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Abstract

Multiple Myeloma (MM) is a plasma cell malignancy that arises from 
a preneoplastic condition known as monoclonal gammopathy of uncertain 
significance. Prognostic stratification relies on standardized staging system 
and the identification of specific chromosomal aberrations. The introduction of 
Gene Expression Profile (GEP) has provided new tools for outcome prediction. 
The recent discoveries on the role of micro RNAs in the pathogenesis of MM 
prompted the question whether they can be used to predict outcome and 
personalize therapy. In this work, we overview the current issues on the definition 
of clinical outcome in MM by miRNA profiling, and we discuss their potential role 
as anti-cancer therapeutics. Finally, we describe the integrative analysis that, by 
the means of conjugating the predictive power of GEP and miRNA profiles, will 
likely become the most relevant tool to warrant tailored therapy to MM patients 
in the next future.

Keywords: miRNAs; Non coding RNAs; Circulating miRNAs; Myeloma 
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Introduction 
Current issues on diagnosis, prognostication and 
personalization of therapy in multiple myeloma

Multiple Myeloma (MM) accounts for about 10% of all 
hematological malignancies and is the natural evolution of a pre-
neoplastic condition, known as Monoclonal Gammopathy of 
Uncertain Significance (MGUS). MGUS progresses to overt MM at 
a rate of 1% per year [1]. Symptomatic MM diagnosis relies on the 
presence of clonal Plasma Cells (PCs) >=10% of total nucleated bone 
marrow cells and end-organ damage signs including hypercalcemia, 
renal insufficiency, anaemia and bone lesions [2]. MM is associated 
with a heterogeneous pattern of chromosomal abnormalities that 
can be distinguished as complex Hyperdiploid (HD) kariotypes, 
that account for nearly 50% of cases or Non-Hyperdiploid (NHD) 
kariotypes [3]. HD abnormalities include typical translocations such 
as t(4;14), t(14;16), deletions of 13q, 17p and 1p and 1q chromosomal 
gains [4]. At the time of diagnosis, current recommendation for 
risk stratification includes International Staging System (ISS) 
definition, conventional karyotyping to identify trisomies, t(4;14) 
and chromosomes 13q /17p deletions, while FISH analysis should be 
performed for t(11;14), t(4;14), t(14;16), t(6;14), t(14;20), 17p del and 
1q gains [2,5]. Although additional risk factors have been considered 
such as LDH levels, IgA isotype, and plasmablastic histology a general 
consensus on risk stratification is attributed to ISS and cytogenetics/
FISH. The m-SMART risk stratification developed at Mayo Clinic 
[6] integrates karyotype/FISH data to separate high [17p del; 
t(14;16);t(14;20)], intermediate [t(4;14); 1q gains; complex karyotype; 
13q del or hypodiploidy] and standard risk patients [trisomies; 
t(11;14); t(6;14)]. As for ISS stage, high risk disease is usually observed 
for stages II and III.
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These methods are widely used and routinely available for 
clinicians, but they cannot embrace the wide range of MM genetic 
abnormalities. Furthermore, novel biological agents, such as 
Immunomodulators (ImiDs) or Proteasome Inhibitors (PIs) require 
a deeper molecular analysis of MM-related genomic aberrations to 
provide better prognostication and prediction tools. In this light, 
Shaughnessy et al. [7] have analyzed the Gene Expression Profile 
(GEP) of 532 MM patients enrolled in 2 different trials. Long-term 
follow-up data were available from these studies, thus improving 
the quality of GEP analysis. Investigators used the log-rank test of 
expression quartiles to define a 70 gene-signature (GEP-70) that 
allowed identifying a patient population at high-risk of relapse and 
reduced Overall Survival (OS). Multivariate analysis that included 
poor prognosis translocations and ISS showed that GEP-70 was an 
independent predictor of clinical outcome. Interestingly, the GEP-
70 was able to better distinguish true low-risk patients, who have 
erroneously considered at high risk. Following clinical studies further 
validated GEP-70 in other MM cohorts [8,9]. GEP-70 has also shown 
power to predict outcome in MM patients treated with PIs or ImiDs 
[10-12]. However, these earlier investigations could not identify a 
clear cut distinction between MGUS and MM patients by GEP-70. A 
recent work prospectively evaluated MGUS patients from a large US 
cooperative trial and found that GEP-70 signature was an independent 
predictor of progression to symptomatic MM. A risk model based on 
GEP-70, serum free light chain levels and monoclonal component 
spike identified a group of patients at high-risk of progression to MM 
[13]. These findings support the use of GEP for risk stratification and 
prediction of clinical outcome for MM. A relevant concern is related 
to the difficulty to extend this method to common routine clinical 
practice. Indeed, current use of GEP is confined to clinical trials, even 
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if a risk score model such as m-SMART adopts GEP to define the 
high-risk group [6].

