
Citation: Di Paola A, Tortora C, Argenziano M, Di Leva C and Rossi F. Iron Metabolism: From Inflammation to 
Cancer. Ann Hematol Oncol. 2021; 8(6): 1351.

Ann Hematol Oncol - Volume 8 Issue 6 - 2021
ISSN : 2375-7965 | www.austinpublishinggroup.com 
Rossi et al. © All rights are reserved

Annals of Hematology & Oncology
Open Access

Abstract

Iron is a trace element essential for several physiological cell functions and 
any alteration in its metabolism could be associated to the onset of several 
disorders. Cells normally avoid any dysregulation, activating fine molecular 
mechanisms to balance iron uptake, utilization, recycling, storage and export. 
The main “actors” in this event are hepcidin, ferroportin, ferritin and transferrin, 
both at cell and systemic level. Dysregulation in iron homeostasis is closely 
related to inflammation onset and perpetuation, osteoporosis and cancer 
progression. During inflammation, it has been observed a reduction in circulating 
iron as direct consequence of increase in ferritin levels, aimed to contain 
inflammatory processes and in many cases to restore the immune response. 
Iron overload directly promotes bone resorption and inhibits bone formation 
inducing osteoporosis. Moreover, iron cellular accumulation is responsible for 
ROS production with consequent DNA damage and neoplastic transformation 
of cells. In conclusion, even though many molecular mechanisms have to be 
clarified, targeting iron and also the mediators of its metabolism could be useful 
to manage a great variety of disorders, such inflammation, immune diseases, 
osteoporosis and cancer. 
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Introduction
Iron is a very important trace element for organic systems, 

in particular in literature its vital role is well documented 
especially in mammal cells [1,2]. Iron is physiologically involved 
in several biological processes such DNA synthesis and repair, 
cellular metabolism and signaling [3,4], synthesis of hemoglobin, 
neurotransmission, cell growth and differentiation, immunity and 
others [5,6]. Considering the importance of iron in cell biology, a 
deregulation in its metabolism could damage cells, tissues and organ 
functions. For this reason, sophisticated molecular mechanisms are 
necessary to coordinate and maintain a proper homeostasis among 
iron uptake, utilization, recycling, storage and export [5,7]. Iron 
levels are normally equal to 3-4 gr with a daily loss of 1-2 mg [8] and 
these standard range is guaranteed by several key proteins: hepcidin, 
Ferroportin (FPN-1), ferritin and Transferrin (TF) are the principal 
regulators [9]. Hepcidin is a peptide hormone produced by liver 
and responsible for degradation and inhibition of FPN-1 [10]. FPN-
1is the only known iron exporter located on enterocyte basolateral 
membrane, where it mediates the dietary iron absorption as ferrous 
ion [11]. FPN-1 also limits the iron recycling from hepatocytes and 
macrophages, that are the cells principally involved in intracellular 
iron storage as ferritin [12,13]. TF is instead responsible for binding 
serum iron and delivering it to target cells expressing Transferrin 
Receptor 1 (TFR-1) that is triggered for the internalization of iron/
transferrin/TFR-1 complex [14]. In human beings systemic iron 
levels are principally controlled by hepcidin- FPN-1 axis [15], even 
though genetics and structure-function evaluations are ongoing 
to better clarify the exact molecular mechanism underlying their 
interaction [16-18]. Hepcidin is certainly the key protein in 
regulating iron levels and it could also serve as inflammatory marker 
[19]. During infection or inflammation its expression increases as 

