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Abstract

In 2012, the International Agency for Research on Cancer (IARC) named 
Traditional Diesel Exhaust (TDE) a “known human carcinogen”. Most western 
nations agreed, passing new regulations. Yet the US denies TDE is a known 
carcinogen, says scientific data are uncertain, and does not regulate TDE 
emissions of 80 percent of US-diesel vehicles. It did require post-2007, US-heavy-
duty-diesel vehicles to have “clean-diesel” or New-Technology-Diesel Exhaust 
(NTDE) --- filters/engine improvements to reduce emissions. A major reason the 
US disagrees with the rest of the world is its reliance on the 10-year series of US 
studies on NTDE, the 2015 Advanced Collaborative Emissions Study (ACES). 
Co-funded by US Environmental Protection Agency, ACES was overseen by the 
Health Effects Institute, a research group that the US National Academies of 
Science earlier praised. Who is right on diesel carcinogenicity, the hundreds of 
IARC, or the ACES, studies? This review article concludes IARC is correct. It (1) 
surveys the role of epigenetics in assessing TDE and NTDE carcinogenicity and 
genotoxicity. Next it (2) shows how, despite some ACES strengths, it ignored 
much epigenetic evidence for NTDE carcinogenicity and genotoxicity because 
of wrong/incomplete tests, trimming the data, using incorrect assessment-time 
frames, making value judgments instead of empirically-confirmed judgments, 
begging key questions---then invalidly concluding that NTDE causes “only a 
few mild effects on the lungs,” no cancer or serious ailments, and “no…gene-
damaging effects.” Finally the article (3) suggests why these scientific errors 
occurred in prominent studies and (4) answers objections to its criticisms of 
ACES.
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EPA says it has no reliable mechanism of action for DPM induction 
of cancer [7,9-12].

However, the preceding US-EPA response (1) may be questionable 
because although the entire range of DPM risk, spanning two orders 
of magnitudes, is not quantitatively precise, it is entirely above the 
level at which government says regulation must occur. Thus, even if 
the lowest part of the range of DPM risk is correct, this risk appears 
to require more regulation, in part because it is on the order of the 
risk of dioxin, one of the most potent carcinogens ever known. 
Besides, one can know that something is carcinogenic without 
knowing precisely how part of its dose-response curve is shaped. 
Scientists are still arguing about the precise shape of the low-dose 
end of dose-response curve for many known humans’ carcinogens, 
including ionizing radiation, yet that does not jeopardize the “known 
human carcinogen” status of these carcinogens.US-EPA response 
(2) likewise appears questionable because knowing that something is 
carcinogenic is independent of knowing precisely how, through what 
mechanisms, it is carcinogenic. After scientists find a carcinogenic 
cause-effect relationship, it often takes decades to determine the 
precise mechanisms of that causal relationship. The same is true for 
DPM carcinogenicity and genotoxicity and their partially epigenetic 
mechanisms, such as partly heritable changes in methylation that lead 
to a cascade of inflammation, including creation of reactive oxygen 
species [13-19].

Introduction
The World Health Organization estimates that about 7 million 

people die prematurely every year as a result of air pollution. It says 
fine and ultrafine particles, like those from diesel engines, are the single 
most lethal form of air pollution because of their carcinogenicity, 
cytotoxicity, embryotoxicity, genotoxicity, and reproductive toxicity 
[1-5]. 

In 2012, the International Agency for Research on Cancer 
(IARC), part of the World Health Organization, (WHO) named diesel 
exhaust, especially diesel exhaust, especially DPM a “known human 
carcinogen” and called for tighter regulations. Most western nations 
and medical associations agreed, and Europe passed new regulations. 
The US, however, denies that DPM is a known human carcinogen. 
Because it says DPM is merely “likely to be carcinogenic to humans,” 
it has failed to name DPM a “hazardous air pollutant”. Yet it admits 
that the cancer risks from USTDE vehicles, mostly from DPM, are 
seven times greater than the combined risk of all 187 air toxics that 
the U.S. Environmental Protection Agency (US-EPA) tracks [6-8].