Emerging data on non-coding RNAs in diagnostic/prediction 
phases and as potential therapeutic tools in MM increases the 
complexity of management of this disease. In the next sections, we 
provide an overview of the state-of-art of microRNAs (miRNAs) 
in MM, including their pathogenetic and clinical role. We propose 
the rationale and describe the methods for an integrated genomic 
approach in MM. We believe that this approach would better answer 
to the critical and debated issues of prognosis and best affordable 
tailored therapy for MM patients.

The role of miRNAs in the pathogenesis of MM
miRNAs are endogenous short non coding RNAs (~22 nt) that 

control gene expression at the post-transcriptional level by targeting 
the 3’-UTR complementary sequence of mRNAs leading to inhibition 
of protein translation. miRNA sequences represent approximately 1% 
of the genome of different species. Mature miRNAs arise from a two 
step process, where the primary 70-100 nt miRNAs (pri-miRNAs), 
transcribed from genes located within extra or intragenomic regions, 
are detected and cleaved in the nucleus by the ribonuclease DROSHA. 
The resulting pre-miRNA precursors undergo a second cleavage in 
the cytoplasm by the RNA Pol III DICER into 18-24 nucleotide-
long miRNA duplexes. Only one of the 2 strands (guide strand) is 
driven by the miRNA-containing RNA-Induced Silencing Complex 
(miRISC) to the 3’-UTR mRNA target sequence. The other strand, 
indicated as miRNA*, is degraded. The guide strand-mRNA binding 
inhibits the translation or promotes the decay of the targeted mRNA. 
Based on this mechanism, a single miRNA can control different target 
genes [14-18]. miRNA expression pattern is deeply deregulated in 
MM. Several studies have analyzed the global miRNA expression in 
malignant PCs (MM cell lines and/or primary PCs) compared with 
MGUS and healthy subjects [19-22]. These data indicate that MM 
PCs-derived miRNAs are preferentially up regulated rather than down 
regulated. Furthermore, higher total miRNA expression significantly 
correlated with the expression of genes involved in cancer initiation 
and progression [22]. miRNA expression seems to be related also 
to genomic aberrations. Indeed, Lionetti et al. [21] distinguished 48 
MM and 6 PC leukemia patients based on Translocation/Cyclin (TC) 
classification. Twenty-six miRNAs were selected as differentially 
expressed across the 5 TC groups, demonstrating that defined 
chromosomal abnormalities may be associated with specific miRNA 
deregulation rather than only gene expression. 

The pattern of dysregulated miRNAs strongly contributes to 
MM development and progression. The emerging picture from these 
studies shows that up regulated miRNAs support cancer growth and 
progression (onco-miRNAs), while down regulated ones should 
work as classical tumor suppressors (TS-miRNAs). This hypothesis 
represents the base to use miRNAs as prognostic/predictive and 
therapeutic tools. The next section will explore the most recent 
studies that focus on these topics.

miRNAs as prognostic tools: the promises and challenges 
of circulating miRNAs 

Cancer biomarkers are valuable tools in the diagnostic, therapeutic 
and follow-up phases of the disease. A biomarker can be used alone 
or in combination to predict the patients prognosis. To accomplish 

these goals, the biomarker has to be highly sensitive, specific, while 
its source must be easily accessed without harming the patient. For 
these reasons, serum markers have been often preferred for cancer 
patients. Starting from early findings showing miRNA deregulation 
as a hallmark of cancer [23,24], investigators evaluated whether 
miRNAs could turn to be potential biomarkers. In 2008, different 
groups separately identified the presence of circulating miRNAs in 
sera/plasma of cancer patients [25,26,27]. These studies showed that 
circulating miRNAs are stable molecules that cannot be degraded 
by RNAses. This is relevant as RNAses are highly abundant in the 
plasma [28]. The intrinsic resistance to degradation of serum/plasma 
miRNAs is due to the fact that these molecules circulate into body 
fluids through lipid based carriers and lipid free proteins [29,30], such 
as exosomes, HDL, LDL and AGO2 proteins. Selection of circulating 
miRNA carriers allows to discriminate true cell free miRNAs from 
blood cells derived ones. For instance, exosomes can be separated 
from whole blood by ultracentrifugation and antibody targeting 
[31], while protein carried-miRNAs are isolated by antibody-based 
precipitation of the chaperon protein. Therefore, cell free miRNAs 
are the most suitable candidate as cancer biomarkers [30]. In the great 
variety of tumors, serum/plasma miRNAs cannot be easily compared 
to cancer-derived miRNAs isolated from single patients. However, 
MM represents an important exception as malignant PCs can be 
collected from bone marrow and miRNA content can be evaluated. 
Interestingly, several studies have shown that miRNA profiles in the 
circulation and within malignant PCs are not overlapping [32,33]. 
These data suggest that serum/plasma miRNA deregulation is 
promoted by MM, but the resulting miRNA pattern is not exclusively 
due to the release of PCs-derived miRNAs into the body fluids. 
Circulating miRNAs can discriminate MM/MGUS and healthy 
donors as their profile are quite divergent [33]. However, there is no 
clear-cut separation between MM and MGUS samples, indicating 
that circulating miRNA profile of the premalignant condition MGUS 
will be associated also to MM progression [33]. When considering 
the specific circulating miRNA profile isolated from MM/MGUS 
patients, the studies appear to disclose divergent scenarios. This 
is likely due to different methods followed to attain the patient 
miRNome. Jones et al. [32] distinguished 4 preliminary groups to be 
analysed: healthy donors, non MGUS/non MM patients, MM with 
low and high paraprotein levels (<10 g/L or > 20 g/L, respectively). 
miRNAs were directly extracted from sera and a microarray analysis 
was performed to evaluate the miRNA profile in these groups. Only 9 
miRNAs were chosen as consistently represented in all groups. These 
miRNAs underwent further validation through quantitative RT-PCR. 
Six out of 9 miRNAs were confirmed by RT-PCR. From this pool, 