consequence of pro-inflammatory cytokines production, especially of 
IL-6. Hepcidin binds FPN-1 inhibiting both bowel iron absorption 
and iron mobilization from hepatocytes and macrophages [20]. 
Therefore, during inflammation and infection processes, a protective 
condition known as “hypoferremia” develops to limit the vicious 
circle below inflammatory processes (iron-mediated activation of 
pro-inflammatory macrophages and further production of pro-
inflammatory mediators [3]) and also to counteract the pathogens 
which metabolism depends on iron utilization. Dysregulation in iron 
metabolism is observed also in neurodegeneration [21] and cancer 
[22]. Iron indeed mediates the production of reactive oxygen species 
(ROS) by the Fenton reaction, thus inducing DNA damage, protein 
and lipid modifications, tumor microenvironment alteration and 
other events involved in tumor onset and progression [23-25]. Also in 
non-pathological conditions, the evaluation of ferritin and hepcidin 
levels could be useful indicator of circulating iron concentration. For 
example, during pregnancy hepcidin increases in the first trimester, 
while in the second and third ones it decreases principally to facilitate 
the absorption of dietary iron [26]. Biological systems normally work 
to avoid or compensate both excess and deficiency of iron. The excess 
is principally genetic (hereditary hemochromatosis, HH), but it could 
be also related to poor erythropoiesis or to secondary iron overloading 
conditions (i.e. transfusion-dependent thalassemia) [27,28]. Similarly, 
iron deficiency could cause health problems, among them the most 
common is iron deficiency anemia [5, 29, 30], but also cognitive 
complications in children [31-33]. Iron deficiency anemia is a group 
of sideropenic anemias characterized by low level of iron in plasma, 
low iron store, low transferrin saturation and other marks [32]. In 
the last decade, several authors described the involvement of iron 
and all the molecules responsible for its metabolism in pathogenesis 
of many other disorders, also extremely spread and burdensome for 
public health. In particular, this review has the aim to describe the 
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involvement of iron metabolism in the pathogenesis of inflammation, 
osteoporosis and cancer, which represent the most common and 
diffuse health burden in humans (Figure 1).

Iron Metabolism
Iron levels are finely regulated at both systemic and cellular level. 

Both heme and non-heme dietary iron are present in the oxidized state 
(Fe3+). Fe3+ binds to TF forming a complex that recognizes the TFR-
1 on the outer side of cell membrane. This complex is internalized 
in the endosome by endocytosis, and Fe3+ is reduced to Fe2+ by 
iron reductase, such as duodenal cytochrome b reductase (Dcytb), 
and transported into enterocytes by Divalent Metal Transporter 1 
(DMT1) [34-37]. This metabolically active iron can be distributed to 
different cell compartments for different metabolic needs, or stored in 
ferritin, a protein that concentrates iron in an inactive form for later 
use [38]. The excess of iron can be exported out of the cell through 
a conserved multitransmembrane protein, FPN-1, the only known 
cellular iron efflux pomp which cooperates with ceruloplasmin or 
hephaestin to maintain cellular iron homeostasis [39]. At cellular level 
iron homeostasis is achieved by iron-regulatory proteins (IRP1 and 
IRP2). These proteins bind to Iron Responsive Elements (IREs) [40] 
and regulate the expression of proteins involved in iron import (TFR-
1, DMT1), storage (ferritin) and export (FPN-1) [41]. In a condition 
of iron deficiency, IRPs bind to 5′ IREs present in both ferritin and 
FPN-1 mRNAs to repress their translation, and to 3′ IREs in TFR-1 
mRNA to prevent its degradation. Excess cytosolic iron destabilizes 
IRP1 and IRP2, preventing them from binding to IREs, resulting in 
increased synthesis of ferritin and FPN-1 and enhanced degradation 
of TFR-1 mRNA. At systemic level iron homeostasis is maintained by 
hepcidin, a circulating hormone that regulates iron levels inducing 
FPN-1 degradation [42].

Iron and Inflammation
It is widely known and well documented in literature that iron 

and inflammation are strongly related. When inflammation arises 
plasma iron concentrations decrease [43]. This response is called 
“hypoferremia of inflammation” and is driven by hepcidin that 
downregulates FPN-1 leading to an iron decrease into extracellular 
fluid from all its sources. In this way, iron is retained in macrophages 
of the liver and the spleen, and its absorption is decreased [44]. In 
accord, the hypoferremia of inflammation is absent in hepcidin 
knockout mice. The inflammatory increase in hepcidin levels is 
caused by increased concentrations of IL-6 (interleukin-6), that 
induces the transcription of the hepcidin gene through the JAK2/
STAT3 pathway [45].

