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Abstract

Avian Leukosis/Sarcoma Viruses (ALSVs) belong to the genus Alpha 
retrovirus of family Retroviridae. ALSVs that occur in chickens have been 
divided into 6 envelope subgroups (A–E and J) based on the differences in 
their viral envelope glycoproteins. ALSV infections usually induce several kinds 
of neoplasm of infected hosts which lead to severe morbidity and mortality. 
Most importantly, hosts infected with ALSVs often develop immunosuppression, 
similar as Acquired Immunodeficiency Syndrome (AIDS) caused by Human 
Immunodeficiency Virus (HIV) in human. Immunosuppression can be induced 
by different subgroups of ALSVs in different mechanisms. Some possible 
mechanisms were reviewed in this short paper. 
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but detailed mechanisms for immunosuppression induced by these 
viruses have not been fully understood.

ALSVs-induced immunosuppression
In addition to inducing tumor growth and subsequent mortality, 

ALSVs impart immunosuppressive effects that lead to decreases 
in the immunologic function and productivity. Chickens that are 
infected congenitally with ALV become immunologically tolerant 
to the virus, that they do not develop immune responses to the 
virus, but develop a persistent viremia in the absence of neutralizing 
antibodies [13,14]. The younger the chicken at infections, the longer 
the duration of a viremia, and the longer for the antibody to develop. 
Chickens with a tolerant viremic infection are more likely to develop 
neoplasms because of more virus loads. Infection with ALV can lead 
to a depression in primary and secondary antibody responses and 
cell-mediated immunity [15] of hosts to unrelated antigens, making 
it easy for secondary infections or opportunistic pathogens to develop 
clinical features. This will result in a severe co-infection phenomenon 
which increases morbidities and mortalities [16,17]. Decreases in 
productivity performed as decline in weight gain, egg production, 
fertility, and hatchability directly cause tremendous economic losses.

Target cells of subgroup J ALV are myeloid cells and 
immunosuppression induced by ALV-J appears to be associated with 
both T and B cells [11,18]. Viruses of other subgroups, such as A, 
B, C, and D, mainly infect B lymphocytes [12]. They are well known 
potent inducers of wasting disease and anemia, the severity of which, 
however, appears to be strain dependent. The genetic sequences of 
the eve loci are related to subgroup E of ALVs and are present as 
either complete or defective genomes in almost all normal chickens 
[19-23]. Viruses of subgroup E are of equally important in causing 
immunosuppression alone and affecting the immunosuppression by 
exogenous viruses [24-26].

Immunosuppression mechanisms caused by different 
ALSV subgroups

Acute transforming ALSVs contain viral oncogene in their 

Introduction 
Immunosuppression means impairment of the immune system 

that causes a weaker or even no response to antigens in hosts. Studies 
have demonstrated that many factors cause immunosuppression, 
including nutritions, diseases, stresses, microbes and so on, in which 
virus-induced-immunosuppression is most common and especially 
severe. Immunosuppression associated with a virus infection was first 
described in patients who lost their tuberculin sensitivity during and 
after measles about 100 years ago. It was not until the occurrence of 
Acquired Immunodeficiency Syndrome (AIDS) that virus-induced 
immunosuppression has attracted a renewed attention and detailed 
investigation [1-4]. Immunosuppression can be induced through 
diverse mechanisms, including direct toxicity to target cells, fetal 
infection leading to tolerance, viral proteins acting on infected cells 
or uninfected bystander cells leading to cell death and aberrant 
production of cytokines, and suppressor T lymphocytes. 