investigators chose miR-720, miR-1246 and miR-1308 for further 
evaluation as they were expressed at high levels and with significantly 
different pattern between patients and controls. The authors also 
claimed that in a subsequent evaluation, miR-1308 was found to be 
not a miRNA, but a 5’-cleaved fragment of a tRNA, but they anyway 
included it in the analyses. To perform a correct comparison, the 
absolute concentration of each miRNA was determined (i.e. the copy 
number per microliter for each miRNA). This is a relevant point as 
standard normalisers for serum miRNAs are not currently available. 
Indeed, the usual standards for quantitative PCR such as RNU44 are 
not present in the serum [34]. Interestingly, miR-720 and miR-1308 
levels discriminate between MM/MGUS and healthy groups, either 
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alone and in combination. Combination of miR-720 and miR-1246 
is also able to separate MM/MGUS from controls, while miR-1246 
alone does not retain such power. In this study, the tested miRNAs 
did not correlate with paraprotein levels, except for miR-1246 (slight 
significance or negative correlation) [32]. A larger cohort of patients 
was analyzed to identify circulating miRNAs with a prognostic value 
in a subsequent and recently published work [33]. A hundred-three 
newly diagnosed MM and 18 relapsed MM patients were enrolled in 
the study together with 57 MGUS and 30 healthy donors. Circulating 
miRNAs were extracted from serum; for 6 newly diagnosed MM 
patients, miRNAs from exosomal and not exosomal fraction and 
bone marrow PCs were also obtained. A large number of miRNAs 
(667) were screened by Taq Low Density Array on representative 
samples for each condition. Seven miRNAs (miR-222, miR-744, miR-
34a, miR-130a, let-7d and let-7e) were selected according to different 
expression levels between MM/MGUS and control groups and then 
validated by qRT-PCR. The levels of each of these selected miRNAs 
were able to discriminate MM/MGUS patients from controls. As 
mentioned above, none of the selected miRNAs separated MM 
from MGUS patients. The 7 miRNAs correlated with ISS parameters 
and with plasma creatinine. Only let-7e showed a correlation with 
Durie-Salmon staging system. No correlation with percentage of 
PC infiltration was found, while low levels of let-7e were associated 
with a specific chromosomal aberration, the del (13q14). When 
considering the expression of these miRNAs within exosomal and 
non-exosomal fractions, the selected miRNAs were preferentially 
enriched in the exosomal fraction with the exception of miR-34a. The 
exosomal fraction retained lower levels of these miRNAs as compared 
to PCs. No correlation was found between exosomal and PC 
miRNAs, indicating that the release of circulating miRNAs cannot be 
dependent only on miRNA content of malignant PCs. However, the 
most relevant finding of this study is the correlation between selected 
miRNAs and patient outcome. Indeed, reduced levels of miR-744 and 
let7e were associated with worse OS and TTP. The authors underline 
that miR-744 maps within 17p12 region, which is close to TP53 locus 
(17p13), although a clear cut relationship between low miR-744 and 
TP53 deletion could not be proven. Furthermore, low levels of miR-
744 were associated with chromosomal 1q21 amplification or t(4;14) 
[35,36]. Overall, these data strongly support the use of circulating 
miRNAs as biomarkers to predict MM outcome and to discriminate 
healthy from MM/MGUS patients. For these purposes, exosomal 
miRNA fraction seems to be the preferred source of circulating 
miRNAs. On the other hand, circulating miRNAs selected in these 
studies cannot clearly discriminate MGUS from MM patients and do 
not exactly resemble miRNA content in malignant PCs. 

