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Abstract

Despite empirical experience and scientific evidence about how environmental 
pollutants are detrimental to reproduction and development, there are few 
studies correlating the presence of in vitro fertilization (IVF) known pollutants 
with deleterious effects over human embryos. Additionally, no centralization of 
official information on pollutants found within the (IVF) clinical setting is currently 
available. Relevant literature was reviewed on how these pollutants could 
impact the reproductive outcomes and the need of more research about the 
influence of pollutants, such as the Volatile Organic Compounds (VOCs) over 
the embryo development, is exposed. Types, sources, environmental control 
and some VOCs effects have been compiled for a better understanding of the 
evolution of the IVF’s environment, and the path that remains ahead for waging 
against known and unknown pollution. Research results confirm that gametes 
and embryos in early stages of development can affected by VOCs, especially 
cells structures, interrupting cells communication, viability and changing their 
molecular profile, making them prone to develop hereditable mutations. There 
are adverse effects described on embryo maturation, morphology, cleavage, 
blastocyst development and implantation produced by air pollutants that lead to 
negative IVF and clinical outcomes.
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all the pollutants that are detectable inside in vitro fertilization (IVF) 
laboratories and at which concentrations they represent a danger to 
embryos and future offspring, especially the VOCs.

Types of Pollutants: Particulate Matter and 
Volatile Organic Compounds

Atmospheric air pollutants can be categorized as primary 
pollutants (directly emitted from their sources into the atmosphere) 
or secondary pollutants (formed from photochemical reactions from 
primary pollutants), or classified according to chemical composition 
(organic or inorganic), sources (natural or anthropogenic), 
degradation properties (degradable or non-degradable), place of 
generation (indoor or outdoor), or based on the state of matter 
[21]. Additionally, the pollutants that are known or suspected to 
cause irreversible illnesses because of their toxicity, such as cancer 
or reproductive effects, are classified as Hazardous Air Pollutants 
(HAP) [2,22]. Inside the IVF laboratories, there are two general types 
of pollutants that take out attention: the particulate matter and the 
VOCs.

Particulate matter
PM is a complex mixture of extremely small solid and liquid 

particles (droplets) that can contain a wide range of inorganic and 
organic components [23]. These are the most common atmospheric 
pollutants and their mass and composition are strongly influenced 
by climatic and meteorological conditions. PM can be categorized as 
shown below (Table 1).

Most PM, especially the smallest fractions, are known to cause 

Introduction
The majority of Assisted Reproduction Technology (ART) 

facilities and its laboratories are located in urban areas where the 
levels of exposure to air pollutants are extremely high causing 
cardiopulmonary morbidity and mortality [1-4], as well as a host of 
reproductive health problems [5-9].

ART facilities are exposed to the pollutants produced in the 
external environment but, due to the daily routine activities and 
equipment within IVF laboratories, the air quality also diminish 
from the outside of a building throughout the laboratory [10-12]. 
In addition, although the incubators have controlled conditions, the 
environment provided is strongly influenced by unexpected sources 
of pollutants [13] as it was found that the highest values of toxic 
compounds were inside the IVF incubators because every time an 
incubator is opened, gas concentrations and temperature conditions 
can be significantly disturbed due to the large air-exchange volume 
with the laboratory´s ambient air (94-95%) or because the chemicals 
are released from the gas bottles (5%), especially if they have not 
received a routinely maintenance [14-16]. Similarly, a 5 to 6 fold 
increase of VOCs has been found inside the incubators and even 
higher in the IVF’s adjacent areas [17]. And other authors have 
confirmed that the fertilization, cleavage and blastocyst formation 
rates increase after improving the air quality of the laboratory. 
However, certain compounds are capable of diffusing into the culture 
media and adversely affect gametes and embryos, at a sensitive 
stage, with devastating outcomes [13,18,19]. So guidelines have been 
developed to prevent these [17,20] but not much is yet known about 
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serious health problems due to their ability to penetrate deep into 
the blood stream and through different mechanisms or interactions 
that will depend on the type of exposition (acute and chronic, or 
outdoor or indoor exposure) [24-26]. The PM10 and PM2,5 are 
usually related to the outdoor ambient air, regular indoor spaces 
or occupational exposition. On the other hand, smaller particles 
are related to gaseous air pollution and to personal exposure [27]. 
According to the WHO, the most common PM associated with 
human health problems comprises the heavy metals [28,29], the 
Polycyclic Aromatic Hydrocarbons (PAHs) [30-34] or other organic 
components originated by the oxidation of VOCs, endotoxins and 
nanoparticles etc [27,35,36] .

