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Abstract

Neurodegenerative diseases are unrelenting, unforgiving and cruel given 
the long duration of patient suffering due to the impact of progressive damage 
within specific brain locations. In the case of dementias, there is a direct impact 
on memory and cognitive processing, and the loss of personal dignity and 
worth. Ultimately, the patient loses the ability to maintain basic hygiene placing 
attentional responsibilities on family members and support staff. With respect to 
neurodegenerative diseases of the eye, the patient must deal with progressive 
deleterious changes in vision resulting from retinal damage. This review 
discusses the role of the Renin-Angiotensin System (RAS) in cardiovascular 
disease, Alzheimer’s and Parkinson’s diseases, Type 2-induced dementia, 
depression, glaucoma, macular degeneration and diabetic retinopathy. We 
conclude with a consideration of the challenges posed regarding the development 
of new drugs designed to treat dementias, depression, and neurodegenerative 
diseases of the eye. The use of small molecule agonist and antagonist analogs 
of RAS components is discussed. These analogs can be configured to pass 
the blood-brain barrier and target relevant receptor proteins in specific brain 
structures or they can be applied topically to the eye to discourage increases 
in intraocular pressure, decreased retinal microvascular blood flow, tissue 
inflammation and oxidative stress as well as the accumulation of extracellular 
material (drusen) that can disrupt normal vision. Along with suggested drug 
development strategies, several important drug targets are identified in an effort 
to focus attention, and facilitate research efforts, to improve drug efficacy and 
thus provide better clinical outcomes for these patients.
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N-Methyl-N’-Nitro-N-Nitrosoguanidine; MDD: Major Depressive 
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Phosphate; NO: Nitric Oxide; NTS: Nucleus of the Solitary Tract; 
PD: Parkinson’s Disease ; PAI-1: Plasminogen Activator Inhibitor 1; 
PO: Propyl Oligopeptidase; RAS: Renin-Angiotensin System; RPE: 
Retinal Pigment Epithelial Complex; SFO: Subfornical Organ; T2D: 

Type 2 Diabetes; VEGF: Vascular Endothelial Growth Factor

Introduction
The Renin-Angiotensin System (RAS) is recognized as one of 

the oldest hormone systems best known for its roles in regulating 
blood pressure and body water balance. In 1891 Robert Tiegerstedt 
and his student Per Bergan identified a pressor agent extracted from 
rabbit kidney tissues that they called “renin” [1]. Fifty years later, 
this finding led to the discovery of a vasoconstrictor agent isolated 
from ischemic kidneys of Goldblatt hypertensive dogs [2]. Page and 
Helmer [3] independently found the same molecule after injecting 
renin into intact animals. They also identified a “renin activator” later 
reported to be angiotensinogen [4]. This vasoconstrictor agent was 
eventually determined to be an octapeptide variously called, “renin 
substrate”, “hypertension” and “angiotensin”, ultimately termed 
Angiotensin II (AngII) [5-7].

This review initially describes the presently identified angiotensin 
ligands and their respective receptor subtypes. Angiotensin 1 and 2 
(AT1 and AT2) subtypes have been well characterized and the AngII/
AT1 system is particularly important in the etiology of cardiovascular 
diseases [4,8,9]. The AT3 subtype was first isolated in mouse 
neuroblastoma cell cultures [10,11], but a separate gene has thus far 
not been sequenced in humans. The identity of the AT4 subtype has 
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been controversial and will be discussed. Next, we will focus on the role 
of the brain Ang IV/AT4 receptor system in several neurodegenerative 
diseases. Additional diseases of the eye are identified as important 
targets requiring much additional research attention regarding 
the RAS and its relevance. Finally, recommendations are offered 
concerning drug development approaches in order to penetrate the 
blood-brain barrier and influence the brain RAS. Target diseases 
include dementias associated with Alzheimer’s and Parkinson’s 
diseases, Type II diabetes, as well as depression/neuroinflammation 
and diseases impacting the retina of the eye.

The Renin-Angiotensin System
The RAS is responsible for mediating several classic physiologies 

such as the regulation of systemic blood pressure and body water/
electrolyte balance, as well as a number of novel physiologies 
and behaviors including influences on sexual reproduction and 
behavior, Cerebral Blood Flow (CBF) and cerebroprotection, 
seizures, stress, depression, and memory [12,13]. AngII binds at the 
G-protein coupled AT1 receptor subtype [14-16]. Over the years the 
AngII/AT1 receptor system has been a major focus regarding the 
development of antihypertensive drugs and its role in promoting 
inflammation, oxidative stress and tissue remodeling [17,18]. These 
processes contribute to the “neuronal inflammation response” a key 
factor in the development of neurodegenerative diseases including 
Alzheimer’s Disease (AD) [19-21]. The biologically active angiotensin 
peptides are derived from the protein angiotensinogen (255 amino 
acids) via a cascade of enzymatic activity and include AngII (Asp-
Arg-Val-Tyr-Ile-His-Pro-Phe), AngIII (Arg-Val-Tyr-Ile-His-Pro-
Phe), Angiotensin IV (AngIV: Val-Tyr-Ile-His-Pro-Phe), Ang (1-7) 
(Asp-Arg-Val-Tyr-Ile-His-Pro) and Ang (3-7) (Val-Tyr-Ile-His-Pro) 
(Figure 1) [22-25]. Specifically, the decapeptide angiotensin I (AngI: 
Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu) is formed by renin (EC 
3.4.23.15) acting upon the N-terminal of angiotensinogen. AngI 
serves as a substrate for angiotensin Converting Enzyme (EC 3.4.15.1) 
which is responsible for hydrolyzing the carboxy terminal dipeptide 
His-Leu to form AngII. AngII is converted to the heptapeptide AngIII 
by glutamyl aminopeptidase A (APA; EC 3.4.11.7) cleavage of the Asp 
residue at the N-terminal [26-28]. AngIII is acted upon by membrane 
alanyl aminopeptidase N (APN; EC 3.4.11.2) resulting in the cleavage 
of Arg to form the hexapeptide AngIV. AngIV can be further 
converted to Ang (3-7) by Carboxypeptidase P (Carb-P) and Propyl 
Oligopeptidase (PO) cleavage of the Pro-Phe bond. Angiotensin (1-7) 
is formed from AngII via Carb-P cleavage of Phe [29], by the mono-
peptidase ACE2 [30,31], and by ACE cleavage of the dipeptide Phe-
His from Ang (1-9) [32].

Ang II/AT1 and AngIII/AT2 receptor systems
The AT1 receptor subtype belongs to the superfamily of 

7-transmembrane domain receptors and the AT1 gene is located 
in chromosome 3q and codes for a 359 amino acid protein (40-42 
kDa) [14-16]. Signaling by the AT1 receptor is via phospholipase-C, 
-A2, -D-adenylate and calcium (L- and T-type voltage sensitive 
channels) [4,33,34]. The AT1 receptor is also coupled to intracellular 
signaling cascades involved in the regulation of gene transcription 
and protein expression that mediate cellular proliferation and growth 
in a number of target tissues, both peripheral and central. The AngII/
AT1 receptor system is a major player in cardiovascular functioning 

via direct inotropic influences on the heart and increases in vascular 
resistance [22,35]. Increased vascular resistance occurs due to direct 
vasoconstriction of vascular smooth muscle and indirect action 
via the brain resulting in sympathetic nervous system arousal, the 
inhibition of the baroreceptor reflex, and the release of the powerful 
vasoconstrictor arginine-vasopressin [36-38].

The AT2 receptor subtype is also a 7-transmembrane domain 
G-protein coupled receptor; however, it exhibits only about 32-34% 
amino acid sequence identity with the AT1 receptor [39,40]. This 
protein consists of a 363 amino acid sequence (40-41 kDa) [41] and 
is sensitive to AngII, but exhibits a higher affinity for AngIII [42]. 
This receptor is expressed in developing fetal tissues but decreases 
after birth and remains at low levels in adult tissues. The AT2 receptor 
subtype appears to modulate cell proliferation, cell differentiation, 
apoptosis, and regenerative processes and generally opposes actions 
initiated by the AngII/AT1 system [43,44]. It is important to note that 
the AT2 receptor can be upregulated during pathological conditions 
[45,46], although it is not clear to what extent this occurs in patients 
with neurodegenerative diseases.

Angiotensin IV/AT4 receptor system
Some time ago our laboratory, and others, discovered a binding 

site with nanomolar affinity for AngIV using bovine adrenal cortex 
membranes [47-49] and guinea pig hippocampal tissues [50]. The 
pharmacological profile of this receptor was shown to be distinct 
from the AT1 and AT2 subtypes. It was also determined that (125I)-
AngIV binds at the AT4 site reversibly, saturably, and with high 
affinity. Binding was found to be insensitive to guanine nucleotides, 

Figure 1: The angiotensinogen-renin-angiotensin pathway indicating 
biologically active angiotensins (bold) enzymes, receptors and inhibitors 
that mediate angiotensin physiologies and behaviors. Angiotensin II binds 
predominantly at the AT1 receptor subtype and Angiotensin III at both the 
AT1 and AT2 receptor subtypes. Angiotensin IV and Ang (3-7) bind at the AT4 
receptor subtype. Angiotensin (1-7) binds at the Mas receptor. 
ACE: Angiotensin Converting Enzyme; ACE2: Angiotensin Converting 
Enzyme 2; AP-A: Aminopeptidase A; AP-N: Aminopeptidase N; ARBs: 
Angiotensin Receptor Blockers; Carb-P: Carboxypeptidases; PO: Propyl 
Oligopeptidase.
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indicating that this receptor protein is not G-protein-linked. Further, 
the AT4 receptor evidenced as a dimer, as seen in growth factors, with 
a molecular weight of 160-190 kDa as determined by reduced SDS-
polyacrylamide gel electrophoresis [51]. This subtype is distributed 
within a number of brain structures with heavy concentrations in 
the hippocampus, nucleus basalis of Meynert, piriform cortex and 
neocortex, structures concerned with the mediation of cognition, 
learning and memory [52].