US-EPA appears to have rejected the IARC and WHO findings 
of known diesel carcinogenicity for two main reasons. First, (1) it 
says that because it has no precise, quantitative, cancer dose-response 
curve for diesel, only a quantitative range within the possible response 
lies, US-EPA cannot estimate DPM cancer potency; second (2) US-
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US-EPA’s denial of DPM’s “known human carcinogenicity” on 
grounds (2) above is especially puzzling because it admits the existence 
of epigenetic mechanisms for cancer but says they are “poorly 
understood”. It recognizes that “the three best known epigenetic 
mechanisms involve DNA methylation, histone modification, and 
alteration of the expression of micro-RNAs.” It likewise recognizes 
that “the level of intensity of DNA methylation is [carcinogen-] dose-
dependent,” that cancer-and-epigenetics “results are reproducible 
from experiment to experiment, and from laboratory to laboratory”. 
It says that just as genome-wide association studies have successfully 
identified diseases associated with specific genetic variants, so also 
epigenome-wide association studies, based on knowledge of tissue-
specific epigenetic modifications are now becoming successful in 
associating environmental exposures to diseases like cancer. US-
EPA likewise admits that both epidemiological and animal studies 
support the view that exposure to environmental contaminants like 
DPM increases susceptibility to multiple diseases, including cancer, 
and that because “epigenetic modifications can occur both before 
and after overt disease is evident,” they likely play a role in cancer 
initiation and progression [20].

The Critical Role of Epigenetics in DPM 
Carcinogenicity

Thus apart from their disagreement over whether DPM is a 
“known” or a “likely” human carcinogen, IARC, WHO, and US-EPA 
all agree that “epigenetic changes have emerged as key mechanisms 
in cancer development, including genotoxic-cancer development. All 
critical changes in cancer cells, such as silencing of tumor suppressor 
genes, activation of oncogenes, and defects in DNA repair, can be 
caused not only by genetic but also by epigenetic mechanisms such 
as methylation” [21-23]. The main diesel-carcinogenesis difference 
between IARC and US-EPA appears to lie in the level of knowledge 
of epigenetic mechanisms---that each thinks is necessary before 
claiming diesel is a known, rather than merely a likely, carcinogen 
[13]. 

Epidemiological studies have identified factors such as DPM, 
associated with lung and other cancers, while animal tests and human 
studies have identified the epigenetic mechanisms and molecular 
pathways that tie specific factors to different cancers. All three types 
of studies provide evidence for a sequence of epigenetic and genetic 
effects as malignancy progresses. Loss of DNA methylation was one 
of the first epigenetic changes described in human cancer, and soon 
scientists showed that overall 5mC content was inversely associated 
with tumor progression [24]. In the 30 years since publication of 
these classic epigenetics findings, almost every type of cancer has 
been shown to have an overall deficiency of 5mC compared with 
normal tissue, something that increases genomic instability and 
promotes the progression of tumorigenesis [23]. Depending on the 
different cancers, abnormal patterns of methylation arise, causing 
both hypomethylation of distal regulatory regions and repetitive 
elements---and hypermethylation of CpG islands [25,26], so that 
tumors from different sites display distinct CpG methylation profiles 
[27] and distinct pathways of carcinogenesis within different tumor 
sites [23,28,29].

Flawed Science and Failure to Reliably Assess 
NTDE Carcinogenicity and Genotoxicity

Given established scientific consensus that epigenetic changes 

are likely key mechanisms in carcinogenicity and genotoxicity, 
it is puzzling that the 2015 Advanced Collaborative Emissions 
Study (ACES) of NTDE health effects, co-sponsored by the US 
Environmental Protection Agency and the oil-and-auto industries, 
ignored most of the epigenetic evidence for NTDE carcinogenicity and 
genotoxicity. Yet ACES describes itself as the “most comprehensive” 
study of health effects of NTDE ever done. Having surveyed the 
critical role of epigenetics in assessing TDE and NTDE carcinogenicity 
and genotoxicity, the article now shows how, despite some ACES 
strengths, ACES studies ignored much epigenetic evidence for 
NTDE carcinogenicity and genotoxicity because of doing wrong or 
incomplete tests, trimming the data, using incorrect assessment-time 
frames, making value judgments instead of empirically-confirmed 
judgments, begging key questions – then invalidly concluding that 
NTDE causes “only a few mild effects on the lungs,” no cancer or 
serious ailments, and “no…gene-damaging effects”. 