Volatile organic compounds
VOCs are gaseous emissions of organic compounds, which 

have health implications such as reproductive toxicity [37]. These 
chemicals contain carbon (C) along with other elements (hydrogen, 
oxygen, fluorine, chlorine, bromine, sulfur, or nitrogen) and they 
are formed as intermediate compounds during the combustion, 
decomposition, or breakdown of longer-chain carbon compounds, 
as well as during the photosynthesis process in vegetation [38-40]. 
Additionally, they can volatize into the air from everyday products 
often under normal indoor atmospheric conditions of temperature 
and pressure given their low boiling point (less than or equal to 250ºC 
at a standard atmospheric pressure of 101.3 kPa) [41]. The United 
States Environmental Protection Agency (EPA) has technically 
categorized these compounds depending on the ease with which they 
are emitted (Table 2) [42].

Sources of Indoor Pollutants
Outdoor pollution contributes to indoor air quality from type 

of ventilation (natural or forced), the ventilation rate (air changes 
per hour), and the nature of the contaminants [21,43-46]. On 
the other hand, PM and, specially, VOCs are present inside IVF 
laboratories through various vectors such as Heating, Ventilation, 
and Air Conditioning (HVAC) systems, diffusion of volatiles from 
adjacent rooms and hallways, off-gassing materials, equipment, 
people (perfumes and personal odors), medical and anesthetic gases, 
etc. Additional sources include potable water, dust, glass fragments, 
alcohol burners, disposable plastic ware and their shavings, markers, 
disinfectants, microscopes, television monitors, furniture, etc. 
Embryo toxicity risk in the clinical setting could in fact, be two to 

five times higher because VOCs are constantly released as different 
types of unsaturated volatiles and accumulate through the oxidation 
of air and light over routinely used materials, even when laboratories 
use appropriate materials to accomplish clean room standards to 
minimize pollutants [13,17,20,45,47]. Within 18 to 300 volatile 
compounds have been reported inside the laboratories, but it has 
not been done an official compilation on this matter on peer review 
and the majority of related investigations were carried out years ago 
[13,14,48-50]. The biggest concern is that VOCs, such as benzene, 
can be produced inside the incubators (CO2 gas cylinders) and 
may contaminate gametes and embryos [10,51-54]. Additionally, 
VOCs are difficult to remove from IVF’s ambient air and from the 
incubators, and they can interact with PM as well [13,47].

Control of Pollutants
The understanding on the infiltration and production of pollutants 

inside the laboratories and incubators is necessary to improve 
the design and preventive strategies to minimize contamination 
[47,55]. The first improvement concepts aimed at transforming 
other clean room designs, minimizing pollutants like vapors and 
particles accomplishing specific permitted values [52,53]. Nowadays, 
the quality control involves the improvement of the culture media 
formulations, contact supplies and gases used in IVF procedures 
[20,56] (Figure 1).

The isolation of the IVF lab, retrieval room, transfer room 
[57-59] and the design and adaptability of the laboratory to future 
improvements is essential [13,55,60,61]. Basic preventing strategies 
include: clean access for personnel and materials, double doors with 
windows for the anterooms between the Operating Room (OR) and 
the IVF lab to minimize the air mixing, a separated laboratory with 
a safety fume hood to use fixatives and toxic reagents and a separate 
area for cleaning and sterilization of materials. On the inside, the 
air management can be achieved through laminar flow cabinets, 
positive pressure and air filtration systems considering that dust 
particles of <0.5um in diameter often carry bacteria and/or fungi 
as well [10,20,57-59]. There are different filtration systems such as 
High Efficiency Particulate Air filtration systems (HEPA) which 
removes particles larger than approximately 0.3μm [51,62,63]. The 
Ultra Low Penetration Air (ULPA) [57,59], activated carbon filters, 
potassium-permanganate filters [19,63,64], photo-catalytic units 
[52], UV radiation [65], and filtration units within the incubators, 

Particles according to size Origin
Inhalable coarse particles: larger than 2.5µm and smaller than 
10µm. Crust materials and fugitive dust found near roadways and dusty industries.

Fine particles or PM2.5: 2.5µm or smaller and black carbon. Aerosols formed from gas to particle conversion. Industries, automobiles, or forest fires.

