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Abstract

Epigenetic modifications including DNA methylation, histone modifications 
and RNA interference (RNAi) provide a significant impact on human health and 
disease development. Changes in epigenetic functions result in disturbance in 
gene regulation and aberrant gene expression, which strongly contributes to 
progression of various types of cancers. The reversible nature of epigenetic 
functions has made them attractive as targets for drug development. In this 
context, DNA methyltransferase inhibitors and histone deacetylase inhibitors 
have been targeted against cancers. RNAi, specifically microRNAs (miRNAs) 
have demonstrated differential expression including up-regulation and down-
regulation in a number of cancers. Furthermore, miRNA levels in biofluids (serum 
and urine) provide opportunities for diagnostic applications of epigenetics. 
Nutrition has been demonstrated to have a substantial impact on epigenetic 
mechanisms. Dramatic changes in dietary intake have been shown to affect 
epigenetic functions and might provide the means for a significant reduction in 
cancer risk and also may contribute to disease prevention. Furthermore, revision 
of diet in cancer patients has resulted in changes in gene expression, which 
can enhance therapeutic efficacy. Especially, diets rich in fruits, vegetables, 
fish and fibers and reduction in consummation of red meat have influenced the 
epigenome and thereby provide both prophylactic and therapeutic efficacy.
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substantial dietary changes have demonstrated a profound effect on 
epigenetic functions and might therefore provide both prophylactic 
and therapeutic efficacy against cancer and other diseases. 

Epigenetics and Cancer
Related to epigenetics, it has been discovered that dietary factors 

play an important role. In this context, bioactive food compounds 
such as folate, polyphenols, selenium and retinoids demonstrate a 
strong impact on DNA methylation and histone modifications [16]. 
Furthermore, nutritional modifications have been identified to be 
responsible for aberrant miRNA expression [17]. Cancer provides 
next to cardiovascular diseases the highest mortality worldwide. The 
development of cancer is postulated to be a multi-step process and 
until recently was considered to rely on mutations in crucial genes 
[18]. Intensive research has revealed the involvement of epigenetic 
mechanisms responsible for breakdown in gene regulation. In this 
context, DNA methylation, histone modifications and RNAi have all 
been revealed to contribute to cancer development.

DNA Methylation
In epigenetic modulations based on DNA methylations a methyl 

group (CH3) is covalently added to the 5’-position of cytosine 
upstream of guanosine affecting the regulation of gene expression, 
which presents an impact on differentiation, genomic imprinting 
and DNA repair [6]. The methylated CpG islands are clustered 
prominently in the promoter regions of genes and can result in 
reduction, cessation or up-regulation of mRNA transcription, which 
has been associated with cancer [19,20]. For instance, inactivation of 
tumor suppression genes such as HIC1, INK4b and TIMP3 has been 

Introduction
Although a number of genetic variations such as point mutations 

[1], deletions [2], insertions [3] and copy number variations [4] 
have been identified to affect gene expression, fairly recent findings 
have also demonstrated the involvement of epigenetic mechanisms 
showing significant impact on disease development [5]. As epigenetic 
modifications do not involve changes in the primary DNA sequence 
they are reversible and therefore potentially attractive as targets for 
drug discovery and development. Epigenetic changes consist of DNA 
methylations [6], histone modifications [5] and RNA interference 
(RNAi) [7]. DNA methylations have been linked to both up- and 
down-regulation of mRNA transcription [8]. Related to histone 
modifications, particularly histones H3 and H4 are modified by 
acetylation, methylation, ubiquitination and phosphorylation [9], 
which can lead to both up- and down-regulation of transcription 
[10,11]. Moreover, the phenomenon of RNAi involves 21-23 
nucleotide long single-stranded microRNAs (miRNAs), which by 
interfering with mRNA leads to down-regulation of gene expression 
[12,13]. More than 1800 miRNAs are deposited in databases [14] 
and a large number of miRNAs have been associated with different 
diseases [12,15] as described in more detail below.