Potentials and limits of miRNAs-based therapy
In 2009, Slack and Duchaine [37], proposed to use miRNAs as 

therapeutic tools for cancer. Their hypothesis was based on the notion 
of miRNA deregulation in human cancers and the possibility to 
identify significantly up- or downregulated miRNAs (onco-miRNAs 
and TS-miRNAs, respectively) within tumor cells as compared 
to normal counterpart. On this basis, miRNA inhibitors could be 
adopted to inhibit upregulated oncomiRNAs or miRNA mimics may 
replace downregulated TS-miRNAs [38]. This simple and logical 
approach has been recently investigated and relevant data have 
been produced since then. Early findings by Pichiorri et al. [19,20] 
showed that deregulated miRNAs of malignant PCs could be targeted 

to restore p53 mediated anti proliferative activity. MiR-15 and -16 
have been described as TS-miRs in CLL [39], and were evaluated in 
MM setting. MiR-15 and -16 replacement was able to inhibit MM 
cell proliferation in vitro [40]. Both miRNAs target VEGF in MM 
cells interfering with neoangiogenesis [41]. Interestingly, loss of 
miR-15 in bone marrow stromal cells derived exosomes favoured the 
proliferation of MM cells [42] and miR-15 and -16 replacements was a 
valuable anti-MM strategy. Along with miRNAs-15 and -16, miR-29b 
seems a suitable candidate for miRNA-based replacement therapy. 
Indeed, miR-29b has shown anti-proliferative and proapoptotic 
activity on MM cells [43,44]. More importantly, miR-29b targets 
epigenetic regulators such as DMTAs that are involved in MM 
development and progression [45]. miR-29b replacement potentiates 
bortezomib activity and interferes with MM cell migration [46]. In 
the context of MM microenvironment, we have demonstrated that 
miR-29b reduces Osteoclastic (OCL) mediated bone resorption by 
targeting c-FOS within OCLs [47]. Potent anti-MM effects were 
observed in the presence of increased levels of miR-34a both in vitro 
and in vivo in a SCID model and in a SCID-synth-hu model, where 
human MM cells proliferate within a bio-polimeric support [48-
52]. Raimondi et al. have also demonstrated that neoangiogenesis 
can be efficiently targeted by miR-based therapies with intriguing 
results both in vitro and in vivo [53]. Along with miRNA replacement 
therapy, our group sought to investigate the efficacy of miRNA 
inhibitory molecules (antagomiR approach). In this light, inhibition 
of miR-21 [54] has shown promising results, as miR-21 support of 
MM cell growth is also dependent on BMSCs. Finally, miR-221/222 
antagonism demonstrated a remarkable anti MM activity especially 
in poor prognostic MM group, carrying the t(4;14) [55,56]. Recently, 
an antagomir approach has also been used to restore p53 activity 
and exert antiproliferative effects on MM cells [57]. These data have 
confirmed that a miRNA-based therapy is feasible and effective in 
MM setting, but they have also raised important issues that represent 
the next future challenge in developing miRNA therapeutics. Indeed, 
the pleiotropic effects of miRNAs due to multiple targeting have 
shown that a real prediction of molecular consequences of miRNA 
replacement or antagonism is difficult to determine. We and others 
have described anti-MM effects, demonstrating the interference with 
relevant intracellular target proteins. Such an approach, although 
methodologically correct, does not allow to unveil the complex 
connections established by miRNA modulation within the tumor 
cells. This point is crucial as Molecularly Targeted Drugs (MTDs) 
have shown important limitations and in most cases did not meet 
the expectations in the clinical setting [58]. As an example, we have 
shown that targeting MM cells with a MTD such as valproic acid 
determines an important modulation of GEP in vivo, magnifying the 
number of pathways, that were likely to be involved, when considering 
the mechanism of action of the drug [59]. Therefore, these findings 
indicate that miRNA therapies produce anti-tumoral effects that are 
even beyond the Slack paradigm [37] and require to be evaluated with 
a more complex approach. On this regard, the possibility to integrate 
the information deriving from GEP and miRNA profiling provides 
investigators a new and powerful tool to develop ad hoc anti-cancer 
therapies.