PM1.0: Less than 1.0µm. Largest number of particles and the most hazardous in terms of mortality and cardiovascular and 
respiratory evidence.

Ultra-fine particles PM0.1: Less than 0.1µm. Nanoparticles: (Vaccines, personalized cancer therapy, drug delivery, and diagnostic methods)

Table 1: Classification of particulate matter (PM) [23, 24].

Type of VOCs Examples of substance
Very Volatile Organic Compounds (VVOCs): Almost entirely as gases and 
difficult to measure. Propane, butane, methyl chloride.

Volatile Organic Compounds (VOCs):
Boiling point below 150ºC Limonene, toluene, acetone, ethanol, isopropyl alcohol, etc.

Semi-Volatile Organic Compounds (SVOCs): Higher boiling point and lower 
vapor pressure than VOCs. Highly related to PM2.5.

A very wide range of individual substances including hydrocarbons, halocarbons, and 
oxygenates Present in both gas and particle phases in the air. 

Table 2: Classification of indoor VOCs [42- 44].
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chambers and filters in the incoming gas lines (CODA) [13,66,67]. 
Activated carbon absorbs higher molecular weight hydrocarbons 
(PAHs) through pores of varying size and a field of molecular 
attraction that captures large flat electron-rich molecules. Low 
molecular weight organics, alcohols, ketones and aldehydes can be 
oxidized and degraded by potassium permanganate. Photo Catalytic 
Oxidation (PCO) technologies are also used to filter VOCs [19,68]. 
New proposals in IVF isolation, engineered molecular media and 
genomically modeled biological inactivation are also in development 
and have shown significant increase in blastocyst conversion rates 
[55,60].

As to control the IVF pollutants, various parameters could be 
measured, such as; compound concentration and composition, 
solubility and vapor pressure (specially for VOCs), particle size, 
shape, surface modification and degree of agglomeration, as well 
as the ambient temperature and the surface area from which they 
could be released [53,68,69]. Specifically, the degree of solubility 
of compounds should be taken into account because they might 
penetrate the mineral oil layer and pass into the culture medium. 
The molecules penetration can be estimated by partition coefficients 
from air to oil (with vegetable oil) and oil to water (with octanol) to 
determine if it is soluble in both oil and water. The latter technique 
has been used to evaluate the risk of absorption of several compounds 
into the culture media; negative values of the octanol-water partition 
coefficients indicate that a compound is most likely to be absorbed by 
the media (eg: acrolein, -0.01) [49,53].

It has been reported that despite passing the manufacturers 
bioassays, mineral oils have affected embryo development, meaning 
that there is a lack of sensitivity of the tests. Nonetheless, the use of 
a good quality mineral oil can be achieved by washing it [70,71] and 
likewise, by improving the toxins screening through the improvement 
of the bioassays (Human Sperm Motility Assays (HSMA) + 1-cell 
Mouse Embryo Assays (MEA) or MEA with time-lapse) [71-74]. 
Recently, it was described a modification that could be more suitable 
for many laboratories: the extended MEA (eMEA) is more simple and 
sensitive when assessing the cells number and blastocyst formation 

rate was at 144h (instead of the 96h assessment as the regular 
technique) of individually cultured embryos, because group culture 
can stabilize the embryo environment and mask toxicity [75].

The specific requirements for IVF laboratories are different due 
to variations in regulations among regions [76]. Environmental and 
work health institutions (WHO), Occupational Safety and Health 
Administration (OSHA) and the “Instituto Nacional de Seguridad e 
Higiene en el Trabajo” (INSHT) in Spain, have chemical standards for 
evaluating industrial hygiene and health. These were only designed 
to cover workers that could be exposed every day without adverse 
effects, but they are not designed for cultured and largely unprotected 
cells such as the embryos and gametes as they lack physical 
barriers (epithelial surfaces), immunological defense or detoxifying 
mechanisms [51,53,68,77,78]. For general contamination, threshold 
limit values can be obtained and registered in concentrations of 
milligrams (mg/m3), parts per million (ppm), or micromoles (me). 
To measure and evaluate the negative effects in cultured cells, limit 
values need to be in much lower concentrations (µg/m3, ppm, or 
ppb). Unfortunately, specific quality standards and specific threshold 
levels at which contaminants cause harm to embryos have not been 
determined [53]. Further, the measured composition of air pollutants, 
such as VOCs, can vary significantly depending on the methods and 
recognized terminology, lending to confusion [41].