The AT4 receptor subtype has a positive influence on a 
number of physiological and behavioral functions including CBF, 
neuroprotection, synaptogenesis, Long-Term Potentiation (LTP), 
and memory consolidation and retrieval [53,54]. Jan Braszko and 
colleagues [55-57] were the first to report that intracerebroventricular 
injected AngIV facilitated exploratory behavior in rats tested in an 
open field, improved recall of passive avoidance conditioning and the 
memory acquisition of active avoidance conditioning. Members of 
our laboratory confirmed these memory results and further reported 
AngIV-induced dose dependent increases in CBF without significant 
changes in systemic blood pressure [58,59]. These effects could not 
be blocked by AT1 or AT2 receptor antagonists, but were prevented 
by pretreatment with the AT4 receptor antagonist divalinal-AngIV. 
Related to this, Naveri and colleagues [60] have shown that AngIV 
infusion restored CBF following subarachnoid hemorrhage. 
Further, Dalmay et al. [61] reported that AngIV infusion following 
pretreatment with the AT1 receptor blocker candesartan slightly 
decreased mortality at post-surgery Day 3 in the gerbil model 
of unilateral carotid artery ligation, but significantly decreased 
lisinopril-induced mortality. These results support the hypothesis 
that the activation of AT4 receptors contributes to cerebroprotection. 
This neuroprotective role for the AT4 receptor subtype is consistent 
with the notion that AngIV increases blood flow by a Nitric Oxide 
(NO)-dependent mechanism [59]. In agreement with this hypothesis 
Faure et al. [62] has shown that internal carotid artery administration 
of increasing doses of AngIV significantly decreased mortality and 
cerebral infarct size in rats 24 hours following embolic stroke due to 
the intracarotid injection of calibrated microspheres. Pretreatment 
with the AT4 receptor antagonist divalinal abolished this protective 
effect. Sequential cerebral arteriography indicated that AngIV caused 
the redistribution of blood flow to ischemic areas within a few minutes. 
It is hypothesized that AngIV may yield its neuroprotective effect 
against acute cerebral ischemia via an intracerebro-hemodynamic 
AT4 receptor-mediated NO-dependent mechanism. Most recently 
we have noted an interaction between AngIV-based analogs and 
the Hepatocyte Growth Factor (HGF)/Met system with evidence 
suggesting that the AngIV/AT4 receptor system coincides with the 
HGF/Met receptor system [54].

A potentially important advance in our understanding of the 
RAS was the finding that AngIV’s actions may be mediated in part 
by insulin-regulated aminopeptidase (IRAP: EC 3.4.11.3) and the 
hypothesis that this enzyme is the AT4 receptor [63,64]. IRAP is a 
Type 2 transmembrane protein of the gluzincin aminopeptidase 
family which includes homologous aminopeptidases such as 
aminopeptidases A and N [52,65]. IRAP co-distributes with the 
GLUT4 transporter [66,67]. The key substrates acted upon by this 
enzyme appear to be arginine-vasopressin and oxytocin [68]. It is 
proposed that the physiological and behavioral actions of AngIV are 

due to competitive inhibition of IRAP’s peptidase activity resulting 
in an extended half-life of AngIV and particularly oxytocin and 
vasopressin. IRAP has the capacity to cleave N-terminal amino acids 
from a number of peptides including met-enkephalin, dynorphin, 
oxytocin, arginine-vasopressin, lysine-bradykinin, neurokinin A1, 
somatostatin, neuromedin B, and cholecystokinin-8. IRAP has 
been variously identified as oxytocinase, cysteine aminopeptidase, 
placental leucine aminopeptidase, gp160, or vp165 [69]. Thus, 
IRAP inhibition by Ang IV results in the potentiation of several 
pro-cognitive endogenous peptides including arginine-vasopressin, 
oxytocin, somastatin and cholecystokinin-8 [70]. However, Albiston 
and colleagues [68] reported that IRAP gene knock-out mice revealed 
impaired performance on memory tasks rather than enhanced 
performance as predicted. This finding casts some doubt concerning 
the relative importance of IRAP’s role in the potentiation of memory 
formation and retrieval. In a subsequent report, these investigators 
measured an absence of IRAP in members of a postnatal forebrain 
neuron-specific IRAP knockout mouse line. As predicted these 
animals’ revealed dysfunctions in spatial and object recognition 
memory at three months of age. The results suggested that the 
presence of IRAP in the postnatal brain may be necessary for normal 
memory functioning [71].

Members of our laboratory have questioned the notion that 
IRAP is the AT4 receptor [42] and offered another possibility, 
namely the Hepatocyte Growth Factor (HGF)/Met receptor system 
[12,52,72-76]. This came about based on a search for a molecular 
target with a chemical structure similar to AngIV, and behavioral 
and physiological functions in agreement with those discovered 
for the AngIV/AT4 receptor system. A partial match was seen with 
the protein angiostatin, and a related member of the plasminogen 
family HGF. Functions associated with the HGF/Met system overlap 
with those mediated by the AngIV/AT4 system including facilitated 
memory consolidation, augmented neurite outgrowth, hippocampal 
LTP and calcium signaling, dendritic arborization, facilitation of CBF 
and cerebroprotection, seizure protection, and facilitated wound 
healing [52,53,74]. This prompted the hypothesis that AngIV and 
AngIV analogs may function via the HGF/Met system. We have 
reported that the AT4 receptor antagonist Norleual-AngIV inhibited 
HGF binding to Met and HGF-dependent signaling, proliferation, 
invasion, and scattering [72]. Norleual-AngIV’s mechanism of 
action regarding this ability to act as a Met receptor antagonist is by 
inhibiting the dimerization of HGF which serves as a prerequisite 
to Met receptor activation [72,77]. HGF dimerization is a necessary 
step in order to bind to and activate the Met receptor [78,79]. This 
dimerization process is dependent upon a short HGF domain located 
between its N-terminal and first Kringle domain referred to as the 
“hinge region” (Figure 2) [13,79]. Members of our laboratory have 
shown that a hexapeptide, designed to mimic the hinge region, bound 
to HGF with high affinity and blocked HGF dimerization [77]. We 
hypothesized that AngIV and AngIV analogs bind at this hinge region 
and facilitate HGF activation thus leading to increased Met receptor 
activation. There is now evidence that this appears to be the case [80].

Clearly it is not necessary that this issue by resolved in favor of 
one hypothesis or the other, since it has been shown that AngIV 
and AngIV analogs interact with both IRAP [65] and the HGF/Met 
system [13]. It is likely that these systems work together such that 
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competitive inhibition of IRAP functions to extend the half-life of 
AngIV allowing it a longer duration to bind at the HGF/Met receptor 
system. In addition, as mentioned earlier AngIV can be converted 
to Ang (3-7) which also binds at the AT4 receptor. This friendly 
controversy concerning the identity of the AT4 receptor, plus new 
important findings about the Ang (1-7)/Mas receptor system, has 
served to reinvigorate research interest in the brain RAS. Members of 
our respective research groups have cooperated on past projects [81] 
and hopefully this collaboration can continue in the future. 

Angiotensin (1-7)/mas receptor system
Ang (1-7) binds at the Mas receptor that is also G-protein-coupled 

and has been shown to counteract peripheral organ inflammation and 
fibrosis, increase glucose utilization, and decrease insulin resistance 
[82-84]. The Mas receptor is present in brain structures associated 
with memory and cognition including hippocampal and piriform 
cortices [85]. Consistent with these observations Ang (1-7) has been 
shown to facilitate LTP (a presumed building block of memory 
formation) in the CA1 region of the hippocampus via activation of the 
Mas receptor [82]. The reader is referred to the following articles and 
reviews concerned with detailed characterization of the angiotensin 
receptor subtypes, and the Mas receptor [4,31,52,83,86,87].

Independent brain RAS
During the 1970s Detlef Ganten and colleagues reported the 

presence of renin and AngII in the dog brain resulting in the 

recognition of an intrinsic independent brain RAS [88-90]. This 
amazing discovery, along with subsequent research findings, 
revealed that the brain RAS is one of many local RASs that mediate 
intracellular communication among various cell types (a paracrine 
role) as well as same cell types (an autocrine role) [91,92]. These 
local systems, for example the heart, liver, intestine, pancreas, 
ovary, uterus, testis, and eye cooperate in the regulation of cell 
differentiation, growth, proliferation, metabolism, apoptosis, tissue 
inflammation, fibrosis, hemodynamics and hormone secretion 
[93-95]. Following Ganten’s discovery other investigators reported 
that intracerebroventricular injections of AngII in animal models 
produced potent increases in blood pressure via activation of AT1 
receptors located in Circumventricular Organs (CVOs), particularly 
the Subfornical Organ (SFO) and Area Postrema (AP), that project to 
the paraventricular and supraoptic nuclei of the hypothalamus [37,96]. 
Microinjections of AngII into the SFO and organum vasculosum of 
the lamina terminalis also elicited reliable elevations in blood pressure 
[97,98]. The pressor response due to circulating AngII was shown to be 
mediated primarily by the SFO and AP. The absence of a Blood-Brain 
Barrier (BBB) at these CVO sites permits penetration by this peptide 
and other circulating hormones. AngII also activates cardiovascular 
centers in the medulla. Target structures include the Nucleus of the 
Solitary Tract (NTS), AP and anterior ventrolateral medulla [38]. In 
particular, the AP detects blood-borne AngII as does the NTS which 
influences the baroreceptor reflex [99,100]. AngII delivered to the 
anterior ventrolateral medulla increases blood pressure by facilitating 
the sympathetic nervous system and catecholamine release from the 
adrenal medulla [100,101-103]. In summary, an overactive RAS can 
result in a hypertensive state accompanied by reduced cerebral blood 
flow, elevated oxidative stress and a pro-inflammatory response, 
resulting in cognitive dysfunction [13]. 