In this review, emphasis will be placed on the association of 
abnormal epigenetic modifications to the promotion of cancer 
development. As more and more discoveries are made in this area 
it will only be possible to illustrate the progress through selected 
examples involving DNA methylation, histone modifications and 
RNAi. Additionally, the effect of food intake and its effect on epigenetic 
mechanisms leading to disease will be discussed. Most importantly, 
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associated with hypermethylation in their promoter regions [21]. 
DNA hypermethylation of the SPRY2, RASSF1A, RSK4, CHFR and 
CDH1 genes has been linked to endometrial cancer [22]. In breast 
cancer, DNA methylation has been indicated to play an important 
role demonstrated by altered methylation of several genes in cancer 
tissue [23]. Furthermore, heterogeneity in transcription activity and 
differential metastatic behavior were observed in DNA methylome 
analysis of primary breast cancer [24]. Divergent changes primarily 
in CpG island-poor regions were discovered after profiling the DNA 
methylome and transcriptome of 44 matched primary breast tumors 
and regional metastasis. Altered DNA methylation patterns have also 
been observed in prostate [25] and rectal [26] cancer patients. It has 
been established that Helicobacter pylori infection can induce DNA 
methylation, which might be associated with gastric cancer risk. A 
cross-sectional study of 281 Japanese individuals revealed that mean 
methylation levels were 2.5-34.1 times higher in the presence of H. 
pylori infections [27]. Furthermore, in presence of H. pylori infection 
the miR-124a-3 methylation levels were increased in smokers and 
reduced in individuals consuming green/yellow vegetables. In 
contrast, these associations were not found in uninfected individuals.

Physical activity has also been linked to DNA methylation and 
disease [8]. For instance, in a study on more than 600 non-Hispanic 
white women with a family history of breast cancer, those that were 
involved in physical exercise showed a significantly higher LINE-1 
methylation (which is an index of global DNA methylation) [28]. 
In another approach, the correlation between physical activity and 
DNA methylation was studied in 509 individuals aged 70 years and 
older using the Luminometric Methylation Assay (LUMA) [29]. 
Global methylation correlated with physical exercise. In contrast, in 
the Commuting Mode and Response Study physical activity was not 
associated with LINE-1 methylation [30].

In the context of DNA methylation, several drugs have been 
developed based on DNA Methyltransferase (DNMT) inhibitors. For 
instance, azacytidine and decitabine have been shown to be efficient 
epigenetic modulators [31,32]. However, toxicity and limited chemical 
stability have restricted applications for cancer therapy, which might 
be readdressed by using the more stable and less cytotoxic cytidine 
analogue zebularine (1-(β-dribofuranosyl)-1,2-dihydropyrimidin-2-
one). DNMT inhibitors have also been combined with other drugs for 
cancer treatment. For instance, Esophageal Squamous Cell Carcinoma 
(ESCC) and Esophageal Adenocarcinoma (EAC) cells treated with 
azacytidine and Histone Deacetylase (HDAC) inhibitors targeted 
esophageal cancer cells by inducing DNA damage, cell viability loss 
and apoptosis [33]. Another example of DNMT and HDAC inhibitor 
combination relates to hydralazine-valporate treatment for cutaneous 
T-cell lymphoma [34]. The oral administration was proven safe, but 
further clinical trials need to be conducted to confirm the efficacy in 
other types of cancer. 

Histone Modifications
Epigenetic functions also include histones, which play important 

roles in packaging DNA in chromatin structures [5]. Acetylation, 
methylation, ubiquitination and phosphorylation are the main 
modifications of histones H3 and H4 [9]. Histone acetylation has 
generally been associated with gene activation and decondensation 
[31] including activation of transcription [32] resulting in altered 