During inflammation, ferritin not only reflects iron status but also 
acts as an acute phase reactant. It is plausible that high ferritin levels 
in diseases with high-grade inflammation could serve as regulatory 
mechanism to limit inflammation [46]. Evidences suggest that ferritin 
is able to reduce inflammation and to restore immunological response 
by binding to its receptor. Ferritin modulates the immune response 
by suppressing lymphocyte maturation, reducing the iron availability 
to lymphogenesis [47]. Moreover, ferritin downregulates the immune 
response due to activation of regulatory T-cells and synthesis of the 
antinflammatory IL-10. While many studies support this hypothesis, 
other data suggest a direct causal role of ferritin in mediating 
inflammatory responses in several rheumatologic, immunologic, 
malignant and infectious disorders. In these diseases ferritin could 
act as a local cytokine responsible for activation of inducible NO 
synthase and for the increased synthesis of IL-1β [46,48]. Ruddel et 
al. investigated the role of ferritin in chronic liver injury and cirrhosis 
demonstrating that ferritin acts as a local cytokine inducing pro-
inflammatory mediators activation [49]. Therefore, in addition to 
its homeostatic role, ferritin could be used as a biomarker of disease 
progress and prognosis as well as a target for therapeutic intervention.

Iron plays also a direct role in immune response by regulating 
macrophage function. In chronic inflammation and autoimmune 

Figure 1: Iron metabolism alteration. Both systemic and cellular alteration in iron metabolism could be related to cancer development and onset of inflammatory 
diseases, including osteoporosis. TF: Transferrin; TFR-1: Transferrin Receptor 1; ROS: Reactive Oxygen Species; FPN-1: Ferroportin 1; IL-6: Interleukin-6.
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diseases, macrophage iron retention seems to have an important 
pathogenetic role [50-52]. The intracellular iron of macrophages can 
modify their inflammatory response. Iron turnover is different in M1 
and M2 cells. Due to a low expression of FPN-1 and Haemoxygenase 
1 (HO-1), M1 macrophages are rich in ferritin and prone to iron 
accumulation, whereas M2 are able to metabolize and export iron, 
resulting in lower intracellular iron concentrations [53]. Macrophage 
iron levels can alter their polarization [54]. Low intracellular iron 
levels inhibit the expression of pro inflammatory cytokines, whereas 
increased levels induce a pro-inflammatory response [55-57]. Indeed, 
in chronic inflammation iron is mostly acquired by macrophages 
through erythrophagocytosis and the DMT1. Inflammatory stimuli 
lead macrophage iron retention also by down-regulating the 
expression of FPN-1 thus blocking the release of iron from these cells.

Moreover, inflammatory cytokines induce an increase of 
circulating hepcidin that consequently causes internalization and 
degradation of FPN-1 [58].

Accordingly, Zhang et al. showed that iron retention in 
macrophages lacking FPN-1 stimulates the expression of pro-
inflammatory cytokines and the innate immune response in vivo [59].

Therefore, in chronic inflammation and autoimmune diseases, 
macrophage iron retention seems to have an important pathogenetic 
role. Macrophage polarization profile resulting from prolonged 
exposure to iron in tissue microenvironment, correlates with a pro-
inflammatory (M1-like) phenotype that is associated with tissue 
damage in several inflammatory diseases [60-62]. It has been reported 
that iron overloading in macrophages occurs in human chronic 
venous leg ulcers causing a polarization toward a pro-inflammatory 
M1-like phenotype. Moreover, increased intracellular iron polarizes 
the macrophages toward a pro-inflammatory state in the injured 
spinal cord [60] and in chronic active multiple sclerosis. Also in a 
mouse model of sickle disease, macrophage iron accumulation 
induces a proinflammatory phenoytpe in hepatic macrophages [62].

Also in ITP, it has been observed a prevalence of M1 macrophages, 
responsible for an increased release of pro-inflammatory cytokines 
[63,64]. Accordingly, the switch from the M1 pro-inflammatory 
phenotype to the M2 anti-inflammatory type in ITP pediatric 
patients is correlated to a reduction of the inflammatory state and to 
a restoration of the immune system function [65]. In accordance with 
these findings, Pereira et al. demonstrated that acute iron deprivation 
in human macrophages causes anti-inflammatory responses. In 
detail, they demonstrated that Lipopolysaccharide (LPS) polarization 
of iron-deprived human macrophages induces a reduction of the pro-
inflammatory cytokines Interleukin-1β (IL-1β) and tumor necrosis 
factor (TNF-α) suggesting that iron chelation could prevent LPS 
polarization [66].

