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Abstract

Macrophages are the main participants in the pathogenesis of many 
chronic inflammatory and autoimmune diseases, including diabetes, and 
cardiovascular complications mediated by abnormal activation of macrophages 
caused by various reasons are the main causes of morbidity and death in 
patients with diabetes. Different environmental stimuli can easily lead to glucose 
metabolism reprogramming in macrophages, resulting in a series of changes in 
metabolization-related enzymes, metabolites and metabolic pathways. Glucose 
metabolism reprogramming is closely related to M1 polarization and M2 
polarization of macrophages, for example, M1 macrophages tend to anaerobic 
glycolysis while M2 macrophages tend to aerobic metabolism, and different 
polarization of macrophages is closely related to various diseases. Therefore, 
this paper reviews the mechanism and inducing factors of reprogramming 
of glucose metabolic pathways, as well as the effect of these pathways on 
macrophage polarization, so as to provide services for clinical research and 
treatment of the occurrence and development of cardiovascular complications 
in the context of chronic inflammation of diabetes.

Keywords: Glucose metabolism reprogramming; Macrophage polarization; 
Diabetes; Cardiovascular complications

macrophage is biased towards glycolysis, while M2 macrophage 
metabolism is biased towards the oxidative phosphorylation pathway 
to obtain its required adenosine triphosphate [14,15]. Therefore, 
this article reviews the related research on macrophage polarization 
with glucose metabolism as an entry point, and provides a systematic 
and comprehensive understanding of the related research on the 
involvement of macrophage glucose metabolism reprogramming in 
the complications of diabetes and cardiovascular disease.

Mechanisms of Glucose Metabolism 
Reprogramming
Restriction Enzymes Related To Glucose Metabolism

Glucose metabolism is a complex and systematic regulation 
process, mainly including glycolysis, oxidative phosphorylation, and 
pentose phosphate pathway. The process of glucose catabolism and 
energy production requires the participation of a variety of enzymes, 
and this review mentions some of the enzymes that play the main 
role. For example, the activity changes of hexokinase, 6-phosphate 
kinase-1, pyruvate kinase, glucose-6-phosphate dehydrogenase 
and glyceraldehyde 3-phosphate dehydrogenase exerts different 
regulatory effects on glucose metabolism.

Hexokinase (HK) has 4 isoforms, of which HK2 is considered to 
be the prototypical inducible isoform of HK family members because 
it can be up-regulated by various environmental factors and signaling 
pathways [16,17]. Studies have proved that 2-Deoxygenation-D-
Glucose (2-DG) is a glycolytic inhibitor targeting HK2, which can 
significantly reduce the ATP concentration of M1 macrophages, 
and effectively inhibit the aerobic glycolytic activity of macrophage 
[18,19]; promotes oxidative phosphorylation, induce macrophage 

Introduction
Diabetes is a group of chronic metabolic diseases worldwide 

characterized by chronic hyperglycemia, which easily induces the 
activation of the immune system and leads to chronic inflammation, 
eventually leading to a series of serious cardiovascular diseases 
and other complications [1,2]. The World Health Organization 
predicts diabetes as the seventh leading cause of death in the world 
by 2035 [3], and the International Diabetes Federation estimates 
that the number of people diagnosed with T2DM worldwide will 
rise to 640 million by 2040 [4,5]. Among diabetes-related deaths, 
cardiovascular complications are a major contributing factor. 
Among diabetes-related deaths, cardiovascular complications are a 
major contributing factor. Therefore, the study of diabetes and its 
main complications cardiovascular complications is of far-reaching 
significance for its clinical treatment [6,7]. However, at present, there 
is no cure for this type of disease, so in-depth research on diabetes 
treatment is very important to the development of diabetes patients 
and medical services around the world [8]. Macrophages are a very 
important class of innate immune cells, widely found in various 
tissues and organs of the body. They have major functions such as 
phagocytosis, chemotaxis, regulating of inflammation, and clearing 
pathogenic microorganisms; they are usually divided into classically 
activated M1 type and alternative activated M2 type [9-11]. Studies 
have shown that metabolic reprogramming is a core component 
of macrophage plasticity and polarization [12], and changes in 
glucose metabolism pathways can support macrophage polarization 
into different subtypes, contributing to their immune homeostasis 
and immune system in vivo. It plays an important function in the 
inflammatory response [13]. Normally, the metabolism of M1 
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polarization to M2, and thus produce serial metabolic effects such as 
glucose metabolism reprogramming [20,21]. 