Avian Leukosis/Sarcoma Viruses (ALSVs) are a group of 
retroviruses frequently causing immunosuppression [5,6]. Members 
of this group of viruses have similar physical and molecular 
characteristics and share a common group-specific antigen envelope 
glycoprotein. Infection of cells is dependent on the presence, in the cell 
membrane, of host gene-encoded receptors specific for particular virus 
envelope subgroups and on fusion of viral and cell membranes [7]. 
The virion envelope contains 2 glycoproteins encoded by the env gene: 
SU (surface, gp85), the viral surface knob-like structure, that contains 
the receptor binding site and determines viral envelope subgroup 
specificity of the ALSV; and TM (Transmembrane, gp37), harboring 
functional elements required for fusion with host cells, a fusion 
peptide, two Heptads Repeats (HR) and a Trans Membrane region 
(TM) [8,9]. Using interference patterns of different strains of leukosis 
virus against different strains of Rous Sarcoma Virus (RSV), ALSVs 
that occur in chickens have been divided into 6 envelope subgroups, 
designated A, B, C, D, E and J [6,10-12]. A few studies have revealed 
some possible mechanisms of ALSVs-induced immunosuppression, 
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genomes, and they induce neoplastic transformation, in vivo or in 
vitro, within a few days [27,28]. While slow transforming ALVs do 
not carry viral oncogenes and they induce tumors by a “promoter 
insertion” or a related mechanism that activates a cellular oncogene 
to bring about neoplastic transformation and development of tumors 
over many weeks or months [8, 29-31]. There are two distinct 
ways to cause immunosuppression in acute transforming process 
of tumor genesis different from slow transforming ALVs. One is 
immunosuppression caused directly by tumor related antigens [32], 
and another is immunosuppression caused by the induction and 
activation of suppressor T lymphocytes and macrophages. Suppressor 
cells play their inhibitory effect via an interaction between suppressor 
cells and effect cells or through inhibiting factors [32]. 

Subgroup B and D ALVs are capable of inducing Cytopathic 
Effects (CPEs) upon infection of cultured avian cells [33,34]. The 
CPE is explained by use of a death receptor for subgroups B and D, 
designated TVBs3, as a Tumor Necrosis Factor (TNF) receptor-related 
death receptor with a cytoplasmic death domain [33, 35-37]. This 
is most possibly similar to immunosuppression caused directly by 
tumor related antigens. Symptoms of the disease induced by viruses of 
ALV subgroup C are most obvious, and a key feature was a depletion 
of B lymphocytes in the thymus, bursa and spleen within 2 to 3 weeks 
after hatching. The receptor for the subgroup C ALV, TVC, is related 
to mammalian butyrophilins, members of the immunoglobulin super 
family [38]. Although a documented cythopathogenicity of subgroup 
C to DF-1 cells indicates that some death-promoting activity of the 
TVC receptor might be stimulated upon binding of the retrovirus, 
the signaling pathway might be different from those activated by 
subgroups B and D [39]. However, the direct toxic effect of ALSV to 
infected cells may not be a principal cause of lymphoid tissue depletion; 
more probably, uninfected bystander cells are attacked in an indirect 
way as has been shown in an anther retroviral infection. Studies from 
HIV indicated that the virus infects CD4+ T helper lymphocyte (Th) 
and kills infected cells via Cytotoxic T Lymphocyte (CTL)-mediated 
mechanisms [1,40]. More seriously, viral Env glycoproteins trigger 
autophagy in uninfected bystander CD4 T cells, leading to apoptosis 
and thus contributing to a large loss of Th lymphocytes [41-43]. In fact, 
HIV or SIV infection causes a universal activation of all lymphocyte 
population (CD4+, CD8+, NK, and B cells) and a high proportion 
of activated cells undergo rapid apoptosis. Due to the vital role of 
these cells in regulating and amplifying the immune response, any 
decline in their number results in deficiencies in both humeral and 
cell-mediated immunity. Whether ALVs kill uninfected by stander 
cells via the same manner as HIV still needs further proofs. Binding 
of HIV-1 Env to both a primary receptor (CD40) and a co-receptor 
(mainly CCR5 and CXCR4) on the surface of susceptible cells trigger 
autophagy in uninfected bystander CD4 T cells, which most likely 
contributes to an immunodeficiency [41]. CD4 is also a member of 
the immunoglobulin super family. Thus viruses of ALV subgroup C 
most possibly share the similar mechanism as HIV-1 [41]. 

Previous studies showed that subgroup A ALV might induce the 
least immunosuppression in vivo. The receptor for subgroup A ALV, 
designated TVA, is related to the human low-density lipoprotein 
receptor [44,45]. Congenital infection with Rous-Associated Viruse-1 
(RAV-1) caused no detectable immunodepression during the early 
and late stages of infections [46], but affected a T cell population 

during the advanced stage of the disease [47]. Besides, only RAV-
1 infection can cause immunodepressions in chickens that lack 
endogenous virus gene expressions [48,49].

