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Abstract

We focus on the first author’s previous work addressing macroscopic balance 
equations developed for different spatial and temporal scales. We elaborate 
on previous findings so as to orient the reader to fundamental concepts with 
which the mathematical formulations are developed. The macroscopic balance 
Partial Differential Equations (PDE’s) are obtained from their microscopic 
counterparts by volume averaging over a Representative Elementary Volume 
(REV), considering a non-Brownian motion. The macroscopic quantity of phase/
component intensive quantities product, is the premise of two concurrent 
decomposed macroscopic balance PDE’s of the corresponding extensive 
quantity. These are concurrently valid at the primary REV order of length and 
at a significantly smaller secondary length. The hydrodynamic characteristic at 
the smaller spatial scale was found to always be described by pure hyperbolic 
PDE’s, the solution of which presents displacement of sharp fronts. Reported 
field observations of condensed colloidal parcels motion, validate the suggestion 
of hyperbolic PDE’s describing fluid momentum and components mass balance 
at the smaller spatial scale. Controlled experiments supplemented by numerical 
predication can yield the hydrodynamic interrelation between the two adjacent 
spatial scales.

Further, we focus on the first author past developments concerning 
dominant macroscopic balance PDE’s of a phase mass and momentum and 
a component mass following an onset of abrupt pressure change. These 
account for the primary REV order of length and for evolving temporal scales. 
Numerical simulations were found to be consistent in excellent agreement with 
experimental observations. During the second time increment and in view of 
the aforementioned developments, we presently elaborate on new findings 
addressing theoretically the efficiency of expansion wave for extracting solute 
from a saturated matrix. Simulations comparing between pumping using an 
approximate analytical form based on Darcy’s equation and numerical prediction 
addressing the emitting of an expansion wave, suggest that the latter extracts by 
far more solute mass for a spectrum of different porous media.

Keywords: Averaging over a Representative Elementary Volume (REV); 
Deviation from REV spatial average; Primary and secondary macroscopic 
balance equations; Temporal approximate primary balance equations; 
Forchheimer’s momentum term

characterization of colloidal transport comply with the developed 
fluid and component macroscopic balance equations for the smaller 
spatial scale. 

Accounting for the primary macroscopic phase/component 
balance PDE’s at the larger REV scale and neglecting the secondary 
ones, one can study their approximate dominant forms obtained at 
evolving time scales. It was shown [5] that during a certain time period, 
following an abrupt pressure rise, the Newtonian fluid momentum 
balance equation conforms to a nonlinear wave equation. Following 
sorek et al. Sorek et al. [6]  Sorek et al. and Levy et al. [7], the exchange 
of microscopic inertia through the solid-fluid interface in the form of 
Forchheimer terms were introduced [8] and extended [2], resulting in 
a variety of nonlinear wave equation forms.

In case of a Newtonian fluid, Sorek et al. [2] refer to the fluid 
momentum balance equation and obtain extended forms of the 

Introduction
Application of spatial averaging rules, referring to a REV, leads 

to the formulation of the macroscopic balance equations addressing 
phase interactions such as fluids carrying components and a 
deformable porous matrix [1]. Further elaborations by Sorek et al. 
[2], Sorek and Ronen [3] and Sorek et al. [4], prove that the phases 
and components macroscopic balance PDE’s can be decomposed 
into a primary part that refers to the REV length scale and, 
concurrently, a secondary part valid at a length scale smaller than 
that of the corresponding REV length. The secondary macroscopic 
balance equation always conforms to a hyperbolic PDE. Geometrical 
patterns of different spatial scales that prevail in various porous 
media are exemplified in Figure 1. Such patterns support the notion 
of the need to implement macroscopic balance equations addressing 
different spatial scales. Observations [4] verify that the hydrodynamic 
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macroscopic Navier-Stokes (NS) equation. These at the REV scale 
can vary from inertia fluxes in the form of a nonlinear wave equation, 
Forchheimer’s law expressing the transmittance of fluid inertia to 
the solid matrix through their microscopic solid-fluid interface, or 
conform to Darcy’s law when friction at that interface is dominant. 

Spatial Scaling of the General Macroscopic 
Balance Equations 

Addressing Bear and Bachmat (1990) the spatial averaging over 
the volume, U0α, of the α phase within the, U0, REV volume dictates 
the relations,
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e.g., refer to the microscopic phase extensive quantity (E) being the 
momentum (E≡M) vector (i.e. eM=ρV; e1≡ ρ phase density; e2≡V phase 
velocity vector).
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where


x denotes a distance vector from the REV centroid to 
the microscopic interface surface (Sαβ) between the α and β phases, 
θα≡U0α/U0 denotes the volume ratio associated with the α phase, 
e eα

α
θ=  with 
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≡ ∫  denoting average of the α phase over a REV, 
ξ denotes a unit vector outward to an interface and T*

α denotes the α 
phase tortuosity tensor associated with ( Sαα) the α- α part of the REV 
enclosing interface.