Recently, it has been investigated the effect of tissue iron overload 
on atherosclerosis. Cornelissen et al. suggested that hepcidin could 
play different roles in atherogenesis depending about the stage of 
atherosclerosis. In early- to mid-stage plaques, inhibition of hepcidin 
may have beneficial effects containing the effects of pro-inflammatory 
macrophages, while in late stage lesions the reduced macrophage 
iron could induce plaque progression increasing angiogenesis, 
permeability, and inflammatory cells recruitment [67].

A dysregulated iron metabolism occurs also in chronic 
inflammatory conditions such as Inflammatory Bowel Disease (IBD), 
and leads to abnormal intracellular sequestration of iron and a 
decrease in circulating iron concentrations. The increased hepcidin 
levels leads to FPN-1 degradation decreasing iron concentrations 
with a consequent reduction in reactive oxygen species production 
and tissue damage [68]. However, persistent hypoferremia inevitably 
compromises erythropoiesis inducing a disorder known as the 
anemia of inflammation (AI) [69].

Iron deficiency also induces the production of FGF23, a bone-
secreted hormone that acts as a central regulator of phosphate and 
vitamin D homeostasis, and bone mineralization [70]. A direct effect of 
iron deficiency on FGF23 production was demonstrated by the ability 
of iron chelators to stimulate FGF23 production in isolated bone cell 
cultures [71,72]. The mechanisms for inflammatory-mediated FGF23 
induction are still not clear, even though some studies suggest a role 
for Hypoxia-Inducible Factor-1α (HIF-1α), NF-κB and IL-6 [73,74]. 
These findings are important in the setting of chronic inflammatory 
diseases which are characterized by elevated FGF23 levels.

Certainly, a better understanding of the role of iron in inflammatory 
conditions, macrophage polarization and autoimmunity could be 
useful to the development of innovative therapeutic strategies.

Iron Chelation as Therapeutic Strategy in 
Inflammation

Considering the importance of iron in both physiological and 
pathological events, targeting its molecular signaling pathways could 
represent a promising therapeutic strategy to improve the outcome of 
many others diseases. In particular, the chelation of iron by means of 
natural and synthetic compounds could influence the oxidative status, 
contrasting acute and chronic inflammatory processes. Among the 
natural products, one of the most known is the microbial chelator 
Desferal (or Deferoxamine, DFO), a siderophore normally produced 
by Streptomyces spp. to obtain from host the iron necessary for 
growth [75]. In literature, the evidences about its effectiveness as anti-
inflammatory agent are in contrast. Indeed, while it has been seen to 
reduce LPS-induced inflammation in mice, on the other hand DFO 
also promotes the infection of Yersinia enterocolitica or Candida 
albicans, maybe because of its own microbial origin [76,77]. Other 
important natural iron chelators with anti-inflammatory functions 
are the curcuminoids and African walnut extracts which are both able 
to reduce the toxic effects of iron overload in thalassemic mice [78]. 
The actual utility of these compounds in contrasting inflammation 
must to be better clarified. As regards the synthetic compounds, 
Kalinowski and Richardson already in 2007 described the effectiveness 
of Deferiprone (DFP) as bacteriostatic agent, since its capability to 
contrast iron overload and thus also inflammation and infection [79]. 
Another available synthetic iron chelator is DIBI that differently from 
DFO and DFP, the two well-known hematological chelators described 
above, was designed just as anti-inflammatory agent [80]. Indeed, it 
is more effective in its therapeutic activity, because it not only binds 
iron, but it provides compartmentalized sinks for iron thus reducing 
its availability in inflammatory reactions [76,81]. Although it is 
evident the potential benefit in using iron chelators in inflammatory 
conditions, there are still many doubts principally due to the medical 
assumption that stored iron is safe. In this point of view, to treat an 
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inflammatory state by the induction of a second disorder, namely the 
deprivation of “safe iron”, could be controversial [82].