The 6-Phosphate Kinase-1 (PFK) is activated by its strongest 
allosteric activator, fructose-2, 6-diphosphatase 3 (PFKFB3), which 
then promotes the glycolytic pathway [22,23]. There are PFK1 and 
PFK2, and PFK2 has L-PFK2 (liver) and U-PFK (universal) forms, 
in which L-PFK2 causes PFKFB3 degradation, and U-PFK shows 
high phosphokinase activity and catalyzes the production of more 
PFKFB3, so glycolysis pathway enhanced sugars cause metabolic 
reprogramming [24,25]. In M1 macrophages, U-PKF is induced 
by pro-inflammatory stimulators and growth factors, and down 
regulation of U-PFK2 expression suppresses the activity of M1 
macrophages [26,27]. Because PFK2 can regulate the properties 
of glycolytic metabolism under various physiological conditions, 
it plays a clinical therapeutic role as a therapeutic target of glucose 
metabolism [28]. 

Pyruvate Kinase (PK) consists of four isoenzymes, commonly 
PK1 and PK2. At present, muscle-type PKM can be widely studied as 
a protein kinase of various transcription factors in the nucleus [29]. In 
the process of macrophage polarization, inhibition of PKM2 activity 
leads to the formation of dimer of PKM2 and its interaction with 
HIF-1α, which in turn up-regulates the expression of HIF-1α related 
glucose metabolism enzyme genes, thereby enhancing the activity 
of glycolytic metabolism enzyme and inducing the development 
of glucose metabolism reprogramming [30]. PKM2 can not only 
regulate gene expression in the nucleus, but also attach to the outer 
mitochondrial membrane, leading to mitochondrial dysfunction by 
disrupting the balance of fission and fusion, resulting in abnormal 
oxidative phosphorylation metabolic pathways [31,32]. 

Glucose-6-Phosphate Dehydrogenase (G6PD) is a key enzyme in 
the Pentose Phosphate Pathway (PPP), which promotes intracellular 
oxidative stress and pro-inflammatory cytokine expression by 
activating p38 mitogen-activated protein kinase (p38MAPK) and 
nuclear factor NF-KB signaling pathway. Inhibition of G6PD 
expression with chemical inhibitors or small interfering RNA can 
significantly reduce p38MAPK and NF-KB signals, and down-
regulate the expression of inflammatory factors such as IL-1β and 
IL-6 [33,34]. Thus, playing a role in regulating the reprogramming of 
glucose metabolism, and regulating its activity can provide a clinical 
approach for related treatment.

In addition to the above-mentioned key enzymes of glucose 
catabolism, other enzymes involved also play important roles in the 
differentiation, activation and glucose metabolism reprogramming 
of macrophages. Understanding the role of glucose metabolism-
related enzyme formation or regulated metabolic network in the 
physiological function of macrophages will facilitate the further study 
of the molecular mechanism of macrophage polarization and glucose 
metabolism reprogramming.