Personalization of therapy: The era of integrated genomic 
approaches in cancer

Currently, a variety of technological platforms have enabled 
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researchers to collect extensive information about different aspects of 
molecular biology. The rising body of data has led to the emergence 
of the computational integrative genomics, or integromics, a 
novel discipline in which computer science, bioinformatics and 
mathematical modeling, play a synergistic role in the interpretation 
of large datasets belonging to different data sources [60,61]. The focus 
of computational integrative genomics is to discover basic principles 
of interplay of different molecules in order to better elucidate 
molecular mechanims under the assumption that the information 
gathered from integrated analysis is higher than in the separate 
study of any data source [62]. Data sources of integromics are related 
mRNA, miRNA and protein expression, DNA copy number, SNPs, 
and may be produced in dedicated experiments or extracted by 
different databases. The scientific community has recently produced 
a large number of different databases that could be used in theory 
for integrated analysis. In addition to academic data, pharmaceutical 
and biotech companies retain large amounts of ‘proprietary data’ - 
inherited from their own and other sources. Most of data is stored 
in older types of databases designed to manage a single type of 
data, therefore the integration of these data source into a single 
comprehensive one is a relevant challenge [63]. The exhaustive 
enumeration of all these approaches is beyond the scopes of this 
review. Here, we summarize some recent approaches that integrate 
different data source, useful for researchers that we could categorize 
on following groups: (i) Big projects aiming to provide comprehensive 
resources for cancer studies (e.g. The Cancer Genome Atlas [TCGA], 
or the International Cancer Genome Consortium ICGC [ICGC]) and 
a set of smaller projects focusing on some narrow aspects of cancer 
research. For the purposes of this review, we will focus on the second 
class. Main results of these efforts are: (i) the individuation of possible 
biomarkers or synergistic regulatory mechanisms among molecules, 
(ii) the building of software tools able to perform joint analysis from 
different data sources as discussed later. Camps et al. [64], provided 
an integrated analysis of miRNA and mRNA expression and 
association with Hypoxia Inducible Factor (HIF) binding to study 
miRNA expression under hypoxia. Authors use MCF-7 breast cancer 
cells under hypoxic and normal oxygen conditions at three different 
time points with the following technologies: siRNA against HIF-1α 
and HIF-2α, miRNA expression through microarray technology, 
small RNA sequencing, gene expression profiles by microarrays and 
real-time polymerase chain reaction (rt-PCR). Moreover, previous 
published datasets have been used to build a model to correlate 
changes on miRNA and mRNA expression associated to HIF binding. 
This analysis led the authors to conclude that integrated analysis of 
microRNA, mRNA and ChIP-seq data into a single model supports 
the hypothesis that miRNA expression under hypoxic conditions is 
regulated at transcriptional and post-transcriptional levels. Kim et 
al. [65], focused on cancer survival aiming to increase the predictive 
accuracy of survival classes by integrating miRNA and mRNA data. 
They developed a novel machine learning approach based on feature 
selection with Cox proportional hazard regression model (FSCOX) 
to improve the prediction of cancer survival time. They compared the 
ability of this model to build survival curves using 3 types of cancer 
tissue data sets: (i) miRNA expression, (ii) mRNA expression, and 
(iii) combined miRNA and mRNA expression. Results evidenced 
that the integrated dataset yielded better results than the individual 
data sets, suggesting that interactions between miRNA and mRNA 

features, that are not detectable in the individual analyses, play an 
important role in this biological system.

In parallel to the so far discussed approaches, a remarkable 
number of software tools available to researchers have been produced. 
Main elements of these tools are:

•	 the ability to receive as input different data-sources: (e.g.) 
miRNA expression levels obtained using Microarray 
Technologies or Next Generation Sequencing (NGS); 
mRNA expression levels; copy number data;

•	 a robust statistical model able to gather information from 
different data sources;

•	 a knowledge base containing known associations among 
molecules (e.g. Transcription Factors);

•	 the ability to give semantics to results through ontologies;

•	 the implementation as available tool.

Such elements are generally integrated in a comprehensive 
pipeline whose general schema is reported in the Figure 1. 

When considering specific software tools able to integrate in a 
single model miRNA and mRNA data (Table 1), we should recall: 
the approach of Gade et al, dchipGemiNI, MAGIA2 and mirCONNx. 
These approaches are based on the rationale exposed on Figure 1 and 
differ in general in the statistical/computational model used to merge 
data.

Gade et al. [66] proposed a method to fuse miRNA and mRNA 
data into one prediction model using graph theory. Authors 
demonstrated that the integrated analysis may improve the clinical 
outcome providing better accuracy in survival prediction.