expression of oncogenes, tumor suppressor genes and DNA repair 
genes. For instance, histone H4 lysine 20 actetylation was enriched 
around transcription start sites of minimally expressed genes and 
in the gene body of over expressed genes indicating the association 
of a unique acetylation and gene expression [31]. In the context of 
colon cancer, histone H3 lysine 27 acetylation was up-regulated 
in esophageal cancer cells [33]. Epigenomic-based therapeutic 
approaches have also been applied for ovarian cancer targeting histone 
modifications and histone regulating enzymes [34]. In another study, 
a novel class I HDAC inhibitor MPT0G030 has showed induced 
cell apoptosis and differentiation in human colorectal cancer cells 
[35]. This in vivo anti-cancer activity suggests a great potential for 
cancer therapy. Furthermore, HDAC inhibitors have been applied for 
treatment of Non-Hodgkin’s lymphoma [36]. At least four HDAC 
inhibitors (vorinostat, romidepsin, belinostat and panobinostat) have 
been approved by the FDA for cancer treatment [37]. Vorinostat 
is used for the treatment of cutaneous T-cell lymphoma [38] and 
combination therapies of vorinostat for various solid tumors are in 
progress. Moreover, several other HDAC inhibitors are currently 
subjected to clinical trials.

RNA Interference
RNAi has been strongly associated with the development of 

epigenetic drugs, especially in cancer therapy. In this context, it was 
demonstrated that miRNA-135b is up-regulated in sporadic and 
inflammatory bowel disease-associated human Colorectal Cancer 
(CRC) [39]. Increase in miRNA-135b levels correlated with tumor 
stage and poor clinical outcome. When over expressed miRNA-
135b was inhibited the tumor growth was reduced by controlling 
downstream genes involved in proliferation, invasion and apoptosis 
in a CRC mouse model. In another study, miR-21, miR-126 and 
miR-143 dysregulation was associated with cervical cancer, which 
has attracted both therapeutic and diagnostic applications [40]. 
Moreover, altered expression of miR-15 and miR-16 has been 
detected in B-cell Chronic Lymphocytic Leukemia (CLL) [41] and 
miR-17-92 has been linked to B cell lymphoma [42]. Differential 
expression of miR-145 has been associated with breast [43], ovarian 
[44] and colorectal [45] cancer. A number of other miRNAs such as 
miR-141 and miR-200 are up-regulated in ovarian cancers, while 
miR-125b, miR-140, miR-145 and miR-199 are down-regulated [44]. 
Links between miR-21, miR-17-92 and miR-34a and glioblastoma 
[46], lung cancer [47] and pancreatic cancer [48], respectively, have 
also been described. Moreover, miRNAs possess tumor suppressor 
activity and for instance miR-143 and miR-145 showed oncogenic 
activity and suppressed the anti-apoptotic Bcl-2 gene [49].

In addition to therapeutic applications, diagnostic approaches 
have involved determination of miRNA levels in serum and screening 
of aberrant hypermethylation of miRNAs [50]. Furthermore, 
miRNAs detected in extracellular vesicles in biofluids were validated 
in urine samples of prostate cancer patients [51]. It was demonstrated 
that miRNA isoforms (isomiRs) with 3’ end modifications showed 
significant differences in prostate cancer patients compared to control 
individuals.

Diet and Cancer
Nutrition plays an important role on human health and 

development of disease and particularly in the case of various cancers. 
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Already in the 1980s it was estimated that diet accounted for about a 
third of the risk of developing cancer in the US [52]. Furthermore, 
the World Cancer Research Fund and American Institute of Cancer 
Research Report concluded based on thousands of publications that 
diet provides globally a significant contribution to cancer [53] and 
most likely two thirds of cancer-related deaths could be prevented 
by dietary and lifestyle modifications [54]. Numerous studies have 
indicated or confirmed the influence of nutrition on cancer prevention 
and therapy. The enormous progress in bioinformatics, genomics and 
proteomics has lead to the foundation of nutrigenomics for a better 
understanding of the relationship between nutrition and disease [55]. 
In the context of cancer, understanding of the relationship between 
nutrition and cancer has been compromised by the existence of 
different cancer types, level of aggressiveness and presence at different 
stages of life. Moreover, individual variations in food consumption, 
digestion, metabolism and diversity related to geography, ethnicity 
and sociology has complicated the identification of food components 
promoting health and preventing disease [56]. 