Effect of Pollutants on IVF Outcomes
The reported pollutants effects have been primarily related to 

acute and chronic cardiopulmonary affections through the activation 
of local and systemic inflammatory pathways, which promote 
systemic oxidative stress and inflammatory responses, thrombosis 
and coagulation, vascular dysfunction [79,80], epigenetic changes 
and genotoxicity (suppression of DNA repair and more DNA errors) 
[80,81].

However, the adverse effects over human reproduction can 
vary widely and are not entirely understood; hypotheses about how 
pollutants affect the embryonic development are still weak because 
they are based on limited data [17,49,51,57]. Studies and reviews had 
focused mainly in the relationship between pollutants and birth defects 
[82], or Low Birth Weight (LBW) and preterm births (almost 60% of 
LBW) which have been related mostly to pregnant women exposed 
during their 1st trimester [83-86], lack of fetal immune development 
[87] or menstrual disorders and their possible relationship with 
higher incidence rates of spontaneous abortion [88] etc. that can also 
lead to intrauterine and infant mortality [66,89,90]. But less is known 
about sub-fertile patients undergoing reproductive treatments 
which gametes and embryos are more susceptible to environmental 
influences because they lack of the physiological maturity of a 
differentiated mammal to protect themselves [5,17,51,91].

The IVF filtration systems have change the organic chemistry 
of the laboratories and incubators ambient air, improving embryo 
development, IR, PR and other outcomes [5,19,57,59,63,92]. 
For example, it has been reported an accelerated progression of 
development from early embryos up to blastocysts stage, a higher 
proportion of expanded and hatched blastocysts and a significantly 
higher number of blastomeres when cultured inside an enclosed 
system that protect oocytes and embryos throughout the IVF process 
[55]. However, some pollutants are still difficult to eradicate; so 

Figure 1: The quality control involves the improvement of the culture media 
formulations, contact supplies and gases used in IVF procedures.
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detailed information about the relationship between pollution and 
developmental parameters (morphology, cleavage rate, symmetry, 
fragmentation, multi-nucleation, embryo development rate inside 
incubators, hatching process and defense mechanisms) require 
more attention [5,53,63,93]. For this reason, it is necessary to 
understand the toxic mechanisms over the development embryo 
because the pattern of substance distribution and action varies with 
each compound being related to the molecular weight, solubility, 
and degree of ionization at a physiological pH [18]. One of the main 
mechanisms related to exposure to air pollution (mainly studied for 
cardiopulmonary diseases) is the oxidative stress and few studies have 
related this in early human development with clinical outcomes in 
pregnant women [94]. Oxidative damage produced by pollutants 
has showed time-dependent cumulative effects and it can affect 
the membranes potential of mitochondria or produces apoptosis. 
Embryonic stem cells have shown different responses compared to 
somatic cells when exposed to pollutants or antioxidant treatments 
[95]. Oxidative stress-related genes and pancreatic and eye-lens gene 
markers appear de-regulated in embryos exposed to urban pollution, 
whereas exposure to rural extracts affected genes implicated in basic 
cellular functions [34,81].

Effects of particulate matter on the embryo development
Specific effects of airborne PM have been described mainly in 

animal models. It has been observed a significant impairment in 
fertilization, zygotes, embryo development, lineage of specification 
in blastocysts (ICM, TE and cell count), hatching, survival and post 
implantation potential after exposition to PM2.5 [93] heavy metals 
[93,95-99], nanoparticles [35,69,100,101] or PAHs [30,102,103].

PM2.5, PM10, Nitrogen dioxide (NO2) can interfere with the IVF 
process, after chronic or acute exposure during the follicular growth 
phase [5,91,104,105]. There can be harmful effects on conception and 
intrauterine pregnancy due to increasing PM2.5 levels throughout 
the period from retrieval to transfer. In the presence of NO2, mainly 
in the period from embryo transfer to pregnancy confirmation, live 
birth rates are affected [5]. Carré et al., reported lower number of top 
embryos and decreased implantation rates after acute more than after 
a chronic exposure to NO2 [5,105].