The dchipGEMINI [67] is a freely available web server that 
receives as input expression levels of miRNA and mRNA obtained 

Figure 1: This picture depicts the flow of data in Integromics. Different 
experimental data are collected from the investigator. The data span from 
classical microarray technologies (e.g. mRNA or miRNA micro arrays) to next 
generation sequencing techniques as well as genomic technologies such as 
CNV or SNP arrays. The whole set of data is then preprocessed in order 
to select only significant subsets of data or to evidence difference among 
classes. Then data are integrated into single theoretical models and analyzed 
with respect to data and information contained in existing knowledge 
repositories. Finally, results are presented to the users by using supporting 
models usually coming from graph theories.
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from time series experiments analysing two conditions, e.g. normal 
and cancer conditions. It is able to individuate Feed-Forward Loops 
(FFLs) consisting of Transcription Factors (TFs), miRNAs and their 
common target genes. The association among miRNA and their target 
(TF and mRNA) information’s are obtained from the literature and 
stored into the web server. TFs derived from literature as used as null 
model to statistical ranks predicted FFLs from the experimental data.

Magia2 [68] represents the evolution of the precedent MAGIA 
web tool for the integrated analysis of both genes and microRNA. 
MAGIA receives as input miRNA and mRNA expression levels 
obtained by time-series experiments. It is able to associate miRNA 
and mRNA levels by integrating literature evidence, prediction 
algorithms, and experimental data through miRNA-target expression 
anti-correlation using four different relatedness measures. It is able 
to highlight different regulatory circuits involving either miRNA or 
TF as regulators: i) a Transcription Factor (TF) that regulates both 
a given miRNA and its target gene; ii) a miRNA that regulates both 
a given TF and its regulated gene. Furthermore, this tool provides 
functional enrichment of the gene network using DAVID platform.

mirConnX [69] is a software tool based on a web interface to 
build gene regulatory networks starting from mRNA and microRNA 
expression data on a whole genome scale. It is based on a built network 
used as a priori model consisting of Transcription Factor (TF)-gene 
associations and miRNA target predictions for human and mouse 
derived by computational methods and literature. Experimental data 
are used to infer experimental associations among TF, miRNA and 
genes. Associations are then used to weight the pre-defined network 
and resulting weighted network is visualized to the user.

miRIN is a web application designed for the identification of 
the modules of protein-protein interaction networks regulated by 
miRNAs. The approach of analysis consists of the integration of 
miRNA target data from literature, protein–protein interactions 
between target genes from literature, as well as mRNA and miRNA 
expression profiles provided as input. The output of miRIN is a set of 
regulatory networks involving miRNAs, mRNAs, TFs and proteins. 

Integrated genomics in MM
In this section, we briefly recall some recent approaches 

of integrated analysis that focused mainly on MM. As general 
consideration, we should note that each of these has a tailored pipeline 
of analysis slightly different from what we have exposed so far. 
Approaches differ based on the aims of the work and consequently on 
input data and on analysis methodology. Considering the temporal 
evolution of the approaches, we may recall that first approaches of 
integration of data aimed to determine association among miRNA 
and mRNA by using experimental data of expression level to 
correlate changes of miRNAs levels with changes in mRNA levels. 