Cardiovascular Disease
Nearly fifty years ago it was reported that minor structural 

modifications of AngII yielded peptides capable of acting as 
antagonists at the AT1 receptor subtype. Two of these compounds, 
saralasin (Sar1, Ala8-AngII) and sarile (Sar1, Ile8-AngII) were 
evaluated in clinical trials but were dismissed primarily because of 
their peptidic structures [104-107]. Even so these peptides have 
been useful as research tools that highlighted the importance of 
the RAS, and particularly the AT1 receptor, in mediating systemic 
blood pressure [65]. Such studies led to the development of the first 
non-peptidic Angiotensin Receptor Blocker (ARB) losartan, in 1995 
[108]. Since then, several additional ARBs have been introduced 
and successfully taken through clinical trials including candesartan 
eprosaran, olmesartan, telmisartan and valsartan [109,110]. 
Azilsartan is the most recent to receive FDA approval in 2011 [111]. 
All are antihypertensive drugs designed to block the AT1 receptor 
subtype and reduce blood pressure. In addition, both losartan and 
candesartan have been shown to facilitate cognitive processing in 
elderly hypertensive patients, an important observation [112-115].

The zinc-binding thiol compound captopril was the first 
Angiotensin-Converting Enzyme Inhibitor (ACEi) to be developed 
as an anti-hypertensive drug [116]. The major side effects of taste 
disturbances and skin rash were eliminated in most patients by the 
introduction of enalopril [117]. Several ACEi followed including 
benazepril, lisinopril, perindopril, quinapril, ramipril [65,118]. These 

Figure 2: A) Structure of HGF consisting of a α-chain (69 kDa) accompanied 
by four Kringle domains and a β-chain (43 kDa) including a Serine Proteinase 
Homology (SPH) domain, linked by disulfide bonds (S). High affinity binding 
sites are located at the N-terminal domain and the first Kringle domain of the 
α-chain. B) Structure and basic functions of the Met receptor consisting of 
a α-chain (50 kDa) and a β-chain (140 kDa) linked by disulfide bonds. HGF 
binds to the Met receptor resulting in tyrosine phosphorylation leading to the 
activation of a number of biological activities including those listed plus anti-
neuroinflammation and inhibition of oxidative stress, increased cerebral blood 
flow and synaptogenesis, and facilitated long-term potentiation and memory. 
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drugs are designed to inhibit the conversion of AngI to AngII and 
reduce activation of the AT1 receptor subtype resulting in a sustained 
decrease in systemic blood pressure. It has been shown that captopril 
and perindopril influence not only the peripheral but also the central 
RAS [119]. Along these lines, mild to moderate male hypertensive 
patients treated with captopril indicated improved mental acuity, less 
sexual dysfunction and an improved sense of wellbeing [120]. Amenta 
and colleagues [121] reviewed clinical trials results concerning the 
influence of anti-hypertensive treatments on cognitive processing in 
hypertensive patients. They concluded that ACE inhibitors improved 
cognitive functioning independent of blood pressure effects and 
superior to β-blockers and diuretics. Further, ACE inhibitors have 
been reported to facilitate cognitive performance and reduce the 
occurrence of vascular dementia following hemorrhagic or ischemic 
cerebrovascular accidents.

Stabilization of cognitive performance by ACE inhibitors has 
also been noted in patients with Mild Cognitive Impairment (MCI) 
[122,123]. Hajjar et al. and others [124,125] have reported a slowed 
rate of cognitive decline in Alzheimer’s Disease (AD) patients placed 
on ACE inhibitors. In contrast, Sudilovsky et al. [126] reported 
ceranopril to have no effect on cognitive functioning in AD patients; 
while Khachaturian et al. [127] found ACE inhibitors to be the only 
anti-hypertensive drug to indicate a slightly increased incidence of 
AD. For thoughtful reviews concerning the development of these 
drugs and their chemical structures and targets beyond cardiovascular 
disease the reader is referred to the following papers [65,83,128].

Diseases that Impact Memory and Cognition
Early on a role for AngII in the facilitation of memory and 

cognition was proposed [42,51,87,129-131]. However, subsequent 
animal studies indicated that intracerebroventricular delivery of 
AngII interfered with performance on most memory tasks used 
with animal models [12]. This finding agreed with reports that ARBs 
improved cognitive processing as mentioned earlier. But if AngII 
acting at the AT1 receptor interfered with memory, and blockade 
of this receptor improved memory, what was the mechanism 
responsible for this memory facilitation? A majority of recent results 
point to AngIV interacting with the AT4 receptor subtype as the 
source of memory improvement [13]. These collective results can be 
explained as follows. Blockade of the AT1 receptor subtype prevents 
memory interference and permits unbound endogenous AngII to 
be converted to AngIV, which then binds at the AT4 receptor. This 
notion is supported by the observation that ACE inhibitors enhance 
cognitive processing in both humans [123,132] and animal models 
[133]. The resulting increases in AngI levels due to inhibition of ACE 
are likely converted to Ang (1-9) to Ang (1-7) and then to Ang (3-7). 
Ang (3-7) has been reported to act as an agonist at the AT4 receptor 
subtype [134]. AngIV analogs such as Nle1-AngIV, have shown 
promise in overcoming the memory impairments evidenced by 
several animal models of AD. Intracerebroventricular (icv) treatment 
with Nle1-AngIV reversed memory deficits due to: 1) application of 
the cholinergic muscarinic receptor antagonist scopolamine [135]; 2) 
kainic acid-induced lesions of the hippocampus [136]; 3) perforant 
path knife-cuts [136]; 4) embolic stroke due to carotid artery injection 
of microspheres [62]; and 5) ischemia resulting from transient four-
vessel occlusion [137,138]. This latter finding is important given the 
strong possibility that cerebral hypoperfusion acts as a precursor 

to the development of MCI followed by AD [139]. Consistent with 
these behavioral results [125I] AngIV has been autoradiographically 
localized within structures known to mediate cognitive processing 
including neocortex, hippocampus, and the basal nucleus of Meynert 
[50,87,140].

Alzheimer’s Disease
Patient numbers 

Approximately 5.5 million people in the U.S. are diagnosed with 
Alzheimer’s Disease (AD) [141,142] and more than 16 million world-
wide [143]. In 2017 it is estimated that 6.08 million Americans were 
afflicted with AD. This number is predicted to reach 15 million by 
2060 [144], and three times that worldwide [145]. Treatment and care 
costs for the U.S. patients is estimated at $70-100 billion [146,147] and 
worldwide in excess of $600 billion [148]. Without a breakthrough in 
treatment, these numbers of AD patients and associated costs may 
overwhelm our health care systems. There is also growing concern 
over concussion-induced cortical damage seen in children and adults 
who participate in contact sports such as American football (chronic 
traumatic encephalopathy), boxing, martial arts, and soccer, as well as 
our service men and women who have experienced combat associated 
concussions [149.150]. Evidence indicates that repeated concussions 
may encourage MCI [151].

FDA approved drugs 
Despite intensive research efforts, only two categories of drugs 

have been approved by the FDA to treat AD, and only one in the 
past 20 years. Cholinesterase inhibitors such as Razadyne, Exelon, 
Cognex and Aricept disrupt the degradation of acetylcholine thus 
extending the half-life and availability of this neurotransmitter acting 
at central cholinergic muscarinic and nicotinic receptors [53,152-
154]. A second approach utilizes an N-Methyl-D-Aspartate (NMDA) 
receptor antagonist, Namenda (memantine HCl), to limit glutamate 
excitotoxicity and resulting neuronal damage [152,155,156]. These 
drugs have demonstrated limited ability to delay the symptoms of 
AD and none prevent disease progression. However, both Roche and 
Eli Lilly have experienced monoclonal antibody Aβ drug failures in 
advanced clinical trials resulting in trial terminations [157,158]. Tau 
aggregation inhibitors are also being tested designed to discourage 
the formation of neurofibrillary tangles [159].

It should be noted that Biogen’s controversial “plaque buster” 
monoclonal antibody drug to amyloid-β (Aβ), aducanumab (BIIB-
037), was approved by the FDA in June 2021. However, the Scientific 
Review Committee voted to deny approval citing the presence of brain 
swelling, and some brain bleeds, in several clinical trials participants. 
This decision is currently under FDA review.

Biomarkers of alzheimer’s disease
AD patients present extensive distributions of senile plaques and 

neurofibrillary tangles accompanied by neuroinflammation, oxidative 
stress-induced damage and a pronounced loss of synaptic connections 
predisposing neuronal apoptosis [160]. Plaques composition includes 
aggregates of amyloid-beta peptide (Aβ) due to a significant elevation 
in the production of neurotoxic Aβ (1-42) [161,162]. The Aβ (1-42) 
peptide oligomerizes resulting in neuronal toxicity. Neurofibrillary 
tangles are characterized by aggregated hyperphosphorylated tau 
protein. These proteins normally act to stabilize microtubules but in 
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AD patients, they contribute to a loss of neuronal structural integrity 
ultimately impacting synaptic connections.