Nutrition and Different Cancers
Cancer prevention approaches have included investigations 

of biologically active compounds from plants [57]. Several studies 
have demonstrated the impact of cruciferous vegetables, green tea, 
and spices like curry and black pepper on epigenetic modifications 
in female cancers [58]. Moreover, indol-3-carbinol (I3C) derived 
from cruciferous vegetables has recently been identified as an 
essential component of the anti-proliferative activity on breast cancer 
cells by the tumor suppressor miR-34a [59]. Therefore, studies on 
phytochemical-dependent miRNA level changes and novel substances 
such as brusatol or artemisinin are of great importance. Furthermore, 
understanding whether these substances demonstrate synergistic or 
antagonistic activity provides improved potential for successful cancer 
therapy. In a mouse model of basal-like breast cancer, chronic obesity 
was evaluated as a breast cancer risk factor for induction of mammary 
gland epigenetic reprogramming and increase in mammary tumor 
growth [60]. Animals with MMTV-Wnt-1 mammary tumors fed on 
a Diet-Induced Obesity (DIO) regimen showed larger mean tumor 
volumes, increase in serum IL-6 levels, enhanced expression of pro-
inflammatory genes in the mammary fat pad and amplified mammary 
DNA methylation profiles in comparison to control mice. However, 
weight normalization was not sufficient to reverse the effects of 
chronic obesity on epigenetic reprogramming and inflammatory 
signals. Moreover, the impact of dietary sugar on mammary gland 
tumor development was studied in mouse models [61]. Sucrose 
intake comparable to levels in Western diets resulted in enhanced 
tumor growth and metastasis in mice compared to animals fed on a 
non-sugar starch diet. The increase in breast cancer risk was linked to 
over expression of 12-Lipoxygenase (12-LOX) and its arachidonate 
metabolite 12-Hydroxy-5Z,8Z,10E,14Z-Eicosatetraenoic acid (12-
HETE) [61]. As assessment for reduced breast cancer risk of fiber 
intake has been inconclusive, a meta-analysis including 712,195 
patients was conducted [62]. The outcome indicated that there was 
no significant difference between geographical regions, length of 
follow-up or menopausal status, but the overall conclusion was that a 
significant inverse dose-response existed between dietary fiber intake 
and risk of breast cancer. Another meta-analysis study showed that 
increased consumption of total dairy food, excluding milk, may have 

impact on a reduced risk of breast cancer [63]. Similarly, a significant 
reduction in breast cancer incidence was observed for soy isoflavone 
intake in a meta-analysis of 4 studies on breast cancer recurrence 
and 14 studies on breast cancer incidence [64]. In another approach, 
positive findings suggested that optimization of the selenium 
concentration in the diet can lower the risk of breast and ovarian 
cancer in women with a BRCA1 mutation [65]. 

In another study, chemoprevention of disease was evaluated 
for epigenetic diets based on cruciferous vegetables [66]. Kale, 
cabbage, Brussels sprouts and broccoli contain Sulforaphane 
(SFN) and I3C, which have been demonstrated to act as HDAC 
and DNA methyltransferase inhibitors and to regulate miRNAs. 
Extra virgin olive oil has been associated with reduced cancer risk 
[67]. The effect of extra virgin olive oil and its phenolic compounds 
on gene expression was evaluated in human colon cancer (Caco-
2) cells and in vivo in rats exposed to short- and long-term diet 
containing extra virgin olive oil [67] as endocannabinoid levels have 
been demonstrated to be altered in patients with colorectal cancer 
[68]. Exposure of Caco-2 cells to 100 ppm extra virgin olive oil, 50 
µM phenol extracts or 50 µM hydroxytyrosol evoked selective and 
transient up-regulation of the CNR1 gene, which encodes for type I 
Cannabinoid receptor (CB1). In contrast, none of the other major 
elements of the Endocannabinoid System (ECS) such as CB2, GPR55 
and TRPV1 receptors were affected. In Caco-2 cells stimulation by 
phenol extracts and hydroxytyrosol inversely correlated with DNA 
methylation of the CNR1 promoter. Similarly, a 4-fold increase in 
CB1 expression was observed in the colon of rats subjected to 10 
days of dietary extra virgin olive oil supplementation. Furthermore, 
miR-23a and miR-301a known to be involved in the pathogenesis of 
colorectal cancer showed 50% decrease after administration of extra 
virgin olive oil.