Iron Metabolism and Osteoporosis
Iron homeostasis strongly affects bone metabolism [83]. Several 

diseases such as hemochromatosis, hemosiderosis, ß-thalassemia, 
sickle cell disease and liver diseases characterized by iron overload 
are frequently accompanied by Osteoporosis (OP) [84,85]. Evidences 
suggest that both iron deficiency and iron overload negatively affect 
bone, acting directly on bone cells. Iron deficiency seems to reduce 
Bone Mineral Density (BMD) causing a severe alteration of bone 
structure. Iron overload directly promotes bone resorption and 
inhibits bone formation inducing osteopenia and OP [86]. Excess 
iron increases osteoclastogenesis and bone resorption [87] while leads 
to a significant reduction in osteoblast differentiation as revealed 
by decreased mineralization and expression of osteogenic genes 
[88]. Bone loss caused by iron accumulation is also associated with 
the apoptosis of Bone Marrow Mesenchymal Stem Cells (BMSCs) 
capable of differentiating into osteoblasts [89].

Therefore, the reduction of iron levels is suggested to be a potential 
therapeutic approach for OP treatment. The iron chelators are the 
commonly used drugs to treat iron-overload diseases by promoting 
iron excretion and reducing accumulated iron in tissues [90]. Three 
iron chelators have been approved for clinical use: DFO, DFP and 
Deferasirox (DFX). DFO is the first approved iron chelator and is 
used by subcutaneous or intravenous injection. DFP and DFX are 
oral iron chelators. All these iron chelators are shown to be effective 
in chelating iron from the heart and liver [91]. Several in vitro and 
in vivo studies demonstrated how iron overload alters bone balance. 
Iron overload-induced OP in zebrafish can be obtained by adding 
Ferric Ammonium Citrate (FAC) in the fish water. FAC causes 
osteogenic inhibition, as revealed by a decrease in bone calcification 
and cartilage development in both larval and adult fish [90,92]. Iron 
accumulation in bone is associated with bone loss in ovariectomized 
rats, and iron chelation partially prevents bone loss [93].

Iron overload is a risk factor for progressive bone loss in healthy 
postmenopausal women and middle-aged men [94]. In 2014, Rossi et 
al demonstrated that iron overload causes overactivity of Osteoclasts 
(OCs) in β Thalassemia Major (TM) patients inducing activation of 
the Transient Receptor Potential Vanilloid Type 1 (TRPV1) channels 
suggesting that a chelation therapy could have a role in alleviating 
TM-associated OP [95]. In accordance, a few years later, they tested 
Eltrombopag (ELT), an agonist at Thrombopoietin receptor with 
emerging chelating properties, in combination with DFX in iron 
overloaded OCs from thalassemic patients demonstrating, for the 
first time, that ELT is able to reduce bone mass loss [28].

Recent studies suggested that hepcidin, the major regulator of iron 
metabolism, is involved in OP [96-98]. Hepcidin knockout mice had 
a higher serum ferritin level and higher iron in the liver than controls 
and showed low bone mass and changes in bone microarchitecture 
[99]. Liu et al. compared serum hepcidin levels in 40 patients with 
OP and 40 healthy controls demonstrating lower serum hepcidin 
levels and higher iron levels in patients with OP and that the serum 
hepcidin level was negatively related to the serum iron level [100]. 
In contrast, Sato et al. demonstrated that the serum hepcidin level 

was positively related to serum iron and ferritin levels, and serum 
iron levels were positively related to BMD [99]. These studies suggest 
hepcidin as a possible useful therapeutic target in OP.

Iron Metabolism and Cancer
Iron metabolism dysregulation, in particular the accumulation 

of iron into cells, is responsible for the onset of cancer [3,24,25,101-
103], contributing to tumorigenesis, tumor progression, metastasis 
and tumor microenvironment (TME) alteration [3,25,103]. High 
intracellular iron concentration is closely related to tumor; indeed, 
cancer cells are more dependent on iron for their growth and 
proliferation than healthy cells [102,104,105]. 