The goal of providing an effective treatment for AD has been 
elusive in part due to the multifactorial characteristics of the disease 
process and difficulty in identifying reliable biomarkers [163-165]. 
Presently established diagnostic indicators of AD are present in other 
forms of dementia including frontotemporal, vascular, diffuse Lewy 
body, corticobasal, dementia due to Parkinson’s disease and HIV 
infection, as well as normal aging [166-170]. It has been speculated 
that the pathology associated with AD may initiate many years 
prior to the occurrence of clinical symptoms [139,154,171]. Thus, 
considerable effort is being directed toward the development of early 
detection techniques via monitoring saliva, serum, cerebrospinal 
fluid, neuroimaging biomarkers, and behavioral measures of 
cognitive dysfunction [172-177]. Reliable detection at the earliest 
signs of AD related pathology could permit treatment many months 
or even years ahead of symptoms. Research must continue with the 
ultimate goal of preventing neuronal damage and preserving memory 
and cognitive functioning. However, efforts must also focus on the 
interim strategy to delay neuron losses in memory associated brain 
structures including the hippocampus, nucleus basalis of Meynert, 
piriform and neocortices. A drug designed to slow pathology, and 
thus major symptoms, would extend the patient’s quality of life and 
significantly reduce health care costs. De la Torre [178] has calculated 
that delaying disease onset by 5 years would reduce the number of 
diagnosed patients by upwards of 50%.

Parkinson’s Disease
Symptoms and treatments

 James Parkinson first described this disease in 1867 and 
Parkinson’s Disease (PD) now affects approximately 1.5% of the 
world’s population over 65 years of age [179]. PD is characterized 
as a progressive loss of brain Dopaminergic (DA) neurons in the 
substantia nigra pars compacta. The striatum is the primary projection 
field of substantia nigra DA neurons. The loss of DA synthesis and 
release results in insufficient stimulation of dopaminergic D1 and D2 
receptors throughout the striatum [180-182]. Decreased availability 
of DA triggers a triad of symptoms including bradykinesia, tremors-
at-rest, and rigidity. Discussion continues over the pathogenesis of PD 
with arguments in favor of both genetic and environmental factors. 
There is growing evidence from animal models and PD patients that 
neuroinflammatory processes, likely triggered by reactive oxygen 
species, damage mitochondrial membrane permeability, enzymes 
and mitochondrial genome, leading to DA cell death [183,184]. 

Levodopa (L-DOPA) has been shown to be effective at controlling 
motor symptoms in the majority of patients but is ineffective regarding 
non-motor symptoms. Current treatment strategies to relieve motor 
symptoms include DA replacement via L-DOPA (the precursor of 
DA), DA receptor agonists, monoamine oxidase B inhibitors, and 
catechol-O-methyltransferase inhibitors (to protect the DA that is 
formed). As the disease progresses periods of decreased mobility, 
dyskinesia, and spontaneous involuntary movements complicate 
treatment (Marsden, 1982). These motor dysfunctions are currently 
treated with the DA receptor agonists apomorphine and levodopa, 
and surgical techniques including pallidectomy and deep brain 
electrical stimulation [185-187]. Progressive DA neurodegeneration 

may also impact additional non-dopaminergic neurotransmitter 
systems including noradrenergic, cholinergic, and serotonergic [188]. 
As a result, non-motor symptoms may develop including depression, 
sleep disturbances, dementia, and autonomic nervous system failure 
[189-191]. L-DOPA continues to be the most efficacious oral delivery 
treatment for the control of motor symptoms [192]. Unfortunately, 
L-DOPA is reasonably ineffective at combating non-motor symptoms 
[189]. Thus, current research efforts are directed at controlling these 
additional symptoms, as well as the development of new strategies 
designed to offer neuroprotection and overall disease reversal 
benefits. Attaining the goals of slowing and hopefully reversing the 
rate of DA neuron loss may also result in the protection of non-DA 
neurotransmitter systems.

The RAS and parkinson’s disease 
A relationship between the brain renin-angiotensin system and 

Parkinson’s disease was first suggested by Allen and colleagues [193]. 
These researchers measured decreased angiotensin receptor binding 
in the substantia nigra and striatum in post mortem brains of PD 
patients. This can be explained by the fact that in addition to the 
systemic RAS described earlier there are local RASs present in many 
tissues including the brain [194]. These local systems also synthesize 
angiotensins that mediate the action of many substances including 
cytokines and growth factors involved in cellular growth, apoptosis, 
and inflammation [195,196]. Locally formed AngII binding at AT1 
receptors activates Nicotinamide Adenine Dinucleotide Phosphate 
(NADPH)-dependent oxidases that are a source of superoxide (O2) 
which is upregulated in diabetes, hypertension and atherosclerosis 
[197-201]. Activation of the AT1 receptor also results in the synthesis 
of chemokines, cytokines, and adhesion molecules, all important in 
the migration of inflammatory cells into regions of tissue injury [202]. 
Autoradiographic studies have identified AT1 receptors in substantia 
nigra DA neuron cell bodies and terminal fields in the striatum in a 
number of mammalian species including humans [16,203,204], with 
humans evidencing the highest levels [193].

Several studies support an important role for ACE in PD. ACE 
is present in the nigra-striatal pathway and basal ganglia structures 
[205-207]. PD patients treated with the ACEi perindopril showed 
improved motor responses to the DA precursor 3,4-dihydroxy-L-
phenylalanine [208]. Relative to treatment with perindopril, elevated 
striatal DA levels were measured in mice [209]. ACE inhibitors have 
been shown to inhibit bradykinin metabolism and thus modulate 
inflammation and induce blood vessel dilation [210], which are key 
factors in neurodegeneration. Activation of the AT1 receptor subtype 
by AngII activates NADPH-dependent oxidases, a significant source 
of reactive oxygen species [45,211]. Treatment with ACE inhibitors 
has been shown to offer protection against the loss of DA neurons 
in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) animal 
models [209,212], as well as the 6-OHDA rat model [213]. The likely 
mechanism underlying this ACEi-induced protection is a reduction 
in the synthesis of AngII acting at the AT1 receptor subtype [214,215].

In light of the above reports, it follows that if AngII activation of 
the AT1 receptor subtype results in facilitating the NADPH oxidase 
complex and the formation of free radicals, then blockade of the AT1 
receptor should serve a protective function. This appears to be the 
case given that treatment with AT1 receptor antagonists have been 
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shown to protect DA neurons in both the 6-OHDA [216] and the 
MPTP-models [217]. AT1 receptor antagonists have been shown to 
reduce the formation of NADPH oxidase-derived reactive oxygen 
species following administration of 6-OHDA. A recent study 
designed to evaluate the relationship between treatment with anti-
hypertensive drugs and the risk of developing a first-time diagnosis 
of PD, found no association with ACE inhibitors or AT1 receptor 
antagonists, while treatment with calcium channel blockers was 
associated with a reduced risk of Parkinson’s disease diagnosis [218]. 
It should be noted that there may be methodological concerns with 
this investigation [219]. 

A potential role for AngIV and the AT4 receptor in PD has been 
investigated [220]. A genetic in vitro PD model was used consisting 
of the α-synuclein over-expression of the human neuroglioma H4 cell 
line. Results indicated a significant reduction in α-synuclein-induced 
toxicity with losartan treatment combined with the AT2 receptor 
antagonist PD123319, in the presence of AngII. Under these same 
conditions, AngIV was only moderately effective. However, these 
authors did not use a metabolically stable AngIV analog nor did they 
employ an AT4 receptor antagonist in combination with AngII or 
AngIV.

In summary, experimental work suggests that treatment with an 
AT1 receptor antagonist may offer some protection against the risk 
of developing Parkinson’s disease [214]. However, results from an 
observational study concerning antihypertensive treatment and the 
risk of Parkinson’s disease were disappointing regarding treatment 
with ARBs and ACE inhibitors [218]. Much additional work must 
be conducted to better understand the relationship among brain 
angiotensin receptors and ligands, neuroinflammation and reactive 
oxygen species, as related to Parkinson’s disease.

Relationship Among RAS, Hepatocyte 
Growth Factor and Parkinson’s Disease
Neurodegeneration and aging 

Aging represents a major risk factor in predisposing individuals 
to neurodegenerative diseases [221-223]. The neurodegeneration 
accompanying aging is dependent in part upon oxidative stress, 
neuroinflammation, and microglial NADPH oxidase activity. Each 
is of significant importance regarding DA neuron loss [224,225]. 
Activation of AT1 receptors by AngII has been shown to facilitate 
DA neuron degeneration by activating microglial NADPH oxidase 
[225]. The activation of AT1 receptors by AngII failed to cause DA 
neuron degeneration when microglial cells were absent [211]. Of 
related importance, Zawada and colleagues [226] recently reported 
that nigral dopaminergic neurons respond to neurotoxicity-induced 
superoxide in two waves. First, a spike in mitochondrial hydrogen 
peroxide was measured three hours following treatment with an 
MPTP metabolite (MPP+). Second, by twenty-four hours following 
treatment hydrogen peroxide levels were further elevated. Treatment 
with losartan suppressed this nigral superoxide production 
suggesting a potentially important role for ARBs in the treatment of 
PD. Further, AngII binding at the AT1 receptor increased DA neuron 
degeneration initiated by subthreshold doses of DA neurotoxins by 
stimulating intra-neuronal levels of Reactive Oxygen Species (ROS) 
and neuroinflammation by activation of microglial NADPH oxidase 
[199,201,227,228].

AT1 receptor subtype blockade 
 From the above observations it follows that AT1 receptor 

blockade should have a neuroprotective effect on DA neurons in PD 
patients as demonstrated in animal models [217,220]. Less obvious 
is the likelihood that AT1 receptor blockade results in accumulating 
levels of AngII which is converted to AngIII and then to AngIV. This 
conversion cascade has been shown to occur intracellularly [229]. 
In fact, this conversion of AngII appears to be necessary for DA 
release to occur in the striatum [230]. Thus, an intriguing alternative 
explanation concerning these AT1 receptor antagonist results is 
that the increased endogenous levels of AngIV facilitate activation 
of the HGF/Met receptor system and in turn neuroprotection of 
DA neurons. In this way AngIV may act, in combination with AT1 
receptor blockade, to protect DA neurons.