PM may have influence over specific mechanisms; it could affect 
the Zonula Occludens (ZO-1), a protein that regulates tight junction 
formation between cells. This protein is first expressed during the 
compaction of eight-cell mouse embryos and it has been suggested 
as a necessary mechanism for blastocyst formation, helping in 
the differentiation of the Trophectoderm (TE) and ICM. When its 
function is altered, the number of formed blastocysts can decrease 
significantly and produce degeneration as it affects the number of 
embryonic cells, the bi-functional barrier that limits the diffusion 
of solutes, and the epithelial cell polarity [106]. Although this study 
was not correlated with a specific substance, a follow up study found 
negative effects associated with the interaction between different 
types of PM and pulmonary cells; the protein their degradation was 
evident as proteins were relocated from the cell periphery, disrupting 
the epithelial barrier [107].

Effects of volatile organic compounds on embryo 
development

In routine ART laboratory audits, it is recommended to evaluate 

the VOCs concentrations in the air among other pollutants, to 
prevent occupational hazards; however, while these substances do 
not often surpass the OLV due to current environment management 
strategies, there is still no certainty on how they interact with gametes 
or embryos during culture. A seasonal influence of the VOCs over 
the IVF laboratory`s air has been found to be related to the outside 
temperature and humidity and over the embryo development and 
implantation rates [108,109].

The first lethal effects by IVF-VOCs emissions were reported 
in early mouse embryos [17,51]. Later, the VOCs-specific filtration 
systems have been correlated to higher rates of fertilization, cleavage, 
blastocyst development and higher embryo fragmentation as a 
possible mechanism for the embryos to improve their developmental 
competency and in consequence, a reduction in spontaneous 
abortion, improved implantation and pregnancy rates [13,62,66,67].

Limonene it is a well-known VOC because it is used as an 
additive in cleaning products and it is very common to find it 
inside of the IVF laboratory. Despite of this, no studies have been 
performed evaluating possible early life deleterious effects because 
it is known as a low toxicity VOC and it is considered that it does 
not have strong mutagenic, carcinogenic or nephrotoxic effects. 
However, a couple of studies have reported that it does induce a few 
cell transformations in Syrian hamster embryo cells [110], or that 
influences mechanisms of increase intracellular Ca++ pathways and 
Ca++ activated potassium (BKCa) channels, which could be correlated 
to increasing myometrium contractions [111]. Trichloroethylene 
(TCE), is a highly volatile inhalation anesthetic used mainly in 
short surgical procedures. Significant anomalies in skeletal and soft 
tissues, indicative of delay in the development, have been observed 
in groups exposed to TCE during pregnancy in rats [112]. TCE 
embryonic genotoxicity effects have been described causing cardiac 
valvular and septal malformations or it can disrupts calcium (Ca**) 
flux regulation in embryonic myocites [113-116]. TCE may alter the 
permeability of the cell membrane causing an electrolyte imbalance. 
TCE caused great changes in gene expression during critical phases 
of the heart development [115]. Acrolein is an airborne VOC that 
has been directly related to negative effects on cleavage, cell number, 
and blastocyst development [17,117]. However, a recent study 
demonstrated that its negative effects (embryos arrest at 1-cell to 
morula stage over the embryo development can be diminish through 
a proper protein concentration in the medium and the quality of the 
oil [118]. Toluene has a high affinity for lipid-rich tissues. Significant 
degenerative changes have been found in preimplantation embryos 
exposed to toluene in vitro: decreased fertilization rate of exposed 
oocites and embryo degeneration resulting in increased embryonic 
lethality [119]. In animal models morphological anomalies and 
congenital defects in early female fetuses (gestational D8 to D20) 
have been found [120-122]. It has been described also that toluene 
cytotoxicity effects on human embryonic stem cells are comparable to 
1-octen-3-ol and its enantiomers (a major fungal VOC associated to 
indoor mold and odors) [123]. When exposing murine bone marrow 
stem cells to two fungal VOCs [(E)-2-octenal and oct-1-en-3-ol], a 
shift to unsaturated fatty acids and lower cholesterol levels in the cells 
membrane was produced, which means increased the membrane 
fluidity, and this could be related to malfunction of the immune 
system [124].
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Benzene (C6H6) is a compound that is considered very harmful 
in general. It is also frequently found inside laboratories. There are 
no threshold levels for this substance inside laboratories and there is 
little evidence linking benzene to IVF reproductive outcomes. Meiotic 
delay of MI oocytes and frequencies of aneuploidies in MII mouse 
oocytes were observed after a dose-dependent inhalation of benzene, 
especially with higher doses in a “multiple inhalations” group [125]. 
Tsutsui et al. demonstrated a marked dose-dependent genotoxicity 
on Syrian hamster embryo cells when exposed to benzene and its 
metabolites. Some of the effects seen were disturbed cell growth, cells 
transformation, increased frequency of chromosomal aberrations 
(gaps and breaks), alterations in chromosome numbers, and genetic 
mutations. Catechol is the most harmful metabolite for cells at 
lower concentrations, but hydroquinone and phenol also have 
negative effects [126]. Benzene or metabolites mixtures (catechol, 
hydroquinone and benzoquinone) produce diverse effects in mouse 
cells from individuals of different ages and genders as well: 16-day-
old male and female, adult males, females, and pregnant females 
[127]. In utero exposure studies have suggested predisposition of the 
embryo or fetal tissues to carcinogenesis as well, caused by alterations 
in the redox signaling pathways, excess of production of Reactive 
Oxygen Species (ROS) and therefore oxidative stress, affecting the 
regulation of gene expression, cell growth, and cell death. But there 
are a lot of intrinsic differences in the susceptibility of the target 
cells (type, age, gender) as well and it could critically alter cell-
signaling pathways necessary for normal hematopoiesis. Male fetuses 
have been found to be more susceptible to benzene-induced ROS 
production after two hours of exposure. Benzene was observed to be 
very deleterious for unprotected embryos given their rapid growth 
and developmental changes depending on the cellular signaling that 
occurs during embryonic development [128,129]. Benzene levels 
have been significantly related to a positively trend in baseline FSH 
levels and negatively trend of E2 peak levels, average number of 
oocytes retrieved and average number of embryos transferred. The 
intra-ovarian levels of benzene were associated with hypo-sensitivity 
of follicles to endogenous and exogenous gonadotropin, leading to an 
unknown mechanism of resistance [130].