Note that for  E≡U0α we obtain e (≡dE/dU0α) = 1 for which 1e
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In [2-4] it was assumed that:

Assumption 1 [A.1] The microscopic interface surface between 
two adjacent phases is material to the extensive quantity flux of the 
phases. 

Assumption 2 [A.2] The phase intensiv,e,e, qsantity accounts for 
a high Strouhal number Ste»1  / ,

e e
e c c

c

L tSt
V

≡  with characteristic quantities 
Le

c,t
e
c,Vc of length, time and phase velocity, respectively).

We note that by virtue of [A.2], the hydrodynamic derivative of 
a macroscopic quantity can be approximated by its corresponding 
temporal derivative at a fixed frame of reference, and together with 
[A.1] it is replaced by the macroscopic temporal derivative (i.e., 
D

Dt t t
e e e∂ ∂≅ =∂ ∂

, respectively).

In view of (1), [A.1], [A.2] and elaborating on Bear and Bachmat 
(1990), the general macroscopic balance equation of a phase extensive 
(E) quantity reads, 

            
               (3)

in which α
V  denotes its macroscopic velocity vector, [ ( ) ]E Ee

α α
−≡J V V

denotes the macroscopic diffusive flux vector obtained by empirical 
relation, habitually, following a potential flux pattern ΓE denotes the 
rate of generating the phase extensive quantity per its unit mass. Note 
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   that 
accounts for the deviation from the advective flux. Supplement to [1] 
and following [4], we write, 

Assumption 3 [A.3] Phase motion is not of a Brownian type, 
as the vanishing of its macroscopic intensive quantity will cause the 
disappearance of the deviation from that intensive quantity (i.e. 

0 0, 0e e iff e
α

= ⇒ = =


).

Hereinafter, for the sake of reducing the overload of notations, 
we will refer to the α phase macroscopic quantities without the 
( ) ( )
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⋅⋅ ≡ ⋅⋅∫ designator.

By the premise of [A.3], in terms of the α phase macroscopic 
quantities for any spatial scale, we write

                                       (4)

in which ΛE denotes a factor (e.g. obtained empirically) that, 
depending on the e quantity, can be a scalar, an element of a vector or 
of a tensor. By virtue of (4) we can thus relate the dispersive flux in (3)  
to the advective flux, reading

                              (5)

where Λv is a tensor quantity. Addressing (3), the phase 
macroscopic quantity of the product of deviations from their 
corresponding intensive quantities (in what follows denoted by dE) 
can by virtue of (4) be related to the product of their macroscopic 

Figure 1: Examples of porous materials: (a) Beach sand; (b) Sandstone; (c) 
Limestone; (d) Rye bread; (e) Wood; (f) Human lung; (g) Spheres packing for 
granular structures; (h) Crushed limestone for construction. (After D. A. Nield 
and A. Bejan, “Convection in Porous Media”, Springer, 2006).
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quantities, 

1 2 12 12 11 2 2,E
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Referring to (3) we can make an assumption that addresses the 
deviation from the advective flux.

Assumption 4[A.4] The product of intensive quantities is 
dominant over that of their corresponding deviations 1 2 1 2 .e e e e

 

≫

As by virtue of  (6) we have
121 2 1 2 ,ee e e e= Λ

 

the [A.4] assumption 
leads to 

12
1eαε ≡ Λ   from which we obtain

12
, 1e e eB BαεΛ = = ⋅

On the premise of  (6) and [A.4], we rewrite  (3) as a balance 
equation addressing the advective, dispersive and diffusive fluxes, the 
assumed smaller term associated with deviation from the intensive 
quantity (εαθBee1e2) and its corresponding assumed smaller term of 
deviation from the advective flux (εαθBee1e2V),

           
                    (7)

Referring to (3), different forms of balance equations will 
emanate subject to assumptions made when comparing between 
decompositions of the phase extensive quantity flux [ ]E Ee e e= + +V V V J

 

 
(e.g. neglecting the momentum dispersive flux, when addressing 
medium heterogeneity). Let us thus consider the assumption that,

Assumption 5[A.5] The advective flux is dominant over the 
dispersive flux .e eV V

 

≫  As by virtue of (5)  we have e e⋅=V A V
 

, the 
[A.5] assumption leads to ε≡ A <<1 so that , 1.ε =A= B B

On the premise of (5) , [A.4] and [A.5] we rewrite (3) as a balance 
equation addressing the advective and diffusive fluxes, the assumed 
smaller term associated with deviation from the intensive quantity 
and the assumed smaller terms of deviation from the advective flux 
and the dispersive flux (θ(εαBeI+εB).e1e2V),

                 (8)

where I denotes the unit tensor.