In agreement with the above hypothesis, HGF has been shown 
to positively impact ischemic-induced injuries such as cardiac [231] 
and hind limb ischemia [232,233]. HGF has also been shown to 
eliminate hippocampal neuronal cell loss in transient global cerebral 
ischemic gerbils [234], and transient focal ischemic rats [235]. Date 
and colleagues [236] have reported HGF-induced improvement in 
escape latencies by microsphere embolism-cerebral ischemic rats 
using a circular water maze task. These authors measured reduced 
damage to cerebral endothelial cells in ischemic animals treated with 
HGF. Shimamura et al. [237] have shown that over-expression of 
HGF following permanent middle cerebral artery occlusion resulted 
in significant recovery of performance in the Morris water maze and 
passive avoidance conditioning tasks. Treatment with HGF was also 
found to increase the number of arteries in the neocortex some 50 
days following the onset of ischemia. 

In sum, these results suggest a role for the HGF/Met receptor 
system in cerebroprotection and are consistent with the notion that 
AngIV increases blood flow by a NO-dependent mechanism [238]. 
There have been reports of increasing doses of AngIV via the internal 
carotid artery significantly decreasing mortality and cerebral infarct 
size in rats twenty-four hours following embolic stroke due to the 
intracarotid injection of calibrated microspheres [137]. Pretreatment 
with the AT4 receptor antagonist Divalinal, or Nω-Nitro-L-
Arginine Methyl Ester (L-NAME), abolished this protective effect. 
Sequential cerebral autoradiography indicated that AngIV caused the 
redistribution of blood flow to ischemic areas within a few minutes. 
Thus, AngIV may yield its cerebral protective effect against acute 
cerebral ischemia via an intracerebro-hemodynamic Met receptor-
mediated NO-dependent mechanism. 

Type 2 Diabetes 
Case numbers 

At present, there are approximately 29 million diabetic patients 
in the U.S. with 1.4 million new cases diagnosed each year. Of these 
90% are Type 2 leaving the remainder as Type 1. World-wide the 
number of Type 2 diabetic patients is estimated to be 380 million 
(International Diabetes Federation) [239]. This number is anticipated 
to increase to 430+ million by 2050. Over time a significant number 
of these patients, perhaps as high as 10%, will develop AD-like 
symptoms [240-242]. Both Type 2 Diabetes (T2D)-induced dementia 
and AD are now considered “metabolic diseases” in that they evidence 
impairments in insulin responsiveness and glucose utilization. In the 
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case of AD this impaired response to insulin encourages, in part, 
brain inflammation, oxidative stress, the accumulation of β-amyloid 
protein within neurons, tau hyperphosphorylation, and the loss of 
synaptic connections resulting in neuronal apoptosis in memory-
related structures [243-246]. Hallmarks of T2D include brain insulin 
resistance and impaired insulin signaling that can initiate abnormal 
glucose metabolism, inflammation and oxidative stress responses, 
mitochondrial dysfunction, and vascular damage [241,244]. Thus, 
T2D and AD patient’s exhibit common biomarkers and the resulting 
T2D-induced cognitive impairments create long-term consequences 
with similar impacts on the patient, family members, care givers, and 
health care providers as AD [240,247]. Since T2D and AD patients 
share many biomarkers, and the presence of T2D accelerates the 
possible onset of AD-like symptoms [240,241], it is reasonable to look 
for predisposing factors common to both diseases. An overlooked 
contributor to the metabolic dysfunction seen in both AD and T2D is 
the role of the RAS. An argument can be made that T2D is facilitated 
by the onset of organ vulnerability to diabetic-induced hyperglycemic 
injury and over activity of local RASs [248-250]. 

AngII levels and oxidative stress 
 It has been known for some time that hyperglycemia induces 

oxidative stress; however, elevated AngII tissue levels have also 
been shown to act as an oxidative stress-inducer [251,252]. Thus, 
elevated AngII concentrations in diabetic tissues may exacerbate 
hyperglycemia-induced oxidative stress damage [248,249]. As a 
result, oxidative stress appears to both underlie, and be the result of, 
patho-biochemical mechanisms of diabetic-induced tissue damage 
[250]. For example, the retina and kidney have been reported to have 
over-active local RASs during episodes of hyperglycemia [253-255]. 
Elevated pro-renin levels have been measured in the vitreous of the 
eye in diabetic patients with proliferative retinopathy [256]. Some 
older patients with this disorder evidenced increased vitreous AngII 
levels [257]. Further, there is evidence that vitreous AngII levels are 
positively correlated with the degree of retinopathy [256]. There is 
a strong correlation between organs vulnerable to diabetic-induced 
hyperglycemic injury (e.g. kidney and retina) and the over activation 
of local RASs [258,259]. Increased AngII concentrations in these 
tissues appear to promote end-organ damage in at least two ways: 1) 
by activating AT1 receptor proteins thus inducing changes in local 
blood flow and tissue hydration; and 2) exacerbating hyperglycemic-
induced oxidative stress, elevated polyol and hexosamine pathway 
variability, and facilitating glycation end-products. Thus, the use of 
drugs to inhibit the RAS has become an important treatment approach 
to control diabetic nephropathy, and to a lesser extent retinopathy.

In support of this hypothesis is the finding that the inhibition of 
the RAS with ACE inhibitors, or ARBs, in diabetic nephropathy rats 
reduced oxidative stress [16]. Several clinical trials have evaluated 
the efficacy of RAS blockade with diabetic patients. One noteworthy 
trial focused on young Type 1 diabetic patients evidencing vascular 
superoxide overproduction (an early sign of angiopathy) due to 
hyperglycemia-related dysfunctional intracellular antioxidant enzyme 
production [260]. This dysfunction was reversed by treatment with 
the ARB irbesartan. Further, the ARBs candesartan and R-147176 
(a sartan with low affinity for the AT1 receptor subtype) appear to 
exert direct antioxidant influences presumably independent of AT1 
receptor blockade [261]. Thus, these drugs show promise with regard 

to protecting against diabetic-induced end-organ damage. However, 
they do not protect against T2D-induced dementia.

Type 2 diabetes and dementia
The diagnosis of T2D presents a major risk factor in the 

development of dementia. Type 2 diabetes is generally associated 
with aging and occurs at the rate of 20% in people over 65 years of 
age [246,262]. As previously indicated T2D is characterized by a 
number of metabolic disorders including cellular insulin resistance, 
compromised glucose utilization, and chronic inflammation. These 
dysfunctions facilitate cellular damage to kidneys, eyes, vasculature as 
in coronary artery disease, neuropathy and other end-organ damage 
[244]. The recognized metabolic syndrome associated with T2D 
include hyperinsulinemia, hypercholesterolemia, and hyperglycemia 
may encourage brain neuron losses resulting in structural atrophy. 
In addition, these neuronal pathologies are shared with AD patients 
[244]. It has been estimated that T2D patients may suffer a two-fold 
increase in the life time risk of dementia [263]. At least 10% of the 
current world-wide population of T2D patients evidence dementia 
characteristics. An intensive evaluation of 100,000+ cases of dementia 
revealed that the presence of diabetes resulted in a 60% increased 
risk of dementia in both men and women [264]. The relative risk of 
vascular dementia for T2D diagnosed women was 2.34-time controls, 
and 1.49 for men. The risk of nonvascular dementia was elevated 1.53 
for women and 1.49 for men. These analyses argue that world-wide 
there are an additional 30+ million T2D dementia patients to be 
added to the 47 million AD patients [265]. 

It has now become accepted that the treatment of T2D patients 
with ACE inhibitors or ARBs reduces activation of the RAS with 
resulting reductions in hypertension and oxidative stress, and also 
impacts local HGF/Met receptor systems. Along these lines treatment 
with an ACE inhibitor reduces the formation of AngII; however, the 
resulting increase in the nonapeptide, D-Asp1,AngI, leads to the 
cleavage of aspartate by APA, followed by conversion to AngIII with 
the cleavage of histidine and leucine via carboxypeptidases activity, 
and then to AngIV via APN cleavage of arginine [21]. This resulting 
elevation in circulating AngIV levels activates dimerization of HGF 
followed by increased binding at the Met receptor thus optimizing 
hepatic and cellular insulin responsiveness. A similar outcome would 
be anticipated with ARB treatment of T2D patients. Thus, the positive 
response of T2D patients treated with an ARB [19,20,65] may be due 
to an excess of AngII that cannot bind at the AT1 receptor subtype. 
This excess AngII is converted to AngIII, and then to AngIV and 
Ang (3-7). Both AngIV and Ang (3-7) are capable of facilitating 
dimerization of HGF, which then activates Met receptors in the 
pancreas and elsewhere. Activation of Met receptors in turn increment 
insulin production and facilitate cellular insulin responsiveness, with 
accompanying reductions in hyperglycemia-induced oxidative stress 
and end-organ damage. Unfortunately, these elevations in AngIV 
and Ang (3-7) do not prevent T2D-induced dementia. Our best guess 
is that both AngIV and Ang (3-7) have difficulty penetration the 
BBB and thus are not significantly impacting the brain. In addition, 
members of our laboratory determined years ago that the half-life of 
AngIV is in the range of 10-20 seconds. We did not know about the 
importance of Ang (3-7) at that time so did not test it.

In summary, a relationship exists between the development of 
Type 2 diabetes and the likelihood of neurodegeneration resulting 
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in Alzheimer’s disease-like symptoms. A complete understanding 
of the factors underlying this neuropathology has not been 
forthcoming. However, it appears that components of the RAS, 
specifically the AngII/AT1 receptor system, are activated by T2D, 
and in turn contribute to processes characteristic of AD including 
neuroinflammation, oxidative stress, reduced cerebral blood flow, 
destructive tissue remodeling and damage to the cellular mechanisms 
underlying memory consolidation and retrieval. These same 
pathologies have been identified in patients afflicted with T2D-
induced dementia [240], and a role for the RAS has been suggested 
[246]. An AngIV analog may be an effective treatment for T2D-
induced dementia [54]. This suggestion is bolstered by the finding 
that the HGF/Met receptor system has been identified as important 
in diabetes 266,267]. 