Conclusions
Changes in IVF laboratory air quality have been crucial in 

influencing conception rates, embryonic development, implantation, 
and live birth rates in human reproduction. The in vitro environment 
must be monitored and improved by far more than just the culture 
media formulations and conditions due to the increased risk of 
exposure to different pollutant compounds inside the incubators and 
during routine handling inside in the laboratory of the gametes and 
embryos.

Despite the fact that IVF clinics perform routine environmental 
audits and have developed preventive strategies, there remains a high 
degree of uncertainty about reproductive health effects and even 
more on how pollutants can interact with embryos. Environmental 
monitoring of laboratories and surrounding spaces will continue to 
be insufficient until the harmful pollutant values can be standardized 
into official embryo-toxicity thresholds. So far, the data gathered has 
progressively allowed to research about specific warning parameters 
warning of possible embryonic hazards, but so far, the repro-
toxicologic studies with specific effects reported on different stages 

of human embryo development in vitro, are very limited. Most have 
been performed in other animals and these results are not completely 
translatable to humans due to the differences in species or type 
of culture (medium and oil overlay) or just by the differences of 
pollutants, doses and studies design.

Further investigations are needed to develop sensitive and 
relevant quality control assays for culture system as well [73]. The 
absorption mechanisms of each substance should also be considered 
due to the variability of their physical and chemical characteristics, 
most specifically solubility parameters, which may determine the 
brevity in which the exposure will result in developmental failure and 
long-term negative effects on fetuses.

Specific morphologic parameters of the gametes, zygotes, and 
embryos should be assessed systematically when evaluating air 
quality due to evidence that pollutants can affect development 
at the earliest stages (the four cell stage and compaction up to the 
differentiation of the ICM and TE), which have fundamental roles 
in embryo survival, implantation, and fetal viability. However, 
since embryos often develop even in the presence of contaminants, 
other molecular parameters such as chromosomal abnormalities 
or epigenetic modifications should be considered because the 
epigenetic biomonitoring is necessary and it needs an international 
methodological accordance [131]. It would be remarkable to 
ascertain the role of embryonic self-defense and repair mechanisms 
against pollutants, such as the mechanisms of fragmentation and 
abortion, as well as long-term effects on children conceived through 
IVF techniques.

Finally, because all the studies reviewed originate from different 
sources, study designs and findings varied, it is therefore important to 
consider that future studies should have similar designs so that results 
can be easily interrelated and associated with previous findings so as 
to establish specific developmental rates after exposure and perhaps 
develop an official database with IVF known pollutants and their 
effects.
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