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NanoSIMS is now becoming to be adapted for three-dimensional 
chemical imaging studies [11].

In spite of the significant advances performed in adapting 
chemical imaging acquisition systems to biological samples an 
important bottle neck is still remaining. Since the biological material 
is mainly composed by water, the observation of cells in their native 
hydrated state defies the traditional chemical imaging methods, 
initially developed for dehydrated materials. This issue is addressed 
by quickly cooling the cells at liquid nitrogen temperatures and by 
observing them in a frozen-hydrated state where the generated 
amorphous ice is preserved. While it is true that the aforementioned 
approach has been widely validated in tomographic structural studies 
of cellular components in both, transmission electron microscopy 
[12, 13] and soft X-ray synchrotron radiation imaging [14, 15]; its use 
for three-dimensional chemical imaging is still in a developmental 
stage and continues to face significant technological problems to be 
solved. Thus, to obtain images from samples having several microns 
of thickness, such as is the case of eukaryotic cells, and to prevent 
the damage induced by the radiation on frozen-hydrated samples, 
are open questions. Nevertheless, promising results recently obtained 
have demonstrated the feasibility of tomography in frozen hydrated 
samples by scanning transmission electron microscopy [16]. 
Moreover, the first results on frozen-hydrated whole cells, obtained 
by hard X-ray fluorescence, have been recently reported [17].

To sum up, combining the chemical information with three-
dimensional visualization of cells opens up new horizons for 
their ultra-structural depiction and for the understanding of their 
interactions with the environment. The next challenges are now to 
improve the resolution and the accuracy of the three-dimensional 
chemical maps, and to increase the sensitivity of the different 
chemical imaging methods, in order to advance in the completion of 
our perception of eukaryotic entire cells close to their native hydrated 
state.
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Editorial
Our perception of the world has evolved considerably from the 

archaic flat Earth model to the modern vision of the terrestrial sphere, 
but nevertheless, the global vision of the surface of our planet has 
not been achieved until it was observed from the outer space. Thus, 
Earth observation from the space provides access to the distribution 
and dynamic of its different geographical and atmospheric layers. 
Similarly, the vision of life has substantially progressed from the 
drawings of the structure of cork, published by Robert Hooke [1], 
to the three-dimensional description of sub-cellular components 
although, once again, it might be completed by the study of the 
distribution and dynamic of the cellular chemical components. 
This can now be reached by the combination of chemical mapping 
approaches, widely applied for analytical characterization of non-
biological materials, with tomographic reconstruction methods, 
used more and more often for the study of sub-cellular components 
[2]. Thus, three-dimensional chemical mapping has been recently 
used to address biological questions, such as the understanding of 
chromatin structure and nuclear sub-compartmentalization [3]. 
From another point of view, the increased of the use of metallic 
nanoparticles (MNPs) in therapy, diagnosis, drug delivery and 
cosmetics among other biological applications [4, 5], will led to a need 
for the development of methods, such as three-dimensional chemical 
imaging, allowing their intracellular tracking and characterization.

Current methods suitable for three-dimensional chemical 
imaging with in cells, at nanometric resolution, are traditionally based 
on electron microscopy frequently applied in material sciences. That 
is the case with tomography combined with Z-contrast by scanning 
transmission electron microscopy (STEM) and with energy-filtered 
transmission electron microscopy (EFTEM) [6]. In addition, the 
recent development of synchrotron tomography imaging is an 
attractive alternative to the classical electron microscopy approaches. 
Thus, in spite of its current limited spatial resolution, synchrotron 
radiation X-ray fluorescence is becoming a promising tool because of 
their accuracy in elemental mapping [7, 8]. This may be also true for 
other imaging approaches, such as secondary ion mass spectroscopy 
(NanoSIMS) [9, 10]. NanoSIMS, even if it is not really appropriated 
for three-dimensional studies because of the erosion required by the 
method that cannot be easily calibrated, offers scope for isotopic 
characterization inaccessible by other methods. Thus, in combination 
with atomic force microscope, that allows erosion calibration; 
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