Depression and Neuroinflammation 
Major depressive disorder

Major Depressive Disorder (MDD) is a common form of mental 
disorder affecting approximately 15% of the U.S. population at least 
once during lifetime [268]. Approximately 17 million American 
adults experience one or more episodes of depression in a year [269]. 
In addition, episodes of depression are experienced by about 2% of 
children and 5% of adolescents [270]. The likelihood of depression 
increases with age particularly among those with functional 
disabilities, and/or physical and cognitive illness [271-273]. About 
10% of community/residence-seniors report symptoms of major 
depression [272,273]. The pathophysiology of adult depression is 
complex with contributing factors that include CNS and peripheral 
systemic factors, while Alzheimer’s disease, Parkinson’s disease, 
stroke, alcohol/drug addiction, and other chronic diseases, are 
recognized risk factors [274-276]. In particular, cancer, cardiovascular 
disease, metabolic and endocrine dysfunction are often associated 
with depression [277,278]. 

RAS and depression
The first suggestion that the brain RAS is important in depression 

came with the observation that captopril induced an anti-depressant 
effect in hypertensive patients that also suffered from depression [279-
282]. There had been previous hints concerning this relationship from 
animal studies. Specifically, rats treated with antidepressants revealed 
decreased water intake induced by peripherally or centrally injected 
isoprenaline, either in the presence or absence of a α2-adrenoceptor 
antagonist [283,284]. Further testing indicated that each of the 
antidepressant drugs fluoxetine, desipramine, and tranylcypromine, 
reduced AngII-induced dipsogenicity in rats [285,286].

Captopril treatment has also been shown to protect animals 
against the forced swim induction method of learned helplessness-
induced depression. This protocol requires the animal to swim within 
a small pool of water that has no escape. Eventually the animal stops 
swimming and becomes immobile. The next day it assumes swimming 
immobility significantly sooner than during the initial trial. In each 
subsequent test day, the latency to evidence immobility decreased, 
i.e. “learned helplessness”. Pretreatment with captopril reduced 
immobility by mice equivalent to treatment with the antidepressants 
imipramine or mianserine [287]. Learned helplessness induced by 
foot shock in rats could be prevented by pretreatment with captopril 
to the same effect as imipramine [288]. Under both protocols the 

protective effects of captopril were reversed by naloxone, suggesting 
that the ACE inhibitor was exerting its antidepressant effects, at least 
in part, via opioid receptors. In addition, this effect is also dependent 
upon the brain RAS since pretreatment with losartan provided 
protection from immobility in the forced swim test [289,290]. These 
results suggest that antidepressants exert their positive effects to 
some degree by inhibiting the brain RAS. The precise mechanism(s) 
of this inhibition remains to be determined. There is recent evidence 
that the chronic infusion of AngII may facilitate depression in adult 
C57BL/6 mice [291]. These animals were prepared with subcutaneous 
osmotic pumps and infused over a 21-day period. The mice evidenced 
depression-like behaviors when tested using forced swimming and 
tail suppression tasks. This depressive state could be reversed with 
imipramine or telmisartan. The authors hypothesized that AngII acts 
via microglia activation of the hippocampal-pituitary-adrenal axis, 
coupled with pro-inflammatory effects. They recognized that AngII 
does not readily cross the blood-brain barrier suggesting that it may 
be binding AT1 receptors located within circumventricular organs 
that are fenestrated permitting entry of larger molecules. The authors 
also indicated that peripherally infused AngII may activate AT1 
receptors in the paraventricular nucleus of the hypothalamus. These 
issues must be resolved. One very important potential contributor 
to these depression-like behavioral responses is sustained elevations 
in blood pressure. Since blood pressure was not measured in this 
study, there is no way to determine whether systemic blood pressure 
reached hypertensive levels sufficient to cause lethargy in the treated 
mice. Even so these results are of potential importance and will 
require additional testing. 

Identifying reliable biomarkers of depression has been 
challenging [292-294]. Many hypotheses have been posited to 
explain adulthood depression including alterations in glucocorticoid 
regulation and related stress hormones [295], insulin resistance 
[296], inflammatory chemokines and cytokines [297,298], and 
various trophic factors that are stimulated with injury, illness as well 
as other stressors [299]. Along these lines, accumulating evidence 
suggests that depression accompanying diabetes mellitus significantly 
increases pro-inflammatory mechanisms and a loss of hippocampal 
neuroplasticity [300-302]. The antidepressant medications presently 
available (5-hydroxytryptamine and norepinephrine-selective 
reuptake inhibitors) lack effectiveness in upwards of 50% of patients 
and typically require weeks of run-up treatment when effective [303].

Hippocampal and prefrontal cortex volume reductions
Post-mortem brain scans of depressed patients indicate significant 

reductions in the volume of limbic brain structures, most notably 
hippocampus and prefrontal cortex [304,305] two structures involved 
in memory and cognitive processing. Similar volume reductions (by 
MRI) have been measured in living MDD patients with severity 
depending on the progression of illness, duration and number of 
depressive episodes, and resistance to treatment [306]. Profound 
decreases in network connectivity have also been reported including 
decreases in intra- and inter-hemispheric functional connections. 
These results have been substantiated by a number of research groups 
[307-309] and have led to the notion that MDD should be categorized 
as a network dysfunctional disease [310]. Of particular importance, 
exposure to stress has been linked with neuronal atrophy and loss 
of glia in both structures [311,312]. Neurogenesis in the adult brain 
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is known to occur in the sub-granular zone of the dentate gyrus of 
the hippocampus and subventricular zone of the lateral ventricles 
[313,314]. Neural stem cells in these structures are capable of dividing 
asymmetrically to form a daughter stem cell and a rapid multiplying 
progenitor cell. If appropriately stimulated these progenitor cells 
mature into neurons that integrate into functional neuronal networks 
[315,316]. Chronic stress-induced depression decreases neurogenesis; 
however, treatment with antidepressant drugs may reverse this 
process [311,317,318]. 

Neurotrophic growth factors 
These observations point to the involvement of dysfunctional 

hippocampal plasticity in the neuropathology of depression, with 
particular focus on neurotrophic growth factors. The “neurotrophic 
hypothesis” of depression suggests that depression results from 
decreased neurotrophic growth factor activity causing atrophy of 
neurons in the hippocampus and prefrontal cortex, coupled with 
decreased neurogenesis and loss of glia. It has been hypothesized that 
treatment with antidepressant drugs interferes with, and/or blocks, 
neurotrophic factor deficits thus reversing atrophy [311-314]. The 
neurotrophic growth factors thus far linked with depression include 
Vascular Endothelial Growth Factor (VEGF), fibroblast growth 
factor-2, and insulin-like Growth Factor (IGF-1), with particular 
interest in Brain-Derived Neurotrophic Factor (BDNF) [319-323]. 
BDNF appears to be necessary for a positive response to treatment 
with antidepressant drugs [311,324]; however, preclinical results 
concerning the role of BDNF depletion in the etiology of depression 
are less consistent. BDNF-deletion mutant mice generally reveal 
normal behavior when tested for depression although conditional 
female mutant mice have been reported to show increased immobility 
during forced swim testing [325]. The use of RNA interference to 
knock down BDNF expression in hippocampal substructures results 
in depression as measured using forced swim and sucrose preference 
tasks [326]. Liu and colleagues [327] used a knock-in mouse prepared 
with human BDNF Val66met polymorphism in order to decrease 
trafficking of BDNF mRNA to dendrites. This resulted in reduced 
spine density and diameter and reduced synaptogenesis in the 
prefrontal cortex. Ketamine-induced synaptogenesis was impaired in 
these mice suggesting that synaptogenesis is dependent on dendritic 
translation/release of BDNF. In addition, the ketamine related 
antidepressant response seen in the forced-swim test was blocked. 
Human polymorphism in the BDNF gene appears to be carried by 
approximately 30% of the general population and is associated with 
mild cognitive deficits and depression. AngIV analogs acting at the 
Met receptor promotes synaptogenesis, neurogenesis and counters 
neuroinflammation. This approach may reduce the neuropathology 
and prevent neuron losses in the hippocampus and prefrontal cortex.

Neurodegenerative Diseases of the Eye
Approximately 3 million Americans have been diagnosed with 

glaucoma and 80 million worldwide. The overall number of patients 
is anticipated to reach 111 million by 2040 [328]. There are 11 
million macular degeneration patients in the U.S. and this number 
is predicted to be 22 million by 2050. Worldwide there are about 
196 million patients, predicted to approach 288 million by 2040 
[328]. Diabetes is responsible for a significant number of new cases 
of retinopathy (12,000 to 24,000 cases) each year [329]. Currently 

there are 7.7 million Americans with diabetic retinopathy, a number 
expected to reach more than 14 million by 2050 [330]. Taken together 
these diseases represent the major reasons for blindness in the U.S. 
and around the world.

As previously discussed, several organs possess local renin-
angiotensin systems. This is true of the eye [331,332]. Major 
contributors to these diseases include increased Intra-Ocular 
Pressure (IOP), decreased retinal microvascular blood flow, tissue 
inflammation and oxidative stress [333]. The role of the local RAS of 
the eye will be discussed with respect to each of these biomarkers and 
related diseases.