The role of diet in prostate cancer has received much attention 
[69]. In addition to other factors, the link to epigenetics has 
been investigated. For instance, the phytoestrogen genistein can 
demethylate CpG islands in the GSTP1 promoter region, which 
enhances protein expression [70]. It has also been documented that 
genestein enhances/restores the expression of tumor suppressors 
such as PTEN, p53, CYLD, p21WAF1/CIP1 and p16INK4a in 
prostate cancer cell lines, which is attributed to demethylation and 
acetylation of H3K9 residues [71] or to increased expression of 
histone acetyltransferases resulting in enrichment of acetylated H3 
and H4 histones [72]. Moreover, histone acetylation is also enhanced 
by the flavone apigenin in vitro and after oral intake [73]. A marked 
reduction of histone deacetylase activity was observed in vivo with a 
significant impediment on prostate cancer tumor growth. In another 
approach, polyphenols such as resveratrol demonstrated anti-cancer 
activity and might provide potential for chemoprevention and 
therapy of prostate cancer [74]. Several studies have indicated an anti-
cancer effect in tissue cultures. Moreover, epigenetic mechanisms 
are mediated through regulation of chromatin modifier Metastasis-
Associated protein 1 (MTA1) and miRNAs. Analogs of resveratrol 
present better bioavailability and therefore provide improved 
pharmacological potency and superior anti-cancer efficacy. Another 
approach was to subject low-risk prostate cancer patients, which had 
not undergone surgery or received radiation or hormonal treatment 
to a modified diet and lifestyle change [75]. Monitoring of gene 
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expression profiles before and three months after the intervention 
showed up-regulation of 48 genes and down-regulation of 453 
genes, of which the majority were involved in protein metabolism, 
intracellular traffic and phosphorylation.

The effect of nutritional intake has also been evaluated in relation 
to the risk of stomach cancer. In this context, a statistically significant 
inverse association was observed for consummation of vegetables 
and fruits and the risk of esophageal squamous cell carcinoma [76]. 
Furthermore, tea and particularly green tea, which contains high 
concentrations of anti-oxidants have been demonstrated to favorably 
contribute to the prevention of esophageal and colon cancers [77]. 
Consumption of vegetables and fruits was evaluated in a case-
control study in Western Australia, which suggested that the risk of 
proximal colon and rectal cancers was not linked to the intake of total 
amount of vegetables and fruits [78]. However, intake of Brassica was 
inversely related to proximal colon cancer and the risk of distal colon 
cancer was significantly reduced after intake of yellow vegetables and 
apples. Furthermore, in the Dutch cohort study a significant inverse 
association was observed between consumption of raw vegetables and 
esophageal adenocarcinoma [79]. Similarly, reduced risk for gastric 
cardia adenocarcinoma was discovered after Brassica and citrus fruit 
intake. 