As both solutions of  (7) and (8)  when ε≈0(εα) are functions of ε 
<< 1, we can expand their dependent variables using terms associated 
with a polynomial of ε powers. Approximate solutions to  (7) and (8)  
can thus be obtained by solving an infinite set of the corresponding 
balance equations of descending order magnitudes. While the first 
(i.e. when ε =0 ) balance equation may be nonlinear and of the highest 
order of magnitude, the others are linear balance equations as they 
are combined with variables obtained from the solution of equations 
that are of higher order magnitude. In view of (7) we hence obtain the 
general primary (dominant) macroscopic balance equation for any α 
phase corresponding to the REV (larger) length scale in the form of

                        (9)

for which the combined, respectively, dispersion and diffusion fluxes 
( )Ee +V J
 

 habitually follow a macroscopic extension suggested for the 
empirical microscopic law associated with JE. This commonly has 
the pattern of a potential flow, and thus (9) conforms to a PDE with 
hyperbolic or parabolic characteristics.

By virtue of (6) we obtain the equation of a lesser order of 

magnitude than (9), i.e. the secondary macroscopic balance equation 
emerging from (7)  and assumed to correspond to a length span much 
smaller than that of (9), reads

                               (10)

We note that  (9) and (10)  are based on a different premise and 
thus can represent different characteristics. At the REV (larger) 
spatial scale and subject to different assumptions, the governing 
balance equation  (9) can accommodate pure advection, advection 
– dispersion or pure dispersion fluxes. The secondary governing 
balance equation (10) describes the concurrent pure advection 
(i.e. hyperbolic PDE characterized by a sharp front migration of 
the state variable) of the deviation (dE) from the intensive quantity 
and its corresponding deviation from the advective flux, at a spatial 
scale much smaller than that of the REV. The solution for dE of (10)  
depends also on V, obtained from the solution of (9). Moreover, one 
can seek further resolution modes of dE and V, via an iterative process 
between  (10) and the combined form of (9) and (10) [i.e. the original 
form of (7)].

By virtue of [A.5], another possible form emanating from (8) is a 
general primary (dominant) macroscopic balance equation for any α  
phase valid at the REV (larger) length scale that reads

                    (11)

By virtue of , for ( )0 αε ε≈  and on the basis of (8), concurrent 
to (11) yet with a smaller order of magnitude and at a length span 
much smaller than the typical length scale of the REV, the secondary 
macroscopic balance equation for any α phase reads

                          (12)

We note that unlike  (10) and by virtue of [A.5], deviation from 
the advective flux 1 2( )e e V

 

 and the dispersive flux ( )e V
 

, both assumed 
smaller than the advective flux (e1e2 V), are accounted for in (12). The 
discussion and procedure referring to (7), (9) and (10) corresponds, 
respectively, also to (8), (11) and (12). Sorek et al. [4] demonstrate the 
form and validity of the implication of  (9) and (10)  its corresponding 
secondary balance equation, as well as  (11) and (12)  its corresponding 
secondary balance equation. These two fundamental group forms (9), 
(10) and (11), (12),  address, respectively, in [4] the balance equations 
of a component mass transport and phase energy (accounting for the 
advective and dispersive fluxes, when addressing their larger scale) 
and phase momentum (neglecting its dispersive flux for its larger 
scale).

Spatial scaled momentum balance equations of a phase
Following [2,4], here the phase extensive quantity is its momentum 

(i.e. E≡M), for which its macroscopic quantities are eM≡ρV  (i.e. e1
M≡ρ 

e2
M≡V), the momentum diffusive flux JM= -σ (σ-phase stress tensor) 

and the momentum source flux ΓM=F (F- specific body force acting 
on the phase). Following (6) and [A.4] we consider that ρ ρ = MV V

 

 d . 
Thus, by virtue of (11), the primary macroscopic momentum balance 
equation of the α phase at the larger spatial scale of the typical REV 
length reads 

                          (13)
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secondary momentum balance equation of the α phase at a scale much 
smaller than that of the typical REV length, reads,

       (14)

Where, as in (12), the momentum dispersive flux ([ ]ρV) V




 is 
accounted for in (14). Letting the α phase represent a Newtonian 
fluid (i.e. its diffusive momentum flux reads σ=τ-PI, where P denotes 
pressure and the constitutive potential flow pattern for the shear 
stress is, ( )Tµ λτ= + + ⋅  V V VI∇ ∇ ∇ , for which µ and λ denote, respectively, 
the first and second viscosities), then the macroscopic Navier-Stokes 
equation resulting from  (13) can govern the propagation of shock 
waves through porous media [7], conform to Forchheimer’s law 
accounting for the transfer of fluid inertia through the microscopic 
solid-fluid interface or to Darcy’s law when friction at that interface 
is dominant [2]. At the much smaller scale, the hyperbolic PDE of 
(14) describes an inertia momentum balance equation in the form of 
a wave equation that governs the concurrent propagation of the dM 
quantity. 