Glaucoma
The RAS of the eye is a major regulatory factor in the normal 

maintenance of IOP. Continuous adjustment is necessary regarding 
Aqueous Humor (AH) flow. Optimal IOP is required in order to 
maintain the normal shape of the eye and in turn optical and refractory 
properties. AH is produced by the ciliary body [334] and exits the 
anterior chamber via the trabecular, uveoscleral and uveolymphatic 
pathways [335]. AH flow through the trabecular meshwork, the 
endothelial lining of Schlemm’s canal, and finally collateral channels 
and aqueous veins into the circulation [336-338]. This flow appears 
to be driven by the pressure gradient of the IOP [339-344]. The 
resistance against outflow yields an IOP of approximately 15 ± 5 mm 
Hg [334,345,346]. This value can vary depending on physical exercise 
[336,347-349], sleep, changes in posture [350], aging and disease 
[335].

The optic neuropathy caused by untreated glaucoma leads to 
death of retinal ganglion cells and neurons thus impacting vision 
[351,352]. This disease can be difficult to diagnose given that not 
every patient evidences an elevated IOP, and not all patients with an 
elevated IOP necessarily develop glaucoma [353]. However, at present 
of the known risk factors IOP is of major importance and pressure 
reduction procedures have been shown to slow disease progression 
[354-358]. These include topical medications, laser therapy and 
surgical intervention such as shunts designed to lower IOP by 
increasing AH outflow or procedures to decrease the formation of 
AH.

Igic and colleagues [359] were the first to measure the presence 
of ACE activity in retinal homogenates. Since that discovery all of the 
major components of the RAS have been isolated in the eye including 
AngII, Ang (1-7), ACE2, the AT1 and Mas receptors [331,360-362]. 
Given that the “blood-ocular” barrier discourages penetration by 
AngII, ACE and aldosterone it has been concluded that the eye 
possesses an intrinsic local RAS [363]. A number of investigators 
have proposed that this intrinsic system is important regarding the 
maintenance of IOP [332,364,365]. Related to this glaucoma patients, 
as well as animal models, placed on ACE inhibitors or ARBs evidence 
decreased IOP [366-372]. Glaucoma patients treated with the ARB 
losartan revealed significant drops in IOP via increased AH outflow 
regardless of whether they were initially hypertensive or not [368]. 
Further, topical application of Ang (1-7) also reduced IOP and this 
effect could be prevented by the Mas receptor antagonist A-779, 
suggesting that it was dependent on the Ang (1-7)/Mas receptor 
system [373]. There is also the claim that Ang (3-4) can inhibit ACE 
resulting in an increased level of AngI that is converted to Ang (1-
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7) by ACE2 and exerts a protective influence [374]. Some years ago, 
James Fitzsimons and others investigated the pressor potency of 
several centrally applied angiotensins [375-377]. They reported the 
greatest pressor activity to intracerebral injected AngII followed by 
AngI and AngIII (picomol range), with less activity induced by Ang 
(3-8), (4-8), (5-8), and (6-8) (nmol range). The C-terminal dipeptide 
AngII (7-8) and other dipeptides were inactive. Given that Ang (3-4) 
is a dipeptide with a peptide bond that is vulnerable to degradation 
in vivo, the half-life of Ang (3-4) is likely very short, casting doubt on 
the clinical usefulness of this peptide. However, additional testing is 
necessary to determine whether these results can be replicated.

Macular degeneration 
Age-Related Macular Degeneration (AMD) is a neurodegenerative 

disease resulting in the progressive loss of photoreceptor retinal 
pigment Epithelial Complex (RPE) cells [378]. As this occurs there 
is the observable accumulation of extracellular material called drusen 
at the interface of the RPE and the inner collagenous zone of Bruch’s 
membrane. The detection of drusen within the macula of the eye is 
a definitive sign of AMD. The risk factors for AMD are many and 
include aging, genetics (offspring of AMD parents have a 3- to 6-fold 
increased risk as compared with the general population), smokers 
(greater than 40 years of smoking increases the likelihood by 2- to 
4-fold), dietary intake of saturated fats, trans fats and omego-6 fatty 
acids [379], abdominal obesity also correlates, especially for men 
[380]. Chronic tissue inflammation is a recognized factor in AMD 
[381]. Although short term inflammation is very helpful to fight 
microbial infection and injuries, chronic inflammation can be very 
harmful, particularly as seen in neurodegenerative diseases. Finally, 
elevated oxidative stress and vascular insufficiency have been 
associated with inflammation, endothelial dysfunction and neuron 
degeneration in the retina [382].

There is a paucity of information concerning the potential role of 
the RAS in the etiology of AMD and yet there is overwhelming evidence 
that these local systems are instrumental in facilitating inflammation, 
increases in free radicals, coupled with vasoconstriction of local 
vessels [246]. As discussed, there are also angiotensin molecules 
capable of countering these deleterious factors including Ang (1-7) 
and small molecule AngIV analogs discussed in the next section.

Diabetic retinopathy
In general, the longer a patient has diabetes the greater the risk of 

developing Diabetic Retinopathy (DR) [383]. With non-proliferative 
DR the linings of retinal blood vessels are weakened resulting in 
microaneurysms. These bulges in the vessel wall often leak leading 
to swelling of the macula. With proliferative DR this condition 
advances to a critical point at which the retina is deprived of oxygen. 
In response new blood vessels form in the retina (angiogenesis) 
obstructing vision [384]. The tissue ischemia appears to trigger the 
production of growth factors such as VEGF. Diabetic animal models 
evidence increased retina levels of ACE, ACE2 and the AT1 receptor 
protein [385-387]. Since AngII has a mitogenic influence on retinal 
endothelial cells in the retinal microvasculature, it is a prime suspect 
in stimulating the up-regulation of VEGF [388,389]. In addition, 
it is known that AngII stimulates Reactive Oxygen Species (ROS) 
formation [390,391] and ROS promotes retinal damage in DR. Along 
these lines, diabetic animals treated with ACE inhibitors, or ARBs, 

evidenced reduced retinal microvascular damage, decreased vascular 
leakage, and reduced capillary formation and VEGF levels [392-395].

Human clinical trials to date have produced mixed results 
regarding the role of the RAS in the development of DR. One 
study reported that treatment with the ARB candesartan somewhat 
slowed retinopathy progression in Type 1 diabetic patients without 
hypertension [256,396-398]. A second study tested the combination 
of ACE inhibitors and a diuretic and found no impact on DR. It will 
be instructive to evaluate the efficacy of Ang (1-7), and the newly 
synthesized small molecule AngIV analogs, in the treatment of DR. 
These molecules should be tested by both oral and topical routes of 
administration.

Small Molecule Drug Development
Drug development targets

New targets must be considered in order to control the symptoms 
of neurodegenerative diseases and hopefully stop their progression. 
Clearly the RAS is a contributor and deserves particular attention. 
Basic characteristics of any drug candidate must include an extended 
half-life, the ability to protect vulnerable neurons in brain structures 
that mediate cognition, and the capacity to stop and perhaps reverse 
any damage. Additional specific criteria include the following: 1) 
the drug must penetrate the blood-brain-barrier in order to impact 
damaged brain structures. This is a major problem regarding most 
peptides and large proteins such as growth factors; 2) the half-
life of the compound must be of sufficient duration to maintain a 
therapeutic level; 3) the avenue of drug delivery must be convenient 
for use by the patient and/or caregiver. This means oral, local 
application including cutaneous (patch) or subcutaneous (as with 
pen delivery) routes. Once the drug satisfies these challenges it would 
be desirable if it possessed the following neurological characteristics: 
4) the capacity to encourage synaptogenesis, and promote stem 
cell proliferation, differentiation, and neurogenesis in impacted 
structures; 5) evidence neuroprotection especially against tissue 
ischemia, neuroinflammation and oxidative stress; 6) in the cases of 
dementia facilitate LTP, memory consolidation and retrieval, delay 
the onset of MCI and prevent concussion-induced encephalopathy. 
7) With regard to the discussed eye diseases the drug candidate must 
protect the integrity of the retina and be delivered via convenient 
routes of administration.

Potential drug development approaches and targets
A first step in preventing the damage due to neurodegenerative 

diseases is to control hypertension with ARBs in order to block AT1 
receptors or ACE inhibitors to reduce the synthesis of AngII. There 
is a need to collect additional information on the beneficial cognitive 
effects of these drugs. However, those normotensive individuals 
at risk to develop symptoms of MCI and dementias are likely not 
candidates for treatment with ACEi or ARBs. Also, at present there is 
minimal information concerning the potential effectiveness of these 
drugs to limit symptoms and no evidence that they prevent the onset 
of dementias.

Target: AngIII agonists acting at the AT2 receptor subtype 
To date it is unclear whether the AT2 receptor is present in 

sufficient numbers in brain structures associated with cognitive 
functioning to warrant clinical testing in AD patients. This may 
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change with additional research attention. An initial challenge 
concerns the design and synthesis of a non-peptidic AngIII agonist 
with an extended half-life that binds at the AT2 receptor subtype 
(Figure 3). 

Target: IRAP inhibitors
IRAP inhibitors (e.g. LVVhaemorphin7) have shown preclinical 

promise in enhancing memory on several tasks used to evaluate the 
performance of animal models [152,399]. Several specific inhibitors 
to IRAP have been developed that enhance spatial memory and fear 

avoidance in animal models [152,400]. Anderson and Hallberg [65] 
have been particularly successful in designing and synthesizing a 
number of IRAP inhibitors. Also, IRAP knockout mice have been 
shown to suffer significantly reduced cerebral infarct volume 24 hours 
following a 2-hour transient cerebral artery occlusion as compared 
with wild type mice [401]. These results were attributed to an increase 
in compensatory cerebral blood flow during the occlusion process. 
The authors suggest that IRAP may be an important target regarding 
the treatment of ischemic stroke as well as AD.