Molecular Mechanisms of Glucose 
Metabolism Reprogramming
PI3K/Akt - mTOR - HIF1-α Signal Enhances Glycolysis

Phosphatidylinositol Kinase (PI3K)/ protein kinase B(Akt) 
signaling can promote the expression of Glucose Transporter 
(GLUT) and protein translocation to improve glucose uptake and 

metabolism [35]. Target rapamycin (mTOR) is a downstream effector 
of the PI3K/Akt pathway that regulates cell proliferation, growth, 
survival, and metabolic activity by integrating various signals, 
including energy, growth factors nutrition and stress [36,37]. It has 
been demonstrated that activation of pi3K-Akt-MTOR pathway 
increases HIF-1A synthesis and upregulates HIF-1 regulatory gene 
mRNA level, while HIF1-α directly activates glycoly-related enzymes 
to stimulate glycolysis [38,39]. Such as glucose transporters 1 and 3 
(GLUT1, GLUT3), HK1 and 2, GAPDH, phosphoglycerate kinase 
(PGK1), PKM2, Lactate Dehydrogenase (LDHA) and Pyruvate 
Dehydrogenase Kinase (PDK), etc [40,44]. In addition, enhanced 
HIF-1 not only blocks TCA cycle and oxidative phosphorylation 
in mitochondria, but also plays an important role in macrophage 
migration by promoting the expression of LDHA and PDK migration 
[45,46], improves cell utilization of acetyl-CoA (CoA) and inhibiting 
pyruvate dehydrogenase activity to enhance glycolysis [47]. 
Therefore, regulating mTOR activity to explore the mechanism and 
effect of aerobic glycolysis is an important strategy to study glucose 
metabolism reprogramming in macrophages.

NF-KB-CARKL-Enhances Pentose Phosphate Pathway
Nuclear transcription factor (NF-κB) is involved in regulating 

apoptosis and stress response, and its inactivation or overactivation 
can lead to abnormal changes in metabolic balance [48,49]. 
Carbohydrate Kinase-Like Protein (CARKL) is an important factor 
in the production of setoheptose-7-phosphate (S7P), the intermediate 
of pentose phosphate pathway [50,51]. LPS can inhibit the expression 
of CARKL through the NF-κB pathway and up-regulate the PPP 
pathway, which weakens the restrictive effect on TNF-α and 
pentose phosphate pathways, thereby promoting the polarization 
of M1 macrophages [52]. CARKL is expressed at a high level in 
M2 macrophages, indicating that the metabolic level of the PPP 
pathway is higher than that of M1. These results suggest that CARKL 
is an important regulatory factor regulating the balance of glucose 
reprogramming intermediates in macrophages and may be an 
important target for glucose reprogramming studies in macrophages.

Mitochondrial Function and Oxidative Phosphorylation 
OXPHOS Pathway

Mitochondria is key sites for regulating cellular glucose 
metabolism. Infection, stress and other environmental changes can 
significantly change the structure and function of macrophages’ 
mitochondria, and mitochondrial damage can promote the generation 
of Reactive Oxygen Species (ROS) [53,54], not only promote the 
stable expression of HIF1-protein, but also promote the production of 
inflammatory cytokines (such as IL-6 and TNF-α) [55,56]. It has been 
found that Inducible Nitric Oxide (iNOS) and Nitric Oxide (NO) 
can modify mitochondrial complex I and IV through nitrosylation, 
break mitochondrial electron transport chain, and inhibit oxidative 
phosphorylation of cells [57]. Knockdown of iNOS improves LPS-
induced impairment of mitochondrial respiratory function in M1 
macrophages [58]; and administration of exogenous NO again leads to 
mitochondrial dysfunction and glucose metabolism reprogramming, 
and promotes macrophage inflammatory response [59].

In addition, appropriate mitochondrial division and fusion is also 
key to determining its structural and functional homeostasis. Excessive 
mitochondrial division leads to mitochondrial electron transfer 
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disorder and impaired oxidative phosphorylation metabolism, while 
enhanced fusion promotes the tight connection of mitochondrial 
complexes and oxidative phosphorylation process [60-62]. It can be 
seen that the structure and function of mitochondria and the stable 
expression of related enzymes is conducive to maintaining the glucose 
metabolism balance of cells, and the occurrence of either tilt may lead 
to metabolic reprogramming.

Inducible Factors of Glucose Metabolic 
Reprogramming

The reprogramming of macrophage metabolic pathways is not 
only caused by nutrition or oxygen, but also by various diseases, 

intestinal flora disorders, and stimulation of glucose metabolites. 
In addition, changes in virulence factors, pattern recognition 
receptors, gene changes, and cytokine receptors can also induce the 
reprogramming of cellular glucose metabolism.

Intestinal Microflora
With the continuous development of microbial research, the study 

of intestinal flora, the “hidden organ” of human body, has become 
hotter and hotter, and it has been found that it plays an important role 
in a variety of diseases, obesity, diabetes and cardiovascular diseases 
are closely related to gastrointestinal microbial disorders [63-65]. In 
recent years, more and more studies have found that metabolites play 
an important role in the microbiome mediated regulation of glucose 

Figure 1: The mechanism of glucose metabolism reprogramming. The mechanism of glycolysis key enzymes in glucose reprogramming and the regulation of 
HIF-α on it; The signaling pathway in which intermediate S7P of pentose phosphate pathway plays a role; TCA cycling in mitochondria and its effect on glucose 
metabolism reprogramming during dysfunction.

Figure 2: Polarization of macrophages. On the left are the inducing factors of M1 polarization and the expression of signal pathway and final secretory factor; The 
figure on the right shows the related signal pathways of M2 polarization. The process of glucose metabolism was different with the polarization of M1M2.
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metabolism in patients with Type 2 Diabetes Mellitus (T2DM) [66]. 
For example, propionic acid, butyric acid and succinic acid can 
promote intestinal gluconeogenesis, affect host appetite and insulin 
secretion, and inhibit liver gluconeogenesis, thus exerting the effect of 
glucose metabolism regulation and reprogramming [67,68]. Bile acid 
derivatives and amino acid derivatives can also promote the synthesis 
and secretion of glucagon-like peptide 1GLP-1, thus causing insulin 
secretion to regulate blood glucose and glucose metabolism [69,70]. 
Therefore, regulating the balance of intestinal flora can regulate 
glucose metabolism in diabetes and may be an important regulator in 
macrophages glucose metabolic reprogramming.

Itaconic Acid
It has been suggested that itaconic acid is an immunomodulatory 

anti-inflammatory metabolite that is synthesized by homeotropic 
aconite in the TCA cycle in macrophages that are activated by a 
variety of factors, particularly Lipopolysaccharide (LPS), as well as 
other Toll-like Receptor (TLR) ligands and cytokine [71,72]. Itaconic 
acid was found to be significantly higher in women with gestational 
diabetes, and the current preliminary study found that itaconic acid 
may have the potential to play an important role as a novel biomarker 
in predicting the subsequent development of early gestational 
diabetes [73]. The metabolites itaconic acid and its derivatives inhibit 
M2 polarization by inhibiting JAK1/STAT6 signaling pathway, and 
inhibit the transcription of some genes related to M2 polarization 
process, such as Pparg, CD206 and Fizz1. The mitochondrial oxidative 
phosphorylation pathway of glucose metabolism is also significantly 
inhibited [74,75]. It was found that itaconic acid inhibits Succinate 
Dehydrogenase (SDH), whose activity mediates succinate oxidation 
to regulate the pro-inflammatory IL-1b-HIF-1α axis, regulates ROS 
release in vitro and in vivo, and has an effect on mitochondrial 
function and glucose metabolism TCA cycl [76,77]. The researchers 
found that itaconate can directly bind to protein Keap1 and promote 
its alkylation, thus inducing Nrf2 expression, and finally inhibiting 
inflammation by inhibiting IL-1b expression [76,78]. Itaconate 
obviously promotes the pentose phosphate pathway, leading to a 
significantly increased NADPH oxidase activity, and regulating the 
expression of the gene A20 regulated by the NF-B pathway produces 
more ROS release [79]. Therefore, the accumulation of chaconic acid 
can promote the reprogramming of glucose metabolism and also play 
a role in inducing polarization of macrophages.