Spatial scaled energy balance equations of a fluid
Following Sorek et al. [4], consider a porous medium saturated 

by a Newtonian fluid with heat (H) as its extensive quantity (E≡H) for 
which its intensive quantity is  eH≡CvρT (i.e. eH

1≡ cvρ, eH
2≡T) where Cv 

denotes the fluid constant specific heat at fixed volume, T denotes its 
temperature and let us also account for ΓH denoting the specific heat 
source. Following Bear and Bachmat [1] and in view of  (1) and (3)  
we obtain the fluid macroscopic heat balance equation

        (15)

where φ denotes porosity, the fluid dispersive heat flux )(c Tυ ρ V
 

 and 
its diffusive heat flux JH are assumed of the same order of magnitude 
and (following Fourier’s law, using a potential flow pattern) are 
assembled into ( )[ ]Hc cT Tυ υρ∗⋅ = +V J





− ∇Λ  with ∗Λ  denoting the combined 
constant thermal dispersion and diffusion (conductance) tensor. 
Note that (15) accounts for the fluid viscous dissipation heat flux 
(τ: ∇ V), although habitually considered negligible. The fluid heat 
flux associated with volumetric deformation ( )[ ]T P T

υ
∂ ∂ ⋅V∇  at fixed 

volume (v) is expressed in terms of the constant fluid compressibility 
coefficients (βT/βP)v with (1 )( ][ )P T

Pβ ρ ρ≡ ∂ ∂  due to its pressure 
(P) change at fixed temperature and (1 )( ][ )T P

Tβ ρ ρ≡ ∂ ∂  due to 
thermal change at fixed pressure. In view of  (9) and (15), we obtain 
the primary macroscopic heat balance equation in the form

           (16)

In view of  (10) and (15), at the smaller scale, we obtain the 
secondary macroscopic heat balance equation in the form

                          (17)

for which Hd c Tυ ρ≡
   denotes the deviations product from the 

intensive heat quantity. We note that while (16) is characterised by 
advective and dispersive heat transfer, concurrent at the smaller scale 
(17)  addresses pure advective flux of heat transfer.

Spatial scaled component mass balance equations in a 
fluid

In Sorek and Ronen [3] we consider a γ component for 

which mγ denotes its mass so its extensive quantity is E ≡ mγ with 
the intensive quantity ( )me C

γ

ρω≡ =  given by its concentration 
( )1 2 1 2;  ,m m m mC e e e e

γ γ γ γ

ω ρ= ≡ ≡  related to its mass fraction (ω), and let us 
account for the specific component source ( )mγ

Γ . Let us consider 
a saturated domain, following Fick’s law based on a potential flow 
pattern we combine the component diffusive flux vector ( )mγ

J  and its 
dispersive flux vector ( ])[C ρω=V V

  

 into ( )m
h C C

γ

− ⋅ = +D V J
 

∇  for which Dh 
denotes a hydrodynamic dispersion tensor. In view of (9), at the REV 
spatial scale, we obtain the primary component mass balance equation 
in the form

                       (18)

We note that (18) describes the transport of a component 
subject to advective and dispersive flux mechanisms, interpreted by 
hyperbolic and parabolic PDE characteristics, respectively.

In view of (10), at the smaller scale, the secondary component 
mass balance equation becomes

                                     (19)

where ( )md
γ

ωρ≡
 

 denotes the deviations product from the component 
concentration. We note that concurrent to the advective dispersive 
transport described by (18), the transport at the adjacent scale, 
significantly smaller than that of the REV typical length, is governed 
by (19) which describes a pure advection mechanism.

Supporting observations of particles migration at the 
scale of several pores 

We note that the form of macroscopic balance equations at the 
smaller (e.g. several pores) scale is proven to be hyperbolic PDE’s. This 
suggests a “bulk flow” phenomenon, at that scale, of moving particles 
aggregated by a shock wave drive. We suggest that this “bulk flow” 
mechanism is governed by a wave equation for the fluid momentum 
balance equation and pure advection transport for the particle’s mass 
balance equation. Numerical predictions or simulations addressing 
a sensitivity analysis cannot alter the basic characteristics of the 
balance hyperbolic PDEs at the smaller scale. We thus maintain 
that validation of the theoretical development should at first rely on 
verifying that observations at the several pores scale comply with 
features of the theoretical model at that scale. Field observations 
under natural gradient flow conditions (specific discharge of 4 to 
16/myr and 35% porosity) in a contaminated sandy aquifer show, 
micro-scale variations in the flux, mineralogical composition and size 
of suspended particles [9,10]. Along a 16 m saturated section below 
the water table the average concentration of particles in groundwater 
varied between 1 and 40 mg/L, but high concentrations of up to 5000 
mg/L were also detected. The particles were composed of CaCo3 (11-
57%), quartz (7-39%) and clays (8-43%). Most of the particles were 
within the 140-3000 nm size range with size modes varying from310-
660 nm. The transport of large amounts of particles under the above 
mentioned natural flow conditions within a porous medium (average 
grain size of 125 nm) is striking. Motion of different particle parcels 
observed along the depth of a well and sampled at different time 
periods, under natural flow conditions and due to a sudden single 
pumping excitation (100 L/mm), are depicted in Figure 2. We note in 
Figure 2 that the single pumping caused the rise of colloids turbidity 
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(a measure of the degree to which a fluid loses its transparency due to 
the presence of suspended particles). This can be explained in view of 
(13) concerning temporal scaling (explained in the following section 
3) for the large spatial scale of a fluid momentum saturating a porous 
matrix [11], confirmed by simulation of its simplified form [12] and 
validated through different experiments [13]. In view of these [11-13], 
we maintain that at the start of pumping, inertia temporally governs 
the flow regime and a wave driven transport at that instant caused the 
rise of colloids turbidity (Figure 2). At the several pores scale, (14) 
and (19) suggest that displacement be governed by the combination 
of wave influenced motion and pure advective transport mechanisms, 
respectively. The several pores scale motion of condensed parcels of 
particles that complies with the hyperbolic forms of  (14) and (19), 
is also demonstrated in Figure 2. Vertical difference of magnitude 
in particles concentration (Figure 2) corresponds to two different 
natural flow fields reflecting a higher specific discharge at the deeper 
depth and thus transporting significantly more particles at that depth 
[9].