Target ang (1-7) analogs acting at the MAS receptor 
A promising approach particularly regarding local ocular 

application concerns increased activation of the Ang (1-7)/Mas 
receptor system. Ang (1-7) has been shown to stimulate the release 
of Nitric Oxide (NO) from vascular endothelial and smooth muscle 
cells thus opposing AngII and vasopressin-induced vasoconstriction 
[402,403]. This peptide also protects cardiac and endothelium 
functioning as well as coronary perfusion as demonstrated in heart 
failure models [404]. It is of interest that Ang (1-7) has been shown 
to facilitate baroreceptor reflex sensitivity and modulate circadian 
rhythm influences on heart rate and blood pressure [405,406]. It is well 
established that AngII promotes thrombosis primarily via expression 
of Plasminogen Activator Inhibitor 1 (PAI-1) [407,408]. Kucharewicz 
and colleagues [409,410] have reported that Ang (1-7) functions as an 
antithrombotic agent when administered to renal hypertensive rats 
that served as a venous thrombosis model. A major first step toward 
the use of this peptide to offset AngII’s influence is the development 
of a non-peptidic Ang (1-7) analog, AVE09991 [411]. It would be 
very interesting to see the results of clinical trials designed to evaluate 
the efficacy of local application of this small molecule to glaucoma, 
macular degeneration and diabetic neuropathy patients.

Target: Neurotrophic analogs
There are few neurotransmitter, neuromodulatory or growth 

factor systems capable of satisfying the above listed drug development 
criteria and preventing dementia-associated dysfunctions. However, 
as earlier suggested neurotrophic agents possess characteristics that 
make them excellent candidates [13,76,80,246,412-414]. There are 
several neurotrophins capable of stimulating synaptogenesis, stem 
cell differentiation, neurogenesis, and neuroprotection against 
a wide range of cellular insults by facilitating anti-inflammatory 
and anti-apoptotic neuronal effects. These include NGF, BDNF, 
neurotrophin-3 and neurotrophin-4/5 [415-417]. Of these, BDNF 
has received considerable attention regarding depression and stress 
[418] and AD [176,412,416,419]. However, neurotrophins have had 
little success in clinical trials directed at neurodegenerative diseases 
due to their poor pharmokinetic profile and large molecular weight 
that significantly impedes penetration of the BBB [420,421]. Jang 
and colleagues [421,422] have reported that the small molecule 
antidepressant drug amitriptyline is capable of binding to the Trk 
receptor, induce receptor dimerization, and autophosphorylation. 
As previously mentioned receptor, dimerization is a prerequisite to 
activation of neurotrophins and downstream signaling. Thus, the use 
of amitriptyline may serve as a “short-cut” past BDNF to receptor 
activation and have a positive impact against AD. However, at the 
present time this drug is being tested in clinical trials conducted with 
depressed and chronic pain patients, but not AD patients [423]. 

Figure 3: Suggested pharmacological targets to offset the deleterious 
effects of an overactive Ang II/AT1 receptor subtype system. Target 1: 
activation of the AT2 receptor by AngIII (and AngIII analogs) to initiate cellular 
proliferation and differentiation accompanied by regenerative processes. 
Target 2: AngIII conversion to AngIV (and AngIV analogs) acting at IRAP 
results in IRAP inhibition thus resulting in the potentiation of several memory 
enhancing peptides including AngIV, vasopressin, oxytocin, somatostatin 
and cholecystokinin-8. Target 3: AngII conversion to Ang (1-7) that binds at 
the MAS receptor. MAS receptor activation encourages the release of nitric 
oxide thus promoting anti-thrombosis and facilitated Long-Term Potentiation 
(LTP) resulting in enhanced memory processing. Target 4: Brain-Derived 
Neurotrophic Factor (BDNF; and amitriptyline) binds at the Trk receptor 
and increases trafficking of BDNF mRNA to dendrites. This appears to be 
required for normal synaptogenesis. Target 5: AngIII is converted to AngIV 
(also Dihexa) that acts as an agonist at the AT4 subtype resulting in facilitated 
cerebral blood flow, increased neuroprotection, synaptogenesis and LTP, 
thus promoting memory consolidation and retrieval. Small molecule AT4 
receptor antagonists (Divalinal, Norleual) interfere with activation of the AT4 
receptor subtype and may be particularly useful in decreasing the activation 
of the Met receptor in solid tumors. Target 6: Ang (1-7) and small molecule 
Ang (1-7) analogs, plus Dihexa, may be useful applied topically to the eye to 
preserve the integrity of the retina by reducing oxidative stress, inflammation, 
facilitating blood flow and thus decreasing the accumulation of extracellular 
material called drusen.
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Target: AngIV analogs acting at the AT4 receptor subtype
There is now substantial evidence that the brain AngIV/

AT4 receptor system is critically involved in memory formation 
and may overcome the memory inhibiting influences of AngII 
[54,55,87,131,424]. However, endogenous AngIV has a short half-
life and thus appears to be over powered by AngII levels. In an effort 
to develop an AngIV, analog members of our laboratory initially 
synthesized a number of AngIV-based compounds possessing 
extended half-lives [425,426]. This resulted in the development of 
two potent receptor antagonists, divalinal-AngIV and norleual-
AngIV [72,75,427-429], and one promising agonist, Nle1-AngIV. 
We determined that the memory facilitating effects of Nle1-AngIV 
derived from its N-terminal region given that fragments as small as 
tetra- and tripeptides retained the ability to overcome scopolamine-
induced amnesia in animal models [73,87]. Further, Nle1-AngIV, as 
well as these shorter fragments, augmented hippocampal synaptic 
connectivity via the formation of new synapses [73]. Functionality 
of these synapses was established via evidence of analog-induced 
spinogenesis and the colocalization of synaptic markers in newly 
formed dendritic spines, which were coupled with enhanced 
miniature excitatory postsynaptic currents. These results encouraged 
the possibility that a clinically useful non-peptidic small molecule 
could be designed possessing increased metabolic stability with an 
extended half-life, and BBB penetrability offering facilitated cognitive 
functioning. Subsequent design and synthesis efforts yielded a 
small molecule with increased hydrophobicity, decreased hydrogen 
bonding potential, and significantly increased metabolic stability, 
dihexa. This compound induces spinogenesis/synaptogenesis at 
picomolar concentrations, is slowly cleared from the blood (plasma 
stability t1/2 = 5-6 hours) and can be delivered via parenteral routes 
of administration [76]. Dihexa binds with high affinity to HGF and 
stimulates dimerization, a prerequisite to binding at the Met receptor, 
and it induces Met phosphorylation in the presence of subthreshold 
levels of HGF. It also stimulates hippocampal spinogenesis and 
synaptogenesis equivalent with HGF [73,80]. Treatment with an 
HGF antagonist, “hinge”, as well as a short hairpin RNA directed 
at Met, significantly inhibited these actions suggesting that these 
effects are due to specific activation of the Met receptor. Further, 
dihexa penetrates the BBB in sufficient quantity to facilitate memory 
consolidation and retrieval in the scopolamine-induced amnesic rat 
model of AD, as well as in aged rats employing the Morris water maze 
task of spatial memory [54].

Target: Topically applied drugs to treat retinal degeneration
Given results, indicating that ACE inhibitors and ARBs reduce 

ocular pressure the topical application of these drugs to glaucoma 
patients is worth evaluating. A clinical trial utilizing topically applied 
Ang (1-7) in glaucoma patients while monitoring ocular pressure 
and progression of retinal damage should be conducted. Regarding 
macular degeneration and diabetic retinopathy patients, topically 
applied Ang (1-7) and dihexa should be investigated with ongoing 
measurements of the same dependent measures.

Conclusion
Progress is being made concerning early detection of MCI. The 

development of new efficacious drugs to delay, and hopefully prevent, 
the onset of dementia symptoms must catch up with these efforts. 

This will require a shift in our thinking. This shift is supported by 
the following observations from past findings: 1) β-amyloid-induced 
plaques and neurofibrillary tangles define AD but may not cause it. 
These cellular markers are likely consequential to other deleterious 
dysfunctions. 2) Efforts to develop drugs to rid neurons of amyloid 
plaque buildup have generally failed to improve cognitive processing. 
It is likely that current efforts to prevent neurofibrillary tangles will also 
fall short with regard to improved memory functioning. 3) Alzheimer’s 
disease has a multitude of potential causes. These include, but are not 
limited to, genetic predisposition, neuroinflammation, head trauma, 
untreated hypertension, diabetes, Parkinson’s disease, infection and 
normal aging. It may be necessary to attack each of these likely causes 
with separate drug development programs. 4) Presently available 
drugs do not promote synaptogenesis of existing neurons. The loss 
of synaptic connections discourages neurogenesis and is a major 
cause of neuronal apoptosis; 5) Current research must encourage 
efforts to develop drugs that penetrate the BBB, facilitate cognitive 
processing, and protect against the loss of synapses and neurons. 
6) Neurotrophic agents offer the ability to facilitate synaptogenesis, 
neurogenesis and neuroprotection thus greater research attention 
must be directed toward creating small molecule analogs designed 
to penetrate the BBB and activate these brain systems. 7) It is likely 
that a successful approach to treating AD will require several different 
“Multiple Target-Directed Ligands” (MTDLs). Neurotrophic small 
molecule analogs may be useful in configuring such a strategy. 8) New 
drugs must be developed to treat glaucoma, macular degeneration, 
and diabetic retinopathy. With each disease, a major consequence 
is progressive retinal damage. The research presently summarized 
suggests that compounds designed to reduce the influence of the local 
AngII/AT1 receptor system should be effective in controlling retinal 
damage in patients afflicted with these dysfunctions. Small molecule 
RAS related drugs designed to function as AT1 receptor antagonists, 
followed by AngIV small molecule analogs that pass the blood-retina 
barrier, act to reduce oxidative stress, facilitate blood flow and stem 
neurodegeneration, are promising candidates as ocular treatments.
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