Proteins involved in regulation of iron metabolism show an 
alteration of their expression and activity in cancer cells [24], for 
example, TFR-1 is present at very high levels in several solid tumors 
[102, 106-108] and in leukemia [105]. This overexpression results in 
an increase in intracellular iron concentration and consequently in 
ROS production contributing not only to tumor growth and survival 
in the early stages of cancer, but also to metastasis development in the 
late stages [102,105-107,109]. It has been reported that also STEAP 
(human 6-transmembrane epithelial antigen of prostate) proteins 
show an increased expression in breast, prostate, pancreatic cancers 
and in acute leukemia, promoting tumor progression and invasion 
capacity [24,102,105]. Another important protein involved in an 
increased iron storage in cancer cells is ferritin; its over-expression 
is detected in different tumors, such as glioblastoma multiforme, 
breast, prostate and pancreatic cancers [108,110,111]. Also patients 
with Acute Myeloid Leukemia (AML) show an increase in ferritin 
levels which contribute to leukemia cells proliferation and drug 
resistance [47,105,112]. However, FPN-1 and hepcidin are the major 
constituents of iron regulatory pathways primarily involved in cancer 
development and metastasis [108]. FPN-1 is downregulated in patients 
with breast, prostate and hepatocellular cancers, thus contributing to 
its accumulation into cells and consequently to increase tumor growth 
[103,108,110]. In particular, Pinnix et al. demonstrated that human 
breast cancer tissue expressed low levels of FPN-1 compared to the 
human breast normal tissue and that this reduction of FPN-1 was 
associated to a poor prognosis [113]. Transfection of breast cancer 
cells with FPN-1 reduced their growth and proliferation, suggesting 
that FPN-1 could be a predictor of prognosis in breast cancer [113]. 
The reduction of FPN-1 levels has been observed also in AML cell 
lines [105,114], but it is associated with good prognosis, maybe due 
to an increased sensitivity to chemotherapy [105,115]. Also hepcidin 
expression is altered in several tumors [108]. It is known that hepcidin 
levels increase both during inflammation [116-118] and in cancer 
patients [108], maybe due to the inflammatory state of cancer tissue 
[119]. In particular, hepcidin is present at very high levels in breast 
cancer, prostate cancer and multiple myeloma [120-122]. It exhibits 
pro-oncogenic property by inducing internalization and degradation 
of FPN-1 with a consequent increase of iron concentration [108]. 
Also in acute leukemia it is reported an increase of hepcidin levels, 
which causes iron accumulation in cells thus contributing to tumor 
progression and growth [105]. Moreover, in addition to the increased 
levels of systemic hepcidin, also cancer cells themselves produce high 
levels of hepcidin which acts locally inducing FPN-1 degradation 
[105,113,123]. High levels of hepcidin is related to poor prognosis 
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and metastatic progression [113,124]. 

In conclusion, dysregulation of iron metabolism is closely related 
to cancer development and progression [3]. Iron accumulation into 
cells determines ROS production which causes DNA damage and 
cellular transformation within tumor cells [102,125]. Targeting iron 
with iron chelator could be useful to contain tumor progression [2,6]. 
Several studies demonstrated that iron chelation inhibits proliferation 
and induces apoptosis in both hematological and solid tumors 
[24,105,126-129], representing a novel and effective therapeutic 
anticancer strategy.

Iron Metabolism and Tumor 
Microenvironment

Iron metabolism is altered not only in cancer cells, but also in 
cells of Tumor Microenvironment (TME) [103,130]. TME refers to 
the cellular and extracellular environment surrounding the tumor 
[131]. It includes blood vessels, signaling molecules and cytokines, 
extracellular matrix, other non-malignant cells such as lymphocytes 
and Tumor-Associated Macrophages (TAMs) [25,131,132]. TAMs 
could be present in two different activation states: the classically 
activated macrophages (M1) and the alternatively activated 
Macrophages (M2) [132]. Considering that macrophages are 
immune cells characterized by an elevated plasticity, it is reported 
that different states of macrophages activation are contemporary 
present and that macrophages adopt a specific phenotype in response 
to different microenvironment stimuli [25,133]. M1 macrophages 
are characterized by an elevated iron content which is responsible 
for inducing inflammation and inhibiting pathogen growth. They 
show anti-microbial, pro-inflammatory and anti-tumor properties, 
by releasing high levels of pro-inflammatory cytokines, such as 
IL-6, TNF-α, IL-1β and Nitric Oxide Synthase (iNOS) [65,132]. 
In contrast, M2 macrophages release high quantity of iron, thus 
contributing to cell proliferation. They have both anti-inflammatory 
and immunosuppressive functions, by releasing anti-inflammatory 
cytokines, such as IL-10 and Transforming Growth Factor-β (TGF-β), 
and also pro-angiogenic and pro-fibrotic properties, contributing 
to tumor progression [65,132]. Therefore, while pro-inflammatory 
M1 macrophages are responsible for iron uptake and storage with 
a consequent iron retention; anti-inflammatory M2 phenotype is 
involved in iron release in the extracellular space [103,132]. Recalcati et 
al. demonstrated that M2 macrophages are characterized by increased 
levels of FPN-1 and reduced levels of ferritin [134], determining iron 
release into the surrounding microenvironment. This macrophage 
phenotype determines tumor progression and growth by releasing 
high levels of iron, which could affect the metabolism of cancer cells 
[103,130,135].