Following approaches aimed to integrate in a single model more than 
two data sources are intended to highlight more complex regulatory 
approaches. For instance, Huang et al. [70] used for the first time 
both mRNAs and miRNAs data. They focused on the identification 
of functional miRNA-target relationships excluding TF or protein 
data. Similarly, Ruike et al. [71] used miRNA and mRNA data 
obtained from K562 cell lines to predict functional association among 
molecules. Gutierrez et al. [72] used miRNA and mRNA expression 
levels of 60 MM patients to determine the relationships among types 
and changes in miRNA levels and the different cytogenetic subtypes, 
thus identifying disease related miRNAs and genes. They integrated 
target prediction and anti-correlation using the Pearson correlation 
coefficient to identify the over-represented pathways [21,72,73]. The 
Pearson correlation coefficient represents the closeness of related 
miRNA-target pair. As multiple miRNAs can target the same gene, 
the regulation effect can be cumulative. However, the existing 
pathway identification methods have omitted the cumulative effect, 
and considered neither the alteration of target gene’s expression nor 
the simultaneous cumulative regulatory effects. However, on these 
premises, Lionetti, et al. [21] performed an integrated analysis, based 
on computational target prediction and miRNA/mRNA profiling, 
and built up a network of predicted functional miRNA-target 
regulatory relations evidenced by expression data. In addition, the 
integrative analysis including genome-wide copy number profiles, 
provided new insights in the molecular MM subtypes. Recently, 
Zhang et al. [74] used MM data as a case study of an integrative 
approach of analysis aiming to discover different miRNA-mRNA 
regulatory mechanisms in different subtypes of samples. The authors 
proposed a genetic algorithm to identify specific miRNA-mRNA 
Functional Regulatory Modules (MFRMs) associated with different 
subtypes of this heterogeneous disease. The integrative analysis was 
performed by integration of three biological data sets: GO biological 
processes, miRNA target information, and matched miRNA and 
mRNA expression data. The proposed model was able to highlight 
the active miRNAs/mRNAs pairs and the mechanism that leads to 
specific differences for each subtype. By this approach, it is possible 
to identify the few miRNAs and mRNAs that act as “hub” of the 
biological processes involved in MM development and progression, 
because it included most of the MFRMs that can be potential 
biomarkers to discriminate MM subtypes. Finally, sample-matched 
miRNA (miRNAs)-mRNA expression data of multiple myeloma and 
prostate cancer have proven to be effective and reliable in identifying 
disease risk pathways that are regulated by miRNAs [15].

Conclusion
Understanding the functions of miRNAs in MM pathogenesis 

is extending our comprehension of tumor development and 
progression at a terrific pace. The dysregulation of miRNA expression 

Tool Input Output WebSite Model

dCHIPGemini miRNA/mRNA Expression 
Data Time Series Feed Forward Loops FFL http://www.canevolve.org/dChip-GemiNi Statistical Model and 

Literature Evidence

MAGIA2 miRNA/mRNA Expression 
Data Time Series

Feed Forward Loops FFL 
Ontological Analysis http://gencomp.bio.unipd.it/magia2/start/

Statistical Model and 
Literature Evidence

mirConnX miRNA,mRNA time series Regulatory Networks http://www.benoslab.pitt.edu/mirconnx Pre Built Network.

miRIN miRNA,mRNA Regulatory networks of miRNA, 
mRNA, TFs and proteins. http://mirin.ym.edu.tw/ Associations derived from 

literature

Table 1: Available software tools that integrate in a single model miRNA and mRNA data.

http://www.canevolve.org/dchip-gemini
http://gencomp.bio.unipd.it/magia2/start/
http://www.benoslab.pitt.edu/mirconnx
http://mirin.ym.edu.tw/
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is correlated with genomic aberrations and the intracellular pathways 
that strongly support malignant PC growth. Furthermore, miRNA 
profiles in the body fluids, although not completely concordant 
with malignant PC miRNA content, are modulated before and after 
therapy. These findings support their use as innovative biomarkers 
and potential therapeutic tools. More importantly, miRNA profiles 
can be integrated in a complex network of high-throughput arrays 
that include GEP and proteomic assays, to reveal the different 
molecular profiles and distinguish several subtypes of the disease 
contributing to better describe the biological behaviour of malignant 
PCs and to translate molecular findings into clinical useful advances. 
From this point of view, integrative analysis of the genetic events and 
the regulation of gene expression including epigenetic modifications, 
takes into account the structural information of pathways and the 
regulatory networks simultaneously. Integration of platforms and 
data (integromics approach) could be considered the key element 
to go deeply in the biology of the disease. The range of information 
derived from integromics approach would help to design the best 
affordable tailored therapy with the lowest toxicity profile to treat 
MM patients.
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