At the several pores scale, (14) and (19) suggest that displacement 
be governed by the combination of wave influenced motion and 
pure advective transport mechanisms, respectively. Motion of 
fronts (observed as continuous bulk displacement or “piston 
flow”) remaining sharp, is a characteristic solution of hyperbolic 
PDEs. The motion of condensed parcels of particles exhibited in 
Figure 2, noticeably complies with the typical solution featured 
by the hyperbolic forms of (14) and (19). Hence, we maintain that 
observations depicted in Figure 2 validate that the PDEs of (14) 
and (19) govern the hydrodynamics at the scale of several pores. 
Vertical difference of magnitude in parcels of particles concentration 
(Figure 2) corresponds to two different natural flow fields reflecting 

a higher specific discharge at the deeper depth and thus displacing 
significantly more particles at that depth [9]. At the pores scale and 
for two time snap shots, Figure 3 depicts bulk motion of dominant 
mean size (determined by their weight percentage) particles along 
depth. Observations depicted in Figure 3 thus attest by the mass bulk 
displacements, the hydrodynamics of wave influenced motion and 
pure advective transport resulting from the hyperbolic PDEs of (14) 
and (19), respectively.

Temporal Scaling of the Transport 
Phenomena through Porous Media

In what follows we neglect the secondary balance equations of 
the fluid momentum (14) and (19) the component mass. Actually, 
such a decision leans towards a qualitative rather than a quantitative 
premise. The resolution of the relative influence between the smaller 
and bigger spatial scales should rely on quantitative (e.g. numerical 
exercises) measures and be investigated thoroughly. We thus 
consider as dominant the macroscopic balance equations of the fluid 
momentum (13) in the form of the NS equation and refer to (18) for 
the mass balance equation of a γ component. 

In Sorek et al. [11] we further develop the time evolving 
approximate forms of these balance equations, after an abrupt rise 
of the fluid pressure. We consider linear equilibrium adsorption 
isotherm, deformable saturated porous matrix and a varying fluid 
density ρ = ρ (P,C). On the basis of dimensional analysis we find [11] 
that the balance equations of the fluid momentum and mass and 
the component mass, conform to different dominant forms as time 
evolves after the onset of the abrupt pressure rise. We will specifically 
draw our attention to the first two evolution periods as well as 
summarize aspects presented in [11].

Figure 2: Particles concentration at different sampling time (4, 15, 23, 49 
and 69 days) intervals along a well depth (vertical difference of magnitude 
in particles concentration corresponds to two different natural flow fields with 
higher specific discharge at the deeper depth), under natural flow conditions 
and due to a pumping (100 L/m) excitation, after Ronen et al. [9]. Figure 3: Particle size distribution for sampling intervals of two profiles, after 

Ronen et al. [2].
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Considering a fluid without mass source, without diffusion and 
dispersion fluxes of its mass (i.e. , , 0, 0, 0m m mE m e ρ ρ≡ = Γ = = =V J




), then in 
view of (11) we write the fluid mass balance equation in the form

                        (20)

Following (13) we obtain the fluid momentum balance equation 
in the form [14]

        
            (21)

where g denotes gravity acceleration, Z denotes altitude, qr [≡φ (V-Vs)] 
denotes the specific fluid flux vector relative to (Vs) the solid phase 
velocity vector, cf denotes a shape factor, ∆ denotes the hydraulic 
radius of the pore space and [ ](1 ) )(

fS

ij i jfS
S

ij S dSα δ ξ ξ′ ≡ −∫   denotes the ij 
components of a cosine direction tensor at the microscopic Sfsfluid-
solid interface, and δ denotes the Kronecker delta tensor. Sorek et 
al. [2] extend the macroscopic NS equation of (21) when, by virtue 
of (21), P∇  through Sfs is replaced with all of the microscopic NS 
equation flux terms ( ( ) [ ( ) ] ).

fS fS

i ij j j k j k j j k j
S S

P x V t V V x gd Z x SxS dx xξ ρ ρ τ ξ∂ ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ −∂= ∂∫ ∫
   Subject 

to some assumptions, Sorek et al. [2] obtain an extended macroscopic 
NS equation that reads

             
              (22)