Gut Microbiome
Interestingly, the diet and the gut microbiome play an important 

role in epigenetic modulation related to cancer and other diseases 
[80]. Production of metabolites which serve as cofactors and 
allosteric regulators of epigenetic functions present a strong link to 
dietary factors, physical activity and environmental toxins. Maternal 
and neonatal nutrition demonstrate a significant influence on the 
epigenome of the offspring as the food consumed modulates the 
composition of the gut microbiota [81]. For instance, in breast-fed 
infants the microbiota predominantly consists of Bifidobacteria and a 
large number of diverse microbiota develops after the introduction of 
solid food intake. In contrast, formula-fed infants carry a microbiota 
composed of a variety of genera including enterobacteria such as 
Streptococcus, Bacteroides, and Clostridium, as well as members 
of the genus Bifidobacterium. From the age of 2 years, the gut 
microbiota remains relatively constant although disease, surgical 
interventions, drugs and diet can substantially modify it. Proof of 
a link between bacterial predominance and epigenetic profile was 
revealed by correlation between differential methylation of gene 
promoters associated with obesity and cardiovascular disease in 
pregnant women with Firmicutes and Bacteroidetes as the dominant 
gut microbe groups [82]. Additionally, microbes in the colon are 
responsible for the conversion of dietary fiber into short-chain fatty 
acids such as butyrate, which can induce histone hyperacetylation 
[83] and thereby presenting the potential as a therapeutic agent. 
Consumption of fat and red meat has been postulated to increase 
the risk of colorectal cancer through the modulation of N-nitroso 
compounds and heterocyclic aromatic amines by gut bacteria [84]. 
In contrast, cruciferous vegetables including cabbage, broccoli, kale 
and cauliflower have been associated with reduced cancer risk as they 
contain fiber, lutein, flavonoids, phytosterols folic acid, glucosinolates 
and vitamin C [85].

Personalized Nutrition
The vast amount of data from bioinformatics and genomics 

research has strongly revealed the needs for individual and 
personalized medicine and also nutrition. Individual genetic and 
epigenetic differences can present dramatic effects on nutritional 
requirements also in the case of therapeutic interventions. In a case 
report, a breast cancer patient was not eligible to chemotherapy and 
radiation treatment due to some severe symptoms [86]. However, 
specialized testing for metabolic, gastrointestinal and immunological 
functions revealed nutritional deficiencies in the patient, which after 
being corrected allowed the necessary chemotherapy and radiation. 
Nutrigenomics has also substantially influenced tailoring the food 
intake based on individual genotypes [87]. For example, Korean red 
ginseng has been applied for the prevention of H. pylori-associated 
gastric cancer [88]. Although nutrigenomics will provide means 
of genetic basis for nutritional interventions in disease prevention 
and design of personalized diets accurate evaluation of individual 
nutritional phenotypes is more complicated [89].

Cancer patients can also profit from dietary modifications. To 
address the issues of starvation and under-nutrition the areas of 
perioperative nutrition in patients subjected to surgery, permissive 
nutrition in patients receiving chemotherapy and radiation 
therapy, home parenteral nutrition and supplemental nutrition in 
weight-losing patients have been identified [90]. Moreover, due to 
suboptimal intake and metabolic disturbances cancer patients often 
show low concentrations of n-3 fatty acids and can be compensated 
by n-3 supplementation, which has resulted in improved efficacy and 
reduced toxicity of chemotherapy [91]. Despite the knowledge of the 
importance of adequate nutrition in cancer patients, limited attention 
has been paid within pediatric oncology [92], an issue which should 
be addressed by a closer interaction between pediatric oncologists 
and nutrition specialists. Furthermore, zinc deficiency has been 
discovered to result in oxidative stress and chronic inflammation in 
many cancers, and for instance in head and neck cancer patients 65% 
showed zing deficiency [93], which can be addressed relatively easily.

Conclusions and Future Prospects
Epigenetic mechanisms including abnormal DNA methylation, 

histone modifications and RNAi all contribute significantly to disease 
development. These findings and the reversible nature of epigenetic 
modifications have made the epigenome attractive for potential 
development of novel drugs. Several DNMT and HDAC inhibitors 
have already been approved as medicines. The recent discovery of the 
association of a number of miRNAs with various diseases, not the 
least with cancers, has provided a multitude of new mechanisms and 
targets for drug discovery.

Furthermore, the strong association between diet and cancer has 
cast a new light on both prevention and therapy of malignant diseases. 
Nutritional research and recently the nutrigenomics approach have 
provided important information on how dietary interventions 
can affect our well-being and even significantly reduce disease 
risks. A deeper understanding of genomics has further accelerated 
development of both personalized nutrition and medicines. The 
fascinating association of epigenetics with diet and cancer further 
forms the basis for promises of better opportunities to treat cancer 
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and most importantly to take preventive actions, which is of outmost 
necessity from both social and economic aspects. 
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