Iron Metabolism Involvement in Cancer 
Metastasis and Angiogenesis

Intracellular iron accumulation results in an increased ROS 
production which are responsible for local microenvironment 
acidification thus contributing to cell neo-vascularization, invasion 
and migration [102,103,136]. In literature it is reported that iron 
overload induces a reduction in Vascular Endothelial Growth Factor 
(VEGF) expression, inhibiting cell proliferation and invasion, while 
its reduction determines an increase in VEGF expression, through 

stabilization of HIF-1 [24]. In contrast, several authors also reported 
that HO-1, degrading heme into biliverdin, carbon monoxide and 
iron, contributes to iron accumulation [24], thus promoting VEGF 
expression with consequent metastasis and angiogenesis [102]. 
In accordance, HO-1 overactivation in breast cancer induces an 
accumulation of iron causing cells migration and invasion [136,137]. 
In prostate and in lung cancers an increase in intracellular iron levels 
contributes to cell migration and metastatic spread by hepcidin-
induced FPN-1 degradation and iron overload with ferrous sulfate, 
respectively [138,139]. Iron is also able to activate metalloproteases, 
thus contributing to cancer cells invasion and migration [102]. In 
particular, it has been demonstrated that iron overload promotes 
matrix metallopeptidase 9 (MMP-9) activation in head and neck 
squamous carcinoma, through MAPK and AKT pathways activation, 
thus contributing to cancer cell invasion and metastasis [140].

Iron Metabolism and Cell Cycle
Iron has also a key role in regulation of cell cycle. In G1 phase 

cells have an increase request of iron for DNA synthesis [24,25]. In 
particular, the ribonucleotide reductase, whose activity is closely 
dependent from iron, plays an important role in DNA synthesis and 
is responsible for cell viability [24]. Several studies are based on the 
use of iron chelators as anti-cancer drug to inhibit the activity of this 
enzyme [24,141]. Also many DNA polymerases are dependent on 
iron for their activity; they contain an iron–sulphur cluster which are 
necessary to DNA synthesis [24,142].

Finally, iron modulates the activity of proteins involved in cell 
cycle progression, cyclins and cyclins-dependent kinases [24,25,143]. 
It has been demonstrated that iron chelation could determine a 
cell cycle arrest in G1/S phase reducing cyclins expression, thus 
contributing to block cell cycle progression [24,25,144].

Iron Metabolism and Hypoxia 
Hypoxia is a condition of decreased oxygen availability, 

responsible for tumor progression and therapy resistance [145,146]. 
HIFs are alpha/beta heterodimeric transcription factors with a key 
role in hypoxia responses both in normal and cancer cells [146,147]. 
In condition of normoxia, HIFs activity is finely regulated by the 
Prolyl-Hydroxylase Domain enzymes (PHDs) which mediate their 
degradation [147]. During hypoxia, PHDs are inhibited and the α 
subunits can form heterodimers with β subunits which migrate into 
nucleus and activate transcription of several genes involved in cellular 
stress, angiogenesis, apoptosis [147].

It is reported that HIFs activity is increased in several tumors and 
its overexpression is related to iron accumulation and consequent 
cancer cell proliferation [24]. There is a crosstalk between oxygen 
and iron metabolisms mainly mediated by HIFs [147]. In particular, 
HIF1 promotes TFR-1 expression inducing an increase of iron 
uptake [24,147]; it also causes HO-1 activation, thus contributing to 
iron accumulation in cells [24,147]. Finally, it is responsible for iron 
oxidation by ceruloplasmin, promoting transferrin-mediated iron 
sequestration and, consequently, its internalization [24,147]. Also, 
HIF2 is involved in regulation of iron metabolism: it determines 
an increase of iron accumulation in enterocytes, by activating the 
transcription of DMT1, FPN-1 and duodenal cytochrome [24,147]. 
Xue et al. have demonstrated that in colon cancer HIF2 promotes 
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DMT1 overexpression with a consequent increase of intracellular 
iron concentration, thus inducing cancer progression [148].

