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Abstract

In this paper, a new approach for optical isolator based on the Plasmonic 
effect is proposed. Metallic nanoparticles of different sizes are used to realize 
the proposed idea. Metallic nanoparticles spin-coated on alumina thin layer 
that is coated on Silicon waveguide.  We demonstrated that the proposed 
idea operates in a broadband spectral range (more than 800nm) as well as 
back-propagating wave attenuated more than 120dB. The proposed idea can 
enhance the isolation ratio and also can provide wider bandwidth for isolation. 
The proposed idea is based on solution process nanotechnology that is simple, 
low cost, and available. 

Keywords: Optical isolator; Broadband isolation; Nanoparticles; Fe 
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achieved, but the design has a low isolation ratio (less than 5dB). The 
insertion loss of the proposed isolator is acceptable (nearly 3dB) [39]. 
Another method is based on a ring resonator. The device consists of 
a magneto-optical ring resonator with a silver disk embedded in its 
center. The isolation ratio is reported to reach 20.1dB, and the insertion 
loss is 0.89dB at the wavelength of 1.38um. The operating bandwidth 
of the mentioned design is about 10nm, which means it cannot act as 
a broadband isolator [40]. One of the designs which are compatible 
with CMOS technology is based on tandem ring modulators. In this 
scheme, a p-n ring modulator was adopted to reach the isolation 
function. The maximum isolation ratio of 50dB and insertion loss of 
3dB was acquired. The bandwidth of the device is 1.87GHz, which 
implies it cannot be used as a broadband isolator [41]. One of the 
trials was based on a magneto-optic Mach-Zehnder interferometer. 
The design consists of an asymmetric Mach-Zehnder interferometer 
with a phase shifter. The phase shifter in one of the waveguides is non-
reciprocal and is magnetized transversely. In the other waveguide, 
the phase shifter is reciprocal. Isolation ratio and insertion loss are 
obtained 50dB and 1dB respectively. The proposed design couldn’t 
function as a broadband device [42]. One of the structures is based 
on plasmonic. The design is a multi-layer structure of Si, Al2O3, and 
Fe. Fe is used as the magneto-optic material to gain non-reciprocal 
loss. Si is used as a dielectric of the plasmonic structure. And Al2O3 is 
used to have free carriers and adjust the effective refractive index of 
the waveguide. High isolation has been attained (800dB/mm) which 
is acceptable. Because of the high extinction factor of Fe, using it 
as the metal of the plasmonic structure increase the insertion loss. 
But it could be compensated by an optical amplifier. Besides, the 
design could only perform narrowband isolation [43]. In this paper, 
we demonstrated an isolator with high isolation and ultra-broad 
bandwidth with a wide incident angle. For the best of the author’s 
knowledge, it has the broadest bandwidth with the highest isolation 
ratio and widest incident angle among the reported structures.

Design and Simulation
In this section mathematical modeling and physical description 

Introduction
An optical isolator or optical diode is a device that restricts light 

to travel in one direction and allows it to go in another direction. 
An optical isolator is an essential device in optical communication 
systems and lasers. It prevents back reflections of light, which could 
damage other devices. A variety of optical isolators have been 
proposed over the past years. Rayleigh proposed the first optical 
isolator which was designed utilizing a Faraday rotator and two 
polarizers. The origin of non-reciprocity was the Faraday rotator. 
Because of its magnetically induced anisotropy, the light traveling 
in two directions along the device rotates differently. By using the 
polarizers, the light gets blocked in one direction. Rayleigh’s isolator 
had some major problems. It could not function as a broadband 
isolator because the rotator depends on wavelength. The second 
problem is the strong magnetic field, which was used to induce 
anisotropy to the rotator. Also, it is challenging to make magnets 
in smaller sizes, which means this device is bulky and could not be 
integrated with other devices. Additionally, the magnetic field and 
Verdet constant are temperature-dependent which makes designing 
this isolator difficult. Strong dependency on the length of the rotator 
is another difficulty of this isolator. Some of these issues are remained 
as a problem for fabrication and developing optical isolators. The 
primary parameters of an optical isolator are isolation ratio, insertion 
loss, and bandwidth. To gain a high isolation ratio, low insertion 
loss, and broad bandwidth several works have been done. In most 
of the structures, iron or garnet was used as the main material and 
the anisotropy was induced to the iron or garnet by a magnetic field. 
Table 1 shows the main parameters of the proposed structures. Broad 
bandwidth and high isolation have not been reached in the presented 
works and a broadband isolator with high isolation is strongly needed.

Some of the new designs are discussed in the following. One of 
the approaches is using chiral plasmonic-metamaterials. It proposes 
an achromatic optical isolator. It is based on circular dichroism 
in metamaterials of twisted chains, which is made of metallic 
Nanoparticles. Broad bandwidth (approximately 300nm) has been 
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of operation is presented. Figure 1 shows a schematic of the proposed 
optical isolator.  

Figure 1 shows the schematics of our proposed design. It consists 
of 300nm of Si as substrate, 20nm of Al2O3, and 3000nm of Fe 
Nanoparticles surrounded by Si. The Nanoparticles have various 
diameters varying from 160nm to 360nm. Refractive indexes of 
dielectrics are wavelength-independent. It is determined as 3.5 for 
Si and 1.74 for Al2O3 at the wavelengths 1200-2000 nm. Permittivity 
tensor of Fe is described as:
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where diagonal elements are the permittivity of Fe without 
magnetization. Its value for different wavelengths is obtained from 
the data reported by Ordal (1985). The off-diagonal elements are 
responsible for the anisotropic feature of Fe which is generated using 
a magnetic field. It is assumed to equal 36.4 in this paper. iγ is defined 
as purely real (it doesn’t have an imaginary part), even though having 
a small imaginary part won’t have any major effect on the result. 
The simulations are performed by the finite element method. The 
transmittance of the design is shown in Figure 2. As shown there is a 

great difference between transmission in the forward and backward 
direction meaning that the device is an isolator.

Figure 3a shows the Isolation ratio for this design. The isolation 
ratio is one of the major parameters to evaluate an isolator. Isolation 
ratio is defined as a ratio of the transmittance in the forward direction 
to the transmittance in the backward direction:

Figure 1: Schematics of the proposed design. From the bottom: 300nm of 
Si, 20nm of Al2O3, and Fe Nanoparticles surrounded by Si. For the forward 
direction, port 1 is excited and for the backward direction, port2 is excited.

Figure 2: The transmittance of the proposed design. The blue line shows 
the transmittance along the forward direction and the green line shows the 
transmittance along the backward direction.

Structure Isolation 
ratio (dB)

Insertion 
loss (dB) Bandwidth (nm)

Non-reciprocal coupling [1] 30 3 Single freq.

Liquid Crystal [2] 30 1 Single freq.

Tandem phase modulator [3] 11 2.3 Single freq.

Guided resonance [4] 25 0 Single freq.
Non-reciprocal optical 
resonators [5] 19.5 18.8 Single freq.

Photonic crystal 
heterojunctions [6] 22 12~32 180nm

Ring isolator on SOI [7] 20~80 - Single freq.
Non-reciprocal Microring 
resonator [8] 20 - Single freq.

Ce:YIG/SOI [9] 25 14 Single freq.
Atomic vapor in the hyperfine 
[10] 30 0.05 Single freq.

MZI [11] 18 - -
Stimulated Brillouin scattering 
[12] 20 - 25

All-silicon [13] 28 - Single freq.

Compact MZI [14] 11 - Single freq.

Linear and passive [15] 6 - 50

Surface Plasmons [16] ~800 - Single freq.

Faraday rotator [17] 10~40 - 50

CdSe Quantum Dots [18] 14 - Single freq.

Ce:YIG on SOI [19] 32 - Single freq.

Modulation [20] 3~5 - 40

Coupled micro resonators [21] 8 0 Single freq.

Nanorings [22] 35 0 Single freq.
Cryogenic Faraday Isolator 
[23] 30 - Single freq.

Mode Conversion [24] 6 8 -

Deposition of Ce:YIG [25] 13 7.4 Single freq.

Grating coupler [26] 20 5.7 14

Micro ring [27] 32 ~25 Single freq.
Nonlinear PT-symmetric 
lattice [28] 68.6 -3.7 Single freq.

Four-wave-mixing 11.3 19 2.5
Canceling phase deviation in 
MZI [29] 20 35 8

Four-wave-mixing [30] 15 4 Single freq.
Microtoroid optomechanical 
resonator [31] 10 ~15 Single freq.

Active micorcavity [32] 16.5 1.25 Single freq.

Tapered metallic grating [33] 9 0.5 ~250

Microcavity [34] 6.5~26 - Single freq.

Four-wave-mixing [35] 18.3 7 2

Electro-optical emulation [36] 18.5 60 Single freq.