For the last 20 years, scientists have shown that even two-hour 
exposure to typical TDE causes changes in methylation at about 
2,800 different points on DNA, affecting about 400 genes, sometimes 
increasing methylation, sometimes decreasing it. For instance, 
genotoxic DPM methylates and inactivates the p16INK4a gene in 
50% of lung tumors, while it inactivates the ER gene in 15% of the 
lung tumors. This methylation inhibits gene transcription by a factor 
of 30-60 times, and methylation frequency is a function of exposure. 
Repeated experiments in rats show that tumors induced by TDE PM 
Carcinogens arise in part by methylation, by inactivation of genes 
like the p16 and ER, and that this process generates oxidative stress 
and inflammation that can nick DNA, cause single-strand breaks, 
and thus contribute to lung cancer. DPM thus induces a chronic 
inflammatory response, causes DNA adducts in lung tissue, and 
thus induces cancer through epigenetic mechanisms such as gene 
inactivation and hypermethylation of regulatory genes. After DPM 
exposure, tumors in rats arise on average after 18 months and at all 
exposure levels. Moreover both in vivo and in vitro experimental 
studies provide strong evidence that DPM is not only carcinogenic 
but also genotoxic [4,30-41]. 

Ignoring Epigenetic Evidence for Diesel-
Caused Lung Cancers

Despite the science of the preceding 20 years, two of the most 
questionable and question-begging claims that the ACES authors 
make regarding carcinogenicity are that “the [study] effects that were 
observed with NTDE were limited to the respiratory tract” and were 
“mild and generally seen at only the highest exposure level” [42]. 
They also claim that NTDE “did not induce tumors or pre-cancerous 
changes in the lung, [and that only]….a few mild changes were seen 
in the lungs” [43].

The preceding ACES claims arguably err because DPM pollution, 
the deadliest part of NTDE---which contains 200,000 to 800,000 
DPM particles per cubic centimeter [42] --- can cause lung cancer and 
genotoxicity, partly through epigenetic mechanisms. ACES directly 
tested none of these epigenetic mechanisms, yet denied any lung 
cancer from NTDE. The 198-page ACES scientific reports contain no 
mention either of “epigenetic” or “methylation,” despite the fact that 
epigenetic changes are key cancer mechanisms that typically appear 
prior to disease. DPM, in particular, is associated with changes in 
DNA methylation, at genes such as GSTP1, that are known to be 
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associated with inflammation, oxidative stress, and higher risk 
for lung cancer and asthma [44]. Epigenetic assessment likewise 
implicates inactivation of the tumor-suppressor genes APC, p16, 
p53, and RASSF1, especially by hypermethylation, as a contributing 
factor to development of lung cancer associated with exposure to the 
particulate carcinogens such as DPM [45]. Methylation changes in 
p16, for instance, correlate directly with loss of gene transcription, 
and it appears in roughly 60 percent of diesel-induced tumors [46]. 
DPM exposure also changes the miRNA expression profile in human 
airway epithelial cells, so that a majority miRNAs (e.g., 197 of 313 
miRNAs or 62.9%) can be either up-regulated or down regulated by 
nearly a factor of 2. For the 12 most altered miRNAs, DPM exposure 
is associated with inflammatory-response pathways and “a strong 
tumorigenic disease signature” [47].

Ignoring Evidence for Diesel-Caused 
Genotoxic Effects

Just as ACES denies its study revealed any precancerous effects, it 
also denies that NTDE causes any genotoxic effects [43]. Yet because 
this ACES claim is based on studies that are short-term, low-powered, 
insensitive analyses, without either positive controls or any studies of 
the lung, at least 6 reasons suggest that it is a false-negative conclusion.

First, the ACES claim that NTDE causes no genotoxic effects is 
questionable because ACES researchers did only very short-term 
tests to assess genotoxicity and no assay to assess accumulation of 
mutations. For instance, ACES attempted to assