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Abstract

Despite the efforts to improve the conditions of gamete and embryo 
culture, the success rate of assisted reproductive techniques in humans is 
limited. This suggests that the reduced embryo potential could not be a result 
only of suboptimal in vitro conditions, but real features of oogenesis and early 
embryogenesis are involved. Low developmental potential of embryos is related 
to high rate of chromosomal abnormalities. The chromosomal segregation errors 
are based on disturbance of interactions between chromatin, cytoskeleton and 
other factors involved in the last stages of mammalian oocyte meiosis.
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Morphological Defects of Preimplantation 
Embryos

The most obvious abnormality of human IVF embryos is the 
high rate of morphological disorders – cell fragments, differences 
in blastomere size, enucleated and multinucleated cells, apoptotic-
like cells and inadequate blastomere number are observed in more 
than half of the embryos [9-12]. These data can be summarized in 
Table 1. For the last decade, elaboration of culture and manipulation 
techniques has not brought significant improvement of these data.

Cytogenetic Abnormalities of Human 
Oocytes

The first published cytogenetic study of human oocytes was 
performed by Edwards, 1968, and of human embryos by Angell, 
1983 [13,14]. The metaphase state of ovulated mammalian oocytes 
facilitates karyotyping of unfertilized eggs because pretreatment with 
cytostatic is not required. Data accumulated so far indicate that a 
substantial part of oocytes derived both by natural and stimulated 
ovulation, carry numerical chromosomal anomalies. In different 
periods, different authors have published widely varying aneuploidy 
rates for human oocytes unfertilized after IVF. If extreme values 
are excluded, the reported percentages of aneuploid oocytes are 
between 25% and 35% [15,16]. Although data about human oocytes 
obtained after natural ovulation are scarce, they are very similar 
to those mentioned above [17]. Data for non-primate mammals 
show substantial differences – their rate of meiotic chromosomal 
abnormalities is ten times lower than those observed in human [18], 
while oocytes of rhesus monkeys and marmosets produce results 
similar to those of humans [19,20]. Therefore, it is assumed that 
chromosomal anomalies of human oocytes are not a methodological 
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Introduction
Studies on early mammalian embryogenesis started with the work 

of Carl Hartman. In 1931, he published his observations on bovine 
preimplantation embryos obtained by oviductal flushing [1]. Later, a 
similar approach was applied to obtain oocytes and preimplantation 
embryos from other mammalian species with easily predictable or 
controllable oestrus with multiple ovulations – rabbits, rodents and 
ungulates [2-5]. The techniques of human IVF (in vitro fertilization) 
were based on these investigations. Studies of mammalian oocytes 
and preimplantation embryos became the base for development 
of assisted human reproduction, as well as for fundamental 
investigations of human oogenesis and early embryogenesis. 

Limited Success Rate of IVF
In vitro fertilization was developed as an approach for treatment 

of human infertility. However, its introduction was soon followed by 
disappointment of the relatively limited success rate of the method. 
It was initially assumed to be a result of suboptimal conditions 
of in vitro culture systems, hormonal stimulation and techniques 
for oocyte aspiration. Hence, efforts for improving success rates 
were directed towards optimization of these factors. A major step 
in the development of ART (assisted reproductive techniques) was 
provided by the introduction of gamete manipulations. As a result of 
their application, the success rate of ART was brought close to that of 
natural conception–according to current official data of ESHRE, the 
success rate of ART in European clinics is approximately 30%, and 
this proportion has remained stable [6,7]. Moreover, even this rate is 
due to the fact that in each treatment cycle, typically 2 or 3 embryos 
were transferred into the uterus. Now, it is accepted that the chance 
for each embryo to be implanted is approximately 15% [8,9]. These 
facts indicate that the potential to improve the success rate of ART, 
though not yet exhausted, is limited. Hence, the decisive factor for the 
treatment success must be some natural characteristics of the embryo.
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Morphological abnormality Embryos able to
form blastocyst

Cell fragments occupy up to 15%
of the volume of cleavage embryo 33 %

Cell fragments occupy more than 15%
of the volume of cleavage embryo 17 %

The number of blastomeres – more
than expected 28 %

The number of blastomeres – less
than expected 14 %

Table 1: Morphological defects of preimplantation embryos.
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artifact but are associated with natural imperfection of primate 
female meiosis. It was initially hypothesized that abnormal oocyte 
karyotype would prevent gamete fusion, but this was not confirmed 
[21]. Rather, chromosomal errors in the embryo, which are in most 
cases oocyte-derived, interfere with its potential for post-fertilization 
development. It can become evident as failure of implantation or at 
an even later stage, as spontaneous abortion.

Cell Cycle Control
Cell cycle control machinery in eukaryotes prevents the 

completion of cell division in cells which do not fulfill a set of criteria. 
These control mechanisms are universal and evolutionary conserved. 
However, in mammalian meiosis the division control shows some 
uncommon features – first, its efficiency is not full, and second, the 
efficiency is different for males and females. 

Numerical chromosome aberrations are observed in 10-25% 
of human fetuses. Nearly 80% of them are due to errors during 
metaphase-anaphase transition of the first meiotic division in oocytes 
[18]. They are result of prematurely segregated bivalents or sister 
chromatics, unnoticed by the cell cycle control. 

The meiotic checkpoint responsible for the exactness of metaphase 
I- anaphase I transition (spindle checkpoint) corresponds to the 
mitotic checkpoint which permits anaphase onset after estimation 
of spindle integrity and chromosome-tubulin interactions. Meiotic 
spindle checkpoint is supposed to arrest chromosomally abnormal 
oocytes at metaphase I, preventing their further maturation, 
fertilization and cleavage. But in oocytes the efficiency of the control 
during this passage is diminished (compared with male meiosis and 
mitosis). This fact is pointed out as one of the major reasons for 
human oocyte aneuploidy [22,18]. Chromosomal errors are possible 
also in spermatogenesis, but they are eliminated by the cell cycle 
control far more effectively. For example, several point mutations 
in mice, which cause malsegregation of bivalents, in males lead to 
apoptosis of spermatocytes with abnormal karyotype. In female mice 
these mutations do not diminish the number of ovulated oocytes, but 
increase the proportion of aneuploid oocytes [22]. A type of male 
infertility in human is associated with presence of monovalents at 
metaphase I and lack of progress to metaphase II, which is a result of 
effective spindle control. It is proved that the efficiency of the control 
in females is not full both for hormonally stimulated ovulation and 
natural cycles. Experimental data for mouse show that the efficiency 
of the spindle checkpoint depends on genetic background (mated 
mouse strains) and on the oocyte maturation conditions [18,23]. 

Cell cycle control is relaxed also during the first zygotic 
mitoses. This is illustrated by the following facts: the proportion of 
chromosomally abnormal embryos exceeds that of aneuploid oocytes; 
blastomeres with chromosomal anomalies divide normally and can be 
seen also in embryos without morphological defects; the high level of 
mosaicism shows that segregation errors arise with high probability 
in each of the mitoses until 16-cell stage and the morula compaction. 
It is supposed that normal cell cycle control is established during the 
morula-blastocyst transition.

Aneuploidy Rate in Human Preimplantation 
Embryos

In human embryos obtained in vitro, aneuploidies, mosaics 

of diploid and aneuploid cells, polyploidy and haploidy have 
been registered [10,14]. For cleavage stage embryos, it has been 
observed that the level of chromosomal errors is about three times 
higher in embryos with morphological defects – 37% vs. 12% for 
morphologically normal embryos [14]. In the late 1980s, the rates of 
embryonic aneuploidy reported by different authors varied widely. 
This could be explained by the small number of embryos studied and 
by the low efficiency of classical karyotyping used at that time. The 
mean percentage of cleavage stage embryos with chromosomal errors 
found till then was 23% [24]. As with oocytes, it was observed that 
chromosomal anomalies are more frequent for human early embryos 
than for those of other mammals. For example, in mice this rate 
varied between 3% and 21%, and in investigated domestic animals it 
was between 7% and 10%. After introduction of FISH for cytogenetic 
testing of blastomeres, data for human embryos varied between 
15% and over 85%. This great discrepancy was due to differences in 
embryo cohorts included in the studies – embryos with or without 
morphological defects, with progressing or arrested divisions, and 
originating from different groups of patients [8,25,26]. The data can 
be summarized as follows:

-The percentage of chromosomally normal embryos is 
unexpectedly low.

-A substantial proportion of chromosomally abnormal embryos 
are mosaic.

-There is a correlation between karyotype errors and 
developmental potential of preimplantation embryos, but it is not 
absolute – embryos with severe chromosomal disorders are able to 
form morphologically normal blastocysts. After CGH was adapted 
for single blastomeres, it was shown that ¾ of human preimplantation 
embryos contain at least one chromosomally abnormal blastomere 
[27]. The currently accepted data are as follows: about 25% of embryos 
have normal chromosomal set, 7-20% are uniformly aneuploid, 6% 
are polyploid, 0,6% are haploid, 40-50% are mosaic and at least 5% are 
chaotic (mosaics of blastomeres with different chromosomal defects). 
Most chromosomally abnormal embryos are mosaics of diploid and 
aneuploid and/or polyploid blastomeres [25,28-31]. The frequencies 
of different types of mosaics are as follows:

16% - 2n/chaotic chromosomal configurations;

15% - 2n/4n, rarely another polyploidy;

14% - 2n/aneuploidy for one or more chromosomes;

3% - 2n/n.

There are data that in women under 35 years, mosaic embryos are 
more than uniformly aneuploid embryos [32]. It is hypothesized that 
in young women, embryonic chromosomal errors arise more often at 
a post zygotic stage, while in older women the contribution of meiotic 
errors is more important.

Data about chromosomal disorders in preimplantation embryos 
are summarized in [33-35]. Discrepancy in the reported percentages 
is probably due to differences in patient and embryo groups.

Natural Selection of Embryos with Normal 
Chromosomal Set

One of the approaches to improve implantation rate after IVF is the 
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blastocyst transfer preferred by some fertility centers. An argument in 
favor of this approach is the fact that the majority of chromosomally 
abnormal embryos are naturally eliminated before reaching blastocyst 
stage [36]. It is now known that if mechanisms for natural selection 
of high-quality embryos exist, they are not based solely on karyotype 
normality. Some uniform trisomies and monosomies are compatible 
with blastocyst formation – at least 20% of human chromosomally 
abnormal three-day embryos reach blastocyst stage [33]. According to 
different authors, between 20 and 47% of early human IVF blastocysts 
are chromosomally abnormal. Results have been obtained by array 
comparative genomic hybridization (aCGH) for all 24 chromosomes. 
It has been proved that the rate of chromosome errors in the inner 
cell mass and the trophectoderm cells is nearly the same [33]. That 
means that the trophectoderm biopsied cells are a good predictor 
for the embryo ploidy. It was reported that the implantation rate is 
significantly higher when blastocysts are tested by aCGH [37]. 

In general, the correlation between morphological characteristics 
and developmental potential to blastocyst, on one side, and 
chromosomal aberrations, on the other, is not absolute. Hence, the 
selection of embryos with good morphology or advanced to blastocysts 
increases the probability that the embryos to be transferred will have 
normal karyotype but does not guarantee it. 

Origin of Meiotic Abnormalities in Oocytes
Mammalian oocyte meiosis begins in the fetal ovary but is arrested 

before the end of prophase I. Meiotic resumption in oocytes is coupled 
to a complex of hormonal and paracrine stimuli and requires precise 
synchronization of follicle and oocyte maturation. Disturbances 
in this elaborate system can cause meiotic abnormalities, including 
numerical chromosomal aberrations. Despite the clinical importance 
of aneuploidies, little is known about the molecular mechanisms 
leading to them. These mechanisms can be genetic, epigenetic and 
cytoplasmic. 

Genetic Background
There are several findings which support the role of genetic 

factors in abnormal chromosomal segregation: 

-Generally, segregation errors in early mammalian embryos 
affect all chromosomes with equal probability. However, there is an 
exception: the Y chromosome of a particular mouse strain, designated 
as Wt-Y chromosome. Its non-disjunction rate is 50% in embryos till 
16-cell stage, after which the segregation of Wt-Y becomes normal. 
In hybrids of Wt males with females from different strains, non-
disjunction rate of Wt-Y chromosome varies widely [38]. 

-In some human populations, Down syndrome is 4 times more 
frequent in children of consanguineous marriages, indicating 
importance of still unidentified recessive mutant alleles [39].

-In some IVF-treated families, very high percentages of 
chromomally chaotic embryos have been observed [32].

-The number of unsuccessful IVF procedures for a particular 
family is positively correlated to the aneuploidy level of their 
investigated surplus preimplantation embryos [40].

-The proportion of aneuploid embryos obtained from a particular 
family during different IVF cycles is almost constant. Hence, the 

chromosomal status of embryos derived from one IVF cycle can be 
used as a prognostic criterion for the next procedures of this family 
[40].

Cytoskeletal Disorders
Rearrangement of oocyte chromosomes is mediated by 

cytoskeletal elements. The role of microfilaments and microtubules 
has been analyzed in many studies [41] but little is known about 
the role of intermediate filaments in this process. During meiotic 
resumption, oocyte is in dictyate, with a large nucleus traditionally 
called germinal vesicle (GV). The dictyate-metaphase I transition 
begins with GV breakdown and assembly of meiotic spindle. The 
mechanism of this assembly is quite different from those operating 
in mitosis and male meiosis. Oocyte chromatin has the leading role 
in organizing the spindle. Small tubulin asters are formed around 
each bivalent. They fuse to form a bipolar spindle at the center of the 
oocyte. A fine actin spindle-like structure is formed together with the 
tubulin spindle and overlying it. It is connected to the cortical actin 
and helps to move the spindle towards the oolemma [42-44]. Then, 
meiotic spindle is anchored under the membrane by the so-called 
actin cap, which is involved also in the rotation of the spindle and the 
polar body extrusion [45]. 

Other Factors
Besides DNA and cytoskeletal proteins, huge numbers of other 

factors are involved in chromatin and cytoplasmic rearrangements. 
In recent years, many of them have been identified as molecules and 
their action has been characterized [46]. These factors can be classified 
into the following groups: proteins responsible for DNA condensation 
(condensins) [47]; proteins participating in sister chromatid cohesion 
and conjugation of homologous chromosomes (cohesins); proteins 
controlling crossing over; elements of kinetochore complex; motor 
proteins (kinesins, including chromokinesins) participating in 
spindle assembly and chromosome alignment at its equator, which 
are connected to microtubules, kinetochores and chromosomal arms 
[48]; cyclin and cyclin-dependent kinases, responsible for the cell 
cycle control [49]; ATPases and proteinkinases [50,51], associated 
with mentioned factors; hormonal signals. 

The chromatin, cytoskeleton and associated factors must act as a 
skilled orchestra and each false tone can result in meiotic errors. It is 
supposed that meiotic disturbances and low fertility chance in some 
apparently healthy women (and especially aged women) is related to 
the lack of synchronization between the factors that direct oogenesis.

Models for Studying Human Oocyte Meiosis
The first question here is what kind of model cells should be 

applied to investigate the causal factors of final steps of human 
oogenesis – from the resumption of meiosis to the ovulation. Mitotic 
studies are not adequate model for studying meiotic malsegregation 
because of some fundamental differences – meiotic chromosomes are 
organized in bivalents, sister chromatids have a common kinetochore 
and do not separate at anaphase I. The usefulness of male meiotic 
models is also limited, because meiosis in mammalian oocytes is 
further complicated in several ways: meiotic prophase I starts in the 
fetal ovary and the process is arrested for a long time (even years) 
at dictyate stage; the oocyte meiotic spindle is organized without 
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centrosomes by association of multiple tubulin asters; polarization 
of the oocyte cortical cytoplasm and asymmetric cytokinesis require 
rearrangement of microfilament cytosketon; the cell cycle control 
is less effective in oocytes than in spermatocytes. Even most of 
mammalian oocytes have limitations as models for studying the 
finale steps of human oogenesis. Most used species have too many 
evolutionary differences with human – the lifespan, the length of the 
reproductive lifespan, length of preimplantation period, different 
rates of oocyte aneuploidy, etc. Hence, animal oogenesis models 
should be applied carefully for human oocytes. The model systems 
closest to human are primates.

The next question is how to provide sufficient number of non-
human primate oocytes for research without ethical complications. 
The answer is in vitro maturation (IVM) of monkey oocytes obtained 
from surgically removed ovaries.

What We Know from Primate Oogenesis
Nichols and co-workers [20] demonstrated that that IVM can 

induce meiotic anomalies in macaque oocytes, especially those 
obtained from older females. Reported levels of hyperploidy for in 
vivo ovulated oocytes was below 5%, while for IVM oocytes it was 
25% for young and over 50% for old monkeys. 

Morphologically normal in vitro produced rhesus macaque 
embryos were tested using a five-color fluorescent in situ 
hybridization [52]. Approximately 50% of embryos were normal, 
18% were aneuploid, and approximately 31% were mosaic; nearly half 
of tested blastomeres were euploid for tested chromosomes.

Delimitreva and co-workers [19] have investigated the meiotic 
abnormalities in in vitro matured marmoset oocytes. Normal haploid 
chromosome number of 23, X was observed in 63% of karyotyped 
oocytes. Abnormal karyotypes were noticed only in oocytes obtained 
from small follicles. For another group of MII oocytes, where meiotic 
spindles were visualized, only half of the MII oocytes displayed well-
formed spindles and apparently correct chromosomal alignment. 

Later, the same working group has analyzed the relationships 
between variations in the organization of microtubules, 
microfilaments, and chromatin in metaphase I and metaphase 
II marmoset oocytes arrested during in vitro maturation and 
fertilization [44]. It was demonstrated that improper chromosomal 
condensation was associated with both abnormal microfilament 
and microtubule arrangement. This was further associated with 
abnormal actin organization, disorientation and late stabilization of 
microtubules, but not related to abnormal organization of spindle 
poles. Chromosomal misalignment was associated with disorientation 
and late stabilization of tubulin, but not to broad spindle pole. 
Additionally, abnormal actin polarization appeared not to be related 
to abnormal spindle poles.

Conclusion
We can conclude that the limited success rate of IVF (and in vivo 

conception) is based on some natural features of human oogenesis 
and early embryogenesis. The cell cycle control of the final steps 
of oocyte meiosis and the first zygote mitoses is prone to errors 
which result in a high rate of numerical chromosome aberrations. 
Moreover, the correctness of chromosomal segregation depends on 

coordinated action of the genome, chromatin proteins, cytoskeleton 
fibers, hormones, etc. The most appropriate models to investigate the 
causal natural factors of low human fertility are non-human primate 
oocytes and early embryos.
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