
immunity in MS is largely supported by several studies in EAE and 
MS. Therapeutic targeting of innate immunity, both its cellular and 
coagulant components, could be a promising approach for treating 
MS.
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