Apoptosis can be induced by binding of a soluble ALV-E Surface 
envelope protein (SU) to its receptor, at least in quail or turkey cells. 
Cellular receptors for the noncytopathic subgroup E of ALV (ALV-E), 
TVBT, a turkey subgroup E-specific ALV receptor, and TVBS1, 
a chicken receptor for subgroups B, D, and E ALV, are functional 
death receptors that can trigger cell death by apoptosis [33]. Except 
cell death induced by subgroup E ALV, the normal presence of ev 
loci may suppress the immune response to some exogenous ALVs 
by inducing partial immunological tolerance [25,26,50]. Thus, the 
presence of the ev loci makes an increased incidence of lymphoid 
leukosis in the field and experimentally [6]. For example, embryonic 
infection with Rous-Associated Viruse-0 (RAV-0) causes a more 
persistent viremia and more neoplasms following infection with 
exogenous ALV [24]. Similarly, expression of EV21 ALV by the ev21 
locus has a tolerating effect on response to exogenous ALV. Besides, 
there was a strong additive effect between ev6 and ev9 in reducing 
an antibody response to exogenous ALSVs infection [51]. But a 
biological value of endogenous viruses is controversial, because in 
certain circumstances they can be of value as the presence of ev2 or ev3 
has been reported to protect birds from a non-neoplastic syndrome 
caused by infection with subgroup A ALV [48,49]. Because these 
ev-genes express endogenous viral protein or complete endogenous 
virus [23], it has been proposed that the induction of immunological 
tolerance is attributable to common epitomes between endogenous 
and exogenous virus [48], which is dependent on the expression of 
viral proteins, and there is possibly synergistic effect between these 
proteins [51]. Likewise, embryonic infection with any of an exogenous 
ALSV subgroup may lead to a tolerance to other subgroups. 

Subgroup J ALV mainly attacks myeloid cells, causes a malignant 
growth, interferes synthesis of functional IL-2, influences mature 
and differentiation of B and T lymphocytes, and thus induces 
immunosuppression [52,53]. The immunosuppression mechanism 
induced by subgroup J ALV might distinct from other subgroups 
because the host cell receptor used by the subgroup J ALV has been 
identified as the chicken Na(+)/H(+) Exchanger type 1 (chNHE1) 
protein [54]. Recent studies in immunosuppression mechanisms 
in cancers revealed that tumor exosomes play an important role in 
inducing myeloid-derived suppressor cells, which promote a tumor 
progression [55-57]. Some researchers have sought clues from 
exosomes secreted by ALV-J infected cells. Their studies suggested 
that exosomes secreted by ALV-J infected cells contain virus-encoding 
Env and Gag proteins and showed similar immunosuppression effects 
in immune cells as subgroup J ALV. Although the role of exosomes in 
subgroup J ALV induced immunosuppression is still unclear, chicken 
biliary exosomes were demonstrated to possess a capacity to influence 
immune responses of lymphocytes and inhibit subgroup J ALV [58]. 

Other factors playing roles in immunosuppression 
Obviously, cell death, either caused by death receptor-mediated 

CPEs or Env glycoprotein-triggered autophagy, plays an essential role 
in inducing immunosuppression in slow transforming ALVs. Damage 
of immune cells will surely cause aberrant responses of cytokines 
produced by these cells. Since it is cascade reactions to produce 
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cytokines and for cytokines to play their role, a globe dysregulation 
of cytokines in vivo will surely occur. There is also evidence that as 
AIDS and other retroviruses progress cytokines dysregulation occurs 
[59,60]. Dysregulation of cytokines in turn aggravate virus-induced 
immunosuppression. In addition, many DNA viruses produce a 
number of proteins that act as ‘viroceptors’, which resemble and 
compete with cellular receptors of the host, biding the cytokines and 
reducing its physiological activity. But there is no evidence of such 
possible manners for ALSVs to perturb cytokine homoeostasis except 
the damage of immune cells. 

Conclusion
Although ALSVs-induced immunosuppression can occur through 

diverse mechanisms (Figure 1), the virus-encoding Env glycoprotein’s 
play a major role in almost all of the possible mechanisms. Env is 
not only a key protein for ALSVs to recognize corresponding 
receptors and enter target cells, but also mediates the death of 
uninfected bystander immune cells. Further studies on Env-related 
mechanisms of immunosuppression will be of great value in seeking 
potential new therapeutic targets direct against immunosuppression. 
Regulation of autophagy also provided a possible way, but it depends 
on clear awareness of the role of autophagy in ALSVs infection. 
Considering the complexity of immunosuppression phenomenon 
and the complexity of ALSVs group, researches on ALSVs-induced 
immunosuppression still need much effort. Since ALSV has been 
intensively used as a model to study retroviruses, there is no doubt 
that any breakthrough in ALSVs studies will bring new insights into 
retroviruses.
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