In which  1[ ( ) ( ) ]
fS

ikji kj k j
fs S

F x dsS δ ξ ξ≡ −∫


 denotes the kji components of 
the Forchheimer 3rd rank tensor. For a fully developed flow regime 
[i.e. 2( ) ( ) ·ft cφρ µφ ′∂ ∂ + ⋅ ∆V V V V∇ α ] (22) reduces to Forchheimer Law 
which together with the assumption of a Reynolds number less than 
a unit (22) reduces to Darcy’s Law [2]. Note that it is based on rigors 
macroscopic continuum mechanic approach such that at a point (i.e. 
within the REV) there is an account for the interaction of at least two 
phases also through their common microscopic interface. Thus, e.g., 
Darcy’s Law was proven [2] to be a derivative of the macroscopic 
NS momentum balance equation which validated the originally 
suggested empirical relation for flow through a porous medium bulk. 
One can, however, find microscopic derivation of the equivalent to 
Darcy’s Law when it is considered as a phenomenological filtration 
relation for, say, membrane technology [15]. 

Following an abrupt up-rise of pressure, the investigation for the 
approximate forms of the balance equations will be sought in terms 
of pressure rate, which can be obtained from the differentiations of 
ρ = ρ (P,C). Hence, (21) will be substituted by a combined form of 
(20) and (21). Considering no mass source for the component and by 
virtue of (9), we write the component mass balance equation in the 
fluid accounting also for its adsorption on the solid matrix, i.e. the 
component transport equation, in the form

                       (23)

in which Cs (= ρs kd C; where Sρ  denotes the solid density and kd 
denotes the partitioning coefficient) denotes the component mass 
per unit volume of solid matrix. Analyzing (23) in orders of the 
pressure rate magnitude during different time scales, we assume a low 
solubility (i.e. concentration is practically sought in terms of the fluid 
volume) and that changes in the total stress of the porous matrix are 
of the same order as pressure (i.e. ϕ = ϕ (P). To address the transport 
phenomena during different time scales [11] we will analyze the 

order of magnitude of the terms appearing in the balance equations 
set (20), (21) and (23). This set is thus rewritten in nondimensional 
forms obtained by subdividing all terms by the one associated with 
the pressure rate. 

At the first time t1 (=0+) being the onset instant of the abrupt 
pressure rise, starting with fluid at rest with no loss of generality, 
we have P C P C

1t t t t ; L L Lc c c c c c= = = ≅ ≅V V . Where ( )c denotes a characteristic 
quantity, and the characteristic velocity Ve

c ≅ Le
c/t

e
c thus becomes 

VP
c= Vc

c= VV
c= Vc resulting in a Strouhal number being   

Following Sorek [11] at t1 the first time scale addressing the up-rise of 
the pressure impulse, we obtain:

The fluid mass balance equation conforming to

                                          0,DP
Dt

=            (24)

and the fluid momentum balance equation reads

                                             (25)

Assuming that adsorption is a slow process in comparison to 
change in pressure rate such that it does not affect the component 
mass, the component transport equation becomes

                                       ( )1 0,DPC
Dtφφ β− =       (26)

where ( ) ( ){ }1 1 1 Pφβ φ φ ≡ − − ∂ − ∂   denotes the matrix compressibility 
and ( )D Dt t≡ ∂ ∂ + ⋅V ∇  denotes the hydrodynamic time derivative 
operator. By virtue of (24) and (25) the magnitude of the pressure rise 
will propagate without attenuation 

1 0( .)tP Const+= =  as if through an 
incompressible fluid, and (26) is automatically fulfilled. On the basis 
of the dimensional analysis the order of magnitude for the pressure 
propagation distance will be ( )( )1 1 0 ,c cL 0 t Sφ ρ=

for which  ( )0 1PS φφβ φ β ≡ + −   denotes the specific storativity of the 
porous medium. 

At the second consecutive evolution time t2 period, we have 
t2=tP

c= tV
c= tC

c; L
P

c
 >LV

c≅ LC
c  leading to, VP

c> VC
c= VV

c= Vc, however 
the velocity Strouhal number (Stv=1) remains as was at the first time 
scale. It is proven Sorek [11] that at this second time scale the fluid 
mass balance equation is described by (20) while the fluid momentum 
balance equation conforms to a non-linear wave equation that reads,

                                         (27)

The dimensional analysis asserts that the non-linear wave in 
the form of (27) prevails during an order of time magnitude being 

( )2 ( )c c ct 0 P V gρ= , and the order of magnitudes of the characteristic 
pressure ( 2

c c cP Vρ> ) with L2=0(Pc/ρcg) as its propagation distance. 

We note from the dimensional analysis [11] that during the time 
period starting at 2t , the solution for P  and V of  (27) can be obtained 
separately with no reference to the solution of the component 
concentration, as during time increments resolving for the evolution 
of P and V of (27) we have ρ ≅ρ(P.) The update, by the end of 
each time increment, of fluid density associated with component 
concentration (ρ=ρ(P,C)) will be after solving for the component 
transport equation.