Microresonator [37] 78.6 1 Single freq.
Mimicking nonlinear anti-
adiabatic [38] 10 0 ~300 (100 THz)

Table 1: Comparison of different methods for the realization of optical isolators.
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An optical isolator is as functioning as its great isolation ratio. 
The isolation ratio of our design reaches its maximum value at the 
wavelength of 1400nm with a value of 120dB (33333dB/mm) and 
its minimum value is 20dB (5555dB/mm) for the wavelength of 
2000nm. As discussed before, the generated anisotropy is assumed to 
compensate for the loss of wave in one direction and its value is equal 
to the imaginary part of permittivity which is responsible for the loss. 
If the generated anisotropy is different than the assumed value, the 
maximum isolation will occur in other wavelengths. The performance 
of the isolator won’t be affected, nonetheless, the value of isolation 
ratio and insertion loss would change a bit. The figure of merit for 
optical isolator could be defined as the ratio of optical isolation to 
average loss:
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If an ideal isolator is supposed, the loss mechanism in the forward 
direction will be zero, and loss in the backward direction would be 
infinite. Hence the value of FoM for the ideal isolator is -2. Figure 
3b shows the figure of merit for the isolator discussed in this paper. 
For a considerably large range of the bandwidth, the value of FoM 
equals -2 which this part includes 1310nm and 1550nm wavelengths. 
For higher isolations, two or more periods of this structure could be 
used. Simulation shows that isolation of a structure with two periods 
is twice as high as isolation of one period. In this case, FoM is closer 
to its ideal form, and the range in which FoM equals -2 is larger than 
it is in one period.

In addition to the isolation ratio and figure of merit, the 
propagating wave should have a proper shape across the device. 
Figure 4a and 4b) shows the magnetic field along the Z direction for 
λ=1310nm and 1550nm which are standard wavelengths for optical 
communications. As shown, in both wavelengths Hz in the forward 

Figure 3: a) Isolation ratio of the plasmonic isolator utilizing Nanoparticles. b) Figure of merit of the proposed design.

Figure 4: The magnetic field along Z direction a) λ=1310nm. b) λ=1550. The blue line shows Hz in the forward direction and the green line shows Hz in the 
backward direction.

Figure 5: S parameters for different incident angles. a) λ=1310nm, b) λ=1550nm. The blue line is S21 and the green line is S12.
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Figure 6: Isolation ratio for different incident angles. a) λ=1310nm. b) λ=1550nm.

Figure 7: Modes of light along the waveguide. a) λ=1310nm in forward direction. b) λ=1310nm in backward direction. c) λ=1550nm in the forward direction. d) 
λ=1550nm in backward direction. The cyanide, red, green, and blue lines are for x=555nm, 1295nm, 2405nm, and 3145nm respectively.

Figure 8: Reflectance for different Wavelengths.

direction has a proper shape.

One of the problems is due to the small size of the isolator, it is 
hard to excite a port with a specific or with a narrow range of incident 
angles. This problem is reported in some of the works with an incident 
angle range as narrow as 0.1 degrees [44]. Figure 5 shows S parameters 
and Figure 6 shows the isolation ratio for different incident angles. It 

is clear from these figures that for a wide range, the incident angle 
won’t affect the performance of the isolator a lot.

For any optical device, it is essential to prove that light is 
coupled in the waveguide. Mode analysis is commonly used to show 
this feature. Figure 7 shows modes for 2 important wavelengths of 
1310nm and 1550nm. Four cut lines are defined to show the light is 
coupled properly along the waveguide. The spike shown in the figures 
is the boundary between Al2O3 and Fe Nanoparticles which is the 
plasmonic waveguide.

As discussed before, the major use of isolators is to prevent 
unwanted reflection of light, so isolators need to have a small value 
of reflection. Figure 8 shows the value of reflectance for different 
wavelengths. Reflectance is nearly zero for all of the bandwidth range. 
Figure 9 shows reflectance for different incident angles which prove 
reflectance is nearly zero for a large range of incident angles.

Conclusion
A broadband isolator with high isolation ratio and a wide incident 

angle is proposed and simulated. It is based on a Plasmonic waveguide 
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Figure 9: Reflectance for different incident angles. a) λ=1310nm. b) λ=1550nm. The blue line indicates forward direction and the green line indicates backward 
direction.

with induced anisotropy. The structure consists of 3 layers Si, Al2O3, 
and Nanoparticles. The Nanoparticles have different diameters and 
are made of Fe. The bandwidth of 800nm and maximum isolation 
of 120dB is gained. For higher isolations, two or more periods of the 
structure could be used in cascade. It is shown by simulation that in 
this case, total isolation would be multiplied. For further researches, it 
is suggested to use other MO substances instead of Fe. Some of these 
substances have lesser extinction factors than Fe. So replacing Fe with 
these matters may decrease insertion loss. Thus it would increase the 
performance of the device. Another approach could be using other 
ways to obtain non- reciprocity such as non-linear waveguides or 
materials with constant magnetization. An increasing number of 
Nanoparticles may have wider bandwidth and choosing the proper 
radius may adjust the range of the bandwidth to specific applications.
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