Costimulatory Molecular Ligand (4-1BBL)
4-1BBL is a member of the tumor necrosis factor superfamily, 

which the 4-1BBL signaling pathway may be a valid target for 
controlling macrophage-mediated chronic inflammation in obesity 
and metabolic diseases [80,81]. 4-1BBL stimulates macrophage 
to increase Akt phosphorylation through the Akt/mTOR signal-
mediated pathway, resulting in increased glucose uptake, GLUT1 
and glycolysis HK1, PFK, LDH transcription/protein levels, and lactic 
acid production, enhancing the reprogramming process of glucose 
metabolism in cells. It also enhances the pentose phosphate pathway 
by regulating G6PD and PGD [82,83]. 4-1BBL can stimulate the 
induction of polarization of M2 macrophages through the reduction 
of heme oxygenase HO-1, increasing the transcription level of M2 
macrophages in macrophages. HO-1 is a microsomal enzyme that is 
induced in response to oxidative stress and inflammatory stimulation 
and has a powerful anti-inflammatory effect on macrophage-

mediated inflammation by preferentially promoting the M2 
phenotype [84,85]. Therefore, the signaling pathway regulated by 
4-1BBL is also an effective target for macrophage-mediated chronic 
inflammation regulating glucose metabolism reprogramming and 
metabolic diseases.

FoxO1
FoxO1 (FoxO1), as an important transcription factor in human 

body, plays an important role in oxidative stress, DNA damage repair, 
metabolism, cell cycle and homeostasis [86,87]. FoxO1 expression 
is inhibited by insulin and induced by glucagon [88,89]. It was 
found that transcription factor FoxO1 is involved in the regulation 
of key enzymes of glycolysis, such as PKM2, LDH and GIUT1, 
suggesting that FoxO1 plays an important role in the regulation of 
glucose metabolism and glucose reprogramming in macrophages 
[90]. According to the results of professor Guangfucheng’s team 
of USTC in 2020, glycol-related genes were significantly down-
regulated in macrophages lacking transcription factor FoxO1, and 
macrophages lacking FoxO1 tended to be M2 polarized, and glucose 
intake and glycolysis levels decreased significantly, while oxidative 
phosphorylation levels increased. These results indicate that FoxO1 
can affect the polarization and function of macrophages by regulating 
glucose metabolism reprogramming, but the specific downstream 
genes and related mechanisms need to be discovered.

Glucose Metabolism and Macrophage 
Polarization
Aerobic Glycolysis and Macrophage M1 Polarization 

Under normal circumstances, cells generally produce energy by 
means of aerobic oxidation, and only when the level of oxidative 
phosphorylation decreases under conditions such as hypoxia or 
mitochondrial dysfunction, can ATP be produced for energy by 
means of anaerobic colysis. However, for some unknown reasons 
and mechanisms, the rapidly increasing cells, such as tumor cells and 
macrophages, still tend to obtain energy through glycolysis rather 
than oxidative phosphorylation under aerobic conditions, which is 
the Warburg effect [91-94].

Under various stimuli such as interferon (IFN-γ), LPS and TLR4, 
the intracellular metabolism of macrophages is changed, glycolysis 
pathway and pentose phosphate pathway are enhanced, and TCA cycle 
and oxidative phosphorylation pathway are weakened, leading to M1 
polarization [95,96]. When macrophage M1 polarization, TCA cycle 
is weakened and two interruption occurs [97]: The first interruption 
involved a significant decrease in Isocitrate Dehydrogenase (IDH) 
expression, resulting in a substantial increase in citrate production and 
succinate levels, as well as reducing mitochondrial respiration (SDH 
comprises mitochondrial respiratory chain complex II) [98-100]. 
When succinic acid is transported to the cytoplasm, the degradation 
of hypoxia-inducible factor HIF1-α by Proline Hydrogenase (PDH) 
is reduced (PDH promotes HIF1-α degradation to regulate glucose 
metabolism reprogramming and macrophage polarization [101,102].