( ) ( )
t

φρ φρ∂
= − ⋅

∂
V∇

( ) ( )1 ,S hC C C C
t

φ φ φ∂
   + − = − ⋅ ⋅   ∂

V - D∇ ∇

L 1.
V

e e
e c c

c

tSt ≡ =

2
2( ) ( ) ( · )f

r r r

c
P g Z

t
φρ φ ρ µ λ µ∗∂ ′+ ⋅ − + ⋅ + + ⋅ + ∇ −

∂ ∆
V V V)= T q q q∇ (∇ ∇ ∇∇ α



2 2( ) ( P Z) ·
2

f fc c
g

t
φρ φ ρ φρ µφ∗∂ ′+ ⋅ ≅ − + ⋅ − ⋅ −

∂ ∆ ∆
V V V T V V V∇ ∇ ∇ αF

0Pφ ∗⋅T∇ =

( ) 0D P g
Dt ρ

∗+ + Ζ ⋅
V T∇
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The component transport equation becomes,

               (28)

Hence, the pre-evaluation of P and V can be interpreted in (28) as 
known source terms. The dimensional analysis suggests that the order 
of magnitude of the component concentration spatial distribution 
will be to a distance ( )2C

2
cL 0 V g= . 

Levi-Hevroni et al. [16] apply a dimensional analysis accounting for 
the fluid momentum in the form of (22) to investigate the wave period 
starting at t2 (following an abrupt change in fluid’s pressure and 
temperature) for the fluid heat transfer and flow problem, and solid 
deformation concerning a thermoelastic highly flexible porous matrix. 
We note in Figure 4 that the 1-D numerical simulation conducted by 
Levi-Hevroni et al. [16] yield excellent agreement with 1-D numerical 
simulation for almost non-deformable porous materials Levy et al. 
[17]and with shock-tube experimental observations Levy et al.[18] for 
the pressure histories of air at various locations along the shock wave 
propagation pass. The contact surface of the gas which originally filled 

the pores and was pushed out, was found experimentally by Skews 
et al. [19] and reported in Levi-Hevroni et al. [16] to be reproduced 
numerically. The calculated gas density field and the trajectory of the 
foam front edge are depicted in Figure 5.

Burde and Sorek [12] investigated the component transport 
during the wave period starting at the second time scale t2. A 
simplified analytical solution is applied for the 1-D case of the set (20), 
(27) and (28)  where the flow problem is addressed by the traveling 
wave (kinematic wave) case (Landau and Lifshitz, 1987) for which 
V=V(ρ); P=P(ρ) and thus the fluid mass and momentum balance 
equations are rewritten in a similar wave equation form in terms of V 
or P. The solid matrix is considered as slightly deformable following 
the assumption that V ,St tφ φ∂ ∂ ∂ ∂

 in which ( )s denotes a quantity 
associated with the solid porous matrix. Component migration Burde 
and Sorek [12] due to the action of a compaction wave (e.g. change in 
injection rate) or an expansion wave (e.g. change in pumping rate), 
both when being emitted at the surface (x=0), are depicted in Figure 
6. Solutions Burde and Sorek [12] are presented as time evolves from 
t2, and the component displacement is continuously governed by the 
wave form of (27). 

Simulations findings of Burde and Sorek  [12] for migration of 
a component governed by continuous propagation of a shock wave, 
was verified to be consistent with solutes displacements observed 
through various experimental setups under the action of emitting a 
succession of compaction waves [13]. 

Further for a deformable matrix, during the compaction wave 
period at the second time increment, on top of the fluid mass (20) and 
momentum (22) balance equations the solid mass and momentum 
balance equations read respectively [21].

                                (29)

           
             

      (30)

where σα (α≡ f, S) denotes the α phase stress tensor with σ’s as 
the matrix effective stress, and the phases tortuosity tensors are 
related by *(1 ) Sφ φ∗+ − = δT T . Considering an elastic matrix undergoing 
deformations we refer to a constitutive relation for, σ’s equivalent to 
the microscopic Hooks law, and a strain tensor eS that read,

                          (31)

where Sµ′  denotes the macroscopic Lamé constant related to the 
matrix shear strain, I denotes the unit tensor and ws denotes the matrix 
displacement vector. Referring to the set of fluid , (20), (22) and matrix 
(29) - (31) mass and momentum balance equations together with the 
solute mass balance (23) equation, the 1D component displacement 
due to compaction waves propagation are solved numerically 
using the Total Variation Diminishing (TVD) scheme [21]. Solute 
extraction is simulated in view of applying at the medium surface a 
sequence of pressure pulses each generating an expansion wave. The 
inwards expansion wave generates a pressure gradient contradicting 
the direction of the wave propagation. The fluid flow governed by 
the pressure gradient, will thus displace the component towards 

Figure 4: Experimental results and numerical predictions [dotted line - Levy 
et al. [17] and solid line - Levi-Hevroni et al. [16] of the gas pressure histories 
(after Levi-Hevroni et al. [16] using a 40 mm long silicon carbide sample with 
10 pores/Inch and average porosity of 0.728 ± 0.016. Incident-shock wave 
Mach number in this experiment was MS =1.378. (a) Upstream 43 mm ahead 
the porous material front edge. (b) Along the shock tube side-wall inside the 
porous material, 23 mm from end-wall. (c) At the shock tube end-wall.
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the medium surface. Using such a procedure [21] the component’s 
mass extraction is compared between pumping and application 
of expansion waves emitted from the surface. Pumping refers to 
Darcy’s law for which drag is assumed dominant at the solid-fluid 
interface, neglecting gravitational body force, the matrix momentum 
balance equation (30) is assumed static and (31) accounts for its stress 
constitutive law. (Sorek and Ohana, 2009) develop an approximate 
analytical solution for the specific component’s extraction mass 
flux Qsolute-p for constant pumping intensity at the surface. Their 
comparison (Table 1) with Qsolute-w for specific solute extraction mass 
flux due to emitting expansion waves proves the overwhelming 
advantage of the latter.

