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Using Cu2-xS nanomaterials as photothermal agents benefits from 
their low production cost, however, their lower free charge carrier 
density when compared to noble metal nanoparticles limits their light 
absorption strength [9]. Their absorption cross section is measured 
to be ~2 orders smaller than Au nanoshells and nanorods, albeit at 
smaller physical dimensions [10]. Besides the absolute optical cross 
section, the nanoparticles’ ability to generate heat also depends 
on their photothermal transduction efficiency. Great efforts have 
been devoted to enhance these two factors, so that only low dose 
of nanomaterials as well as light irradiation are needed to generate 
enough local heating effect to induce cancer cell killing, without 
eliciting any side effect on healthy cells.

LSPR at noble metal nanoparticle surfaces generates highly 
enhanced near-field, which can extend beyond the resonant plasmon 
excitation energy [11,12], Utilizing enhanced local electromagnetic 
field to increase effective absorption cross sections has been 
demonstrated recently in Au-CuS [13] and Au-graphene oxide [14] 
nanocomposites, however, quantitative and detailed investigation 
of this enhancement effect is still lacking. In another report, self-
assembly of CuS has been used to increase the extinction cross section 
and photothermal transduction efficiency of the nanostructures [15]. 
Moreover, crystalline phase engineering such as synthesizing Cu7.2S4 
rather than Cu9S5 can also increase the photothermal conversion 
efficacy [16]. All of these different approaches have shown promising 
results, opening the doors for future material design with the aim of 
achieving optimal photothermal therapy.

Photothermal therapy can be used in conjunction with 
other therapeutic interventions methods such as photodynamic, 
radiation and chemo-therapies to achieve synergistic effects. 
Cellular metabolism rate, membrane permeability, and local oxygen 
concentration would all be increased for cells under hyperthermia 
treatment, which in turn would result enhanced drug uptake and 
more effective ROS generation. Hollow capsules made of CuS have 
been constructed to encapsulate hydrophobic drugs for thermo-
chemotherapy, demonstrating better therapeutic effect than any of 
the single modality treatment combined [17].

For better therapeutic treatment outcome, it is essential to 
verify the tumor location and the accumulation of nanoheaters at 
the target site before photothermal therapy, which is also critical for 
monitoring the therapeutic effect after the treatment. This imaging 
guided therapy requires the nanoheaters used in the photothermal 
therapy can be imaged in vivo, preferably with common biomedical 
imaging modalities with good resolution and sensitivity. By grafting 
gadolinium-chelate [18] or iron oxide [19] on CuS nanoparticles 
surfaces, they can be used as MRI contrast enhancing agents 
simultaneously. Alternatively, by incorporating 64Cu in CuS 
nanoparticles, PET imaging can be realized [20]. Another promising 
imaging modality is photoacoustic imaging (PAI), a non-invasive 

Thermal therapy exploits local heating effect to kill cells. The 
oldest report on using thermal energy for therapeutic applications 
dates back to 3000 BC, and the modern era of thermal therapy 
started in the 1970s, where various forms of electromagnetic energy 
were used to kill cell directly under clinical settings with convincing 
outcomes [1]. However, this field has waned after nearly 20 years of 
development, due to difficulty of achieving efficient and selective cell 
killing effect as a direct consequence of heating without adverse side 
effect.

Thermal therapy can be an effective way to treat cancers, as 
tumors are generally poorly vascularized, making them more prone 
to heat damage compared to healthy cells as a result of local heat 
accumulation. The introduction of nanotechnology has spurred the 
renewed interests in thermal therapy [2]. In particular, nanoparticles 
that are capable of generating heat under laser illumination have 
attracted a lot of attention in the past decade. The employment of 
near infrared (NIR) light as the irradiation source minimizes the 
tissue self-heating effect, since there is minimal tissue absorption 
in this so called “biological window”. Moreover, nanoparticles with 
sizes less than 100 nm in diameter have long circulating time in 
the bloodstream and can selectively target cancer cells with proper 
surface modifications, allowing effective nanoparticle accumulation 
in the tumor region only. Thus, the use of nanoparticle heaters with 
NIR light as external stimulus allows remote and localized heating 
effect, alleviating non-specific damage to healthy tissues.

Other than noble metal Au-based nanoheaters, which are under 
clinical trials [3], the recent discovery of semiconductor nanocrystals 
of non-stoichiometric copper chalcogenides which support localized 
surface plasmon resonances (LSPR) in the NIR has opened up a new 
regime in plasmonics and its related applications [4]. Cu2-xE (0<x≤1, 
E = S, Se, Te) nanoparticles are p-doped due to copper deficiency, 
carrying a large amount of holes with high mobility. Since then, 
other heavily-doped semiconductor nanomaterials have also been 
developed and found to exhibit similar LSPR properties [5]. These 
semiconductor nanomaterials have attracted considerable attention 
as photothermal transducing agents in biomedical applications for 
their tunable and strong light absorption in NIR [6,7]. In addition, 
a very recent study demonstrates that CuS nanoparticles are 
biodegradable and highly biocompatible, meriting their usage for 
future clinical applications [8].
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technique for quantifying acoustic signals generated after laser 
irradiation of tissues containing nanoheaters [21]. PAI offers good 
penetration depth and high spatial resolution. It can use incident light 
(from a pulsed laser) of the same wavelength for the photothermal 
treatment, making spatial registration of the nanoheaters simpler 
compared to other imaging modalities with different irradiation 
sources.

Finally, it is utterly important to be able to monitor spatial 
temperature distribution at real-time, since safety and efficacy of 
photothermal treatment depends on the local temperature as well 
as the heating duration. Currently, infrared thermal cameras are 
commonly used for monitoring tumor temperature profiles in 
small animal studies. However, these cameras measure only the 
surface temperatures, which could be substantially different from 
the actual intratumoral temperatures. By putting quantum dots 
nanothermometer in close proximity to the nanoheaters, local 
temperatures can be mapped by optical signal readout [22]. A more 
clinically relevant method would be magnetic resonance thermometry 
[23]. Moreover, PAI detects the acoustic wave generated by tissue 
volume expansion as a consequence of pulsed laser irradiation, whose 
pressure depends both on the volume expansion coefficient and the 
speed of sound. Since both parameters are temperature dependent, 
photoacoustic signals are then directly related to local temperatures. 
Thus, PAI can be used to image nanoheaters as well as to visualize 
temperature distributions [24]. Given that PAI combines imaging, 
photothermal therapy, local temperature monitoring all in one 
modality, it is expected that research work on PAI-related imaging 
would surge in the years to come, and hopefully by combining efficient 
photothermal agents and PAI modality, photothermal therapy can be 
translated into clinical settings in the near future.
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