Iron Metabolism as Therapeutic Target in 
Cancer

Iron deprivation has indisputable beneficial effects in contrasting 
tumor growth and progression. Cancer cells need more iron than 
healthy cells, because of their high rate in DNA synthesis for example 
[149]. For this reason, they show higher levels of TFR-1 and lower 
levels of iron exporters [113]. Therefore, neoplastic cells are more 
sensitive to iron deprivation than normal cells and consequently 
may be susceptible to treatment with iron chelators [150]. DFO was 
the first iron chelator taken forward as anticancer drug for clinical 
trials already in 1995. It was used in a Phase II trial on neuroblastoma 
patients observing a reduction in bone marrow infiltration and in 
tumor mass [151]. Although its efficacy, the use of DFO as anticancer 
drug presents several limitations: great variability in response, poor 
lipophilicity, rapid clearance and also the necessity of continuous 
infusions [152]. Amano et al. showed that the iron chelator DFX 
exerts its antineoplastic property in gastric cancer [153] and also 
in pancreatic cancer by inhibiting cell invasion capacity [154]. 
In contrast, a recent study demonstrated that both iron chelators 
ELT and DFX do not exert anti-cancer activity in osteosarcoma 
[101]. Moreover, it has been proposed the use of iron chelators as 
anti-cancer drugs also in leukemia [105,155] by inhibiting cell 
proliferation and inducing apoptosis [105,127,156]. Also the iron 
chelator Dp44mt suppresses proliferation of several cancer cells, such 
as pancreatic cancer cells and glioma [157,158]. The anticancer role of 
thiosemicarbazone chelators also emerged and was mostly attributed 
to their capability to inhibit ribonucleotide reductase [159]. This 
kind of compounds had more experimental success in blood cancers 
than in solid ones [160]. Nowadays many innovative kinds of iron 
chelators are being taken into account as potential cancer therapy, 
such VLX600 that shows limited side effects and is capable to target 
both senescent and proliferative cells [161]. Then there are also several 
natural compounds for which anticancer effect have been recognized: 
silibinin, quercetin and epigallocatechin gallate suggested as chemo-
preventative agents [162-164], but not without any limitation such the 
bioavailability. The combination of iron chelators with chemotherapy 
is well documented in literature. For example, DFX, in combination 
with doxorubicin, cisplatin, and carboplatin is able to suppress cell 
growth and to induce apoptosis in breast cancer and other cancer 
types [165,166], as well as the combination with gemcitabine blocks 
pancreatic cancer cell proliferation [128].

Certainly, the research in this field is still open and to explore 
the underlying mechanisms of action behind iron chelation in cancer 
could represent a great contribute in the clinical practice.

Conclusions
A well-balanced iron metabolism has a key role in maintaining 

the integrity of biological systems and functions, considering that iron 
is essential in sustaining molecular processes such DNA synthesis 
and repair, cellular metabolism and signaling, neurotransmission 
and also cell proliferation, growth and differentiation. The molecules 
principally involved in modulating the balance among iron uptake, 
utilization, recycling, storage and export are hepcidin, ferroportin, 
ferritin and transferrin. Even though their interactions must to be 

better characterized, it is known that they are finely regulated and that 
any alteration could contribute to onset and progression of cognitive 
complications, iron deficiency anemia, inflammation, osteoporosis, 
infection and cancer. During inflammation iron availability 
decreases as defense mechanism aimed to avoid the inflammatory 
processes normally powered by iron. This ion is indeed responsible 
for activation of pro-inflammatory macrophages as well as for 
the production of ROS that exacerbate the cell damage. Moreover, 
iron overload directly promotes bone resorption and inhibits bone 
formation inducing osteoporosis. In the same way, the intracellular 
iron accumulation could cause neoplastic cell transformation and 
also the malignant alteration of tumor microenvironment. All these 
evidences encourage to target iron and molecules involved in its 
metabolism to counteract inflammation, osteoporosis and cancer 
progression.
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