Bear and Sorek [5] discuss two additional forms of dominant 
governing fluid mass and momentum balance equations due 
to the onset of an abrupt pressure rise. Following the first two 
aforementioned evolution periods, at the start of the third ascending 
time scale, fluid’s inertial and drag momentum fluxes are of the 
same order expressed by the full extent of NS equation that can also 
conform to Forchheimer Law [2]. During the fourth evolution time 
period, drag associated with viscosity dominates the flow regime 
and inertial momentum flux becomes negligible in comparison. The 
resulting viscous creep flow is expressed by the Brinkman momentum 
equation, when friction between two adjacent fluid layers dominates, 
or by Darcy’s linear momentum, when friction at the solid-fluid 
interface dominates [2].

Conclusion
The macroscopic balance equations describing the transport 

phenomena through porous media are spatial and temporal 
dependent. Space wise each balance equation is decoupled into 
a primary equation addressing the REV length span scale and a 
secondary equation, concurrent to the primary one, valid at a length 
scale smaller than that of the REV. The latter is associated with 
intensive quantities deviating from their corresponding averaged 

Figure 5: Calculated gas density field and front edge trajectory of the flexible 
elasto-plastic porous sample (after Levi-Hevroni et al. [12]. We note the 
contact surface due to gas emerging from the sample porous matrix, after 
it had reached its utmost deformation. This very large deformation depleted 
the sample pores and forced the gas to flow across the sample/gas interface. 
Simulation results are similar to the experimental observations of Skews et 
al. [19].

terms. The primary balance equation can conform to a pure 
hyperbolic PDE addressing advective fluxes, PDE with hyperbolic-
parabolic characteristics expressing advective-diffusive (with/without 
dispersive) fluxes or pure parabolic PDE governing diffusive (with/
without dispersive) flux mechanisms. The secondary balance equation 
remains a pure hyperbolic PDE for any extensive quantity of a phase 
or component. The secondary macroscopic balance equations are 
habitually neglected, yet these can be significant in cases of deviation 
from the average fluid velocities and/or for heterogeneity in fluid 
and matrix properties. Validation of the theoretical development 
relies on verifying that field observations under natural gradient flow 
conditions indicate that particles are displaced in parcels at several 
pores scale and thus comply with features of the mass and momentum 
balances at that scale. 

Approximate macroscopic mass and Navier-Stokes fluid balance 
equations and the component mass balance equation through 
different time scales were developed following the onset of an abrupt 
pressure change. Numerical simulations were consistent and in 
excellent agreement with experimental observations.

Figure 6: 1-D simulations, for a general unit system, of a component 
migration through a saturated porous medium, as time evolves starting at the 
second time scale following an abrupt up-rise of pressure Burde and Sorek 
[12]. With ( )0 that denotes a value at the reference x=0, t=0, solutions are also 
depicted in terms of 0

(component's mass in the fluid) (unit volume of porous m.)
(same values at the reference x=0, t=0)

( )f CC φ φ  
≡  

 
, 

of χ≡ρSkd that addresses a measure of adsorption, of 0 0[(1 ) ]P TSr φ λ ∗≡ − that 
provides a measure of the matrix stiffness ( λS denotes the Lame’ coefficient, 
analogous to Young’s elastic modulus of Hooks law), and for values of 

0 0

(component's mass in the p. m.) (unit volume of p. m.)
(same values at the reference x=0, t=0)

(1 )
(1 )Pm CC φ χ φ

φ χ φ
+ −  

≡  + −  
. Waves are being emitted 

at the surface (x=0), with C0 (x,0) denoting the initial concentration distribution 
and for χ = 0.25, r =0.25 . (A) Temporal concentration along depth under the 
action of continuous propagation of a compaction wave. (B) Temporal mass 
extraction subject to the action of continuous expansion wave propagation. 

Depth[m]

Pervious Semi-Pervious Impervious

Sand & Grevel;
Frectured Rocks

Silt; Loess; 
Layered clay; Oil 
Reservoir Rocks

Unweathered 
clay; 

Limestone; 
Dolomite

Water 30 0.06 5.0*E-05 to 
5.0*E-07 5.0*E-09

Air 10 0.002 2.0*E-06 to 
2.0*E-08 2.0*E-010

Table 1: Values of Qsolute-p /Qsolute-w for typical matrix properties.
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