Moreover, PI3K activation can inhibit downstream Akt1 
activation, and the activation of PI3K/Akt pathway plays an anti-
inflammatory role in TLR-stimulated macrophages and is a negative 
regulator of TLR and NF-κB signaling in macrophages [103,104]. The 
activation or over expression of PI3K/Akt protein kinase resulted in 
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reduced stimulation of macrophages by LPS, while TLR activated 
non-specific chemical inhibition of PI3K signal in cells and enhanced 
the activation of NF-KB and the expression of iNOS, thus promoting 
m1-type polarization of macrophages [104]. Therefore, the metabolic 
state of macrophages is closely related to its polarization, which affects 
the function of macrophages and the occurrence and development of 
diseases.

M1 macrophages are an important source of many inflammatory 
cytokines, including TNF-α, IL-1, IL-12, IL-18, and IL-23, which 
have been identified as important mediators and drivers of chronic 
inflammation and autoimmune diseases. In cardiovascular 
complications of diabetes, M1-type macrophages are significantly 
increased, leading to myocardial hypertrophy and myocardial 
interstitial fibrosis, aggravating cardiac remodeling, and ultimately 
leading to apoptosis [105,107]. Therefore, targeted regulation of 
glucose metabolism reprogramming to regulate M1 polarization 
level of macrophages in vivo can effectively improve cardiovascular 
complications of diabetes.

Aerobic Oxidation of Sugar and M2 Polarization of 
Macrophages

Aerobic oxidation is usually mainly divided into three parts: 
glycolytic pathway, pyruvate metabolism to acetyl-CoA, and 
tricarboxylic acid cycle (TCA). M2 macrophages mainly obtain the 
required energy through this metabolic method. At this time, the 
TCA cycle and mitochondrial oxidative phosphorylation metabolic 
pathways are all enhanced [108,109].

In the process of M2 polarization, PI3K-MTORC2 and STAT6 
signaling pathways are crucial. MTORC operates in parallel with IL-
4RA-Stat6 pathway and promotes the activation of M2 polarization 
by inducing transcription factors (IRF4), at which time the glycolysis 
pathway in the aerobic oxidation of glucose is enhanced [110]. The 
pro-polarizing factor IL-4 causes non-receptor tyrosine protein 
kinase/signal transducer and activator of transcription (JAK/
STAT) by binding to interleukin-4 receptor alpha (IL-4Rα) on the 
cell membrane A pathway is initiated in which activation of STAT3 
and STAT6 leads to the polarization of macrophages towards the 
M2 phenotype, and its downstream Krueppel-like factor 4 can 
participate in macrophage M2 polarization by inhibiting NF-κB/
HIF1-α-dependent signaling transcription [111]. At the same 
time, macrophage colony stimulating factor (M-CSF) and IL-4 
can synergically induce signal transduction by activating AKT and 
mTORC, leading to the polarization of macrophage M2, and the 
involved Akt-MTORC pathway may be the target of regulating 
the substitution activation of macrophages for glucose metabolism 
reprogramming [112].

Studies show that cardiovascular complications in diabetes, 
macrophage polarization is closely related to atherosclerosis, probably 
by reducing the macrophages of the absorption of atherosclerotic 
plaque or increase the polarization to M2 macrophage phenotypes, 
promote the secretion of anti-inflammatory cytokine, M2 should play 
the role of anti-inflammatory, adjacent cells proliferation and repair 
of damaged heart tissue, reduce inflammation and improve cardiac 
function, which plays a beneficial role in clinical treatment [113,114].

Conclusion and Outlook
Glucose metabolism is an important cellular physiological 

process that controls the energy balance of the whole body, and its 
dysregulation is associated with the occurrence of various diseases. 
The state of glucose metabolism is closely related to the functional 
state of macrophages. The reprogramming of glucose metabolism 
caused by various reasons causes the polarization of macrophages to 
have different biological roles, and finally leads to the development of 
diabetes cardiovascular disease which with macrophages as the core 
of the disease, such as vascular complications. Therefore, this paper 
hopes to review the occurrence and development of macrophage 
glucose metabolism reprogramming, and hope to provide a reference 
for the in-depth study of cardiovascular complications of diabetes 
and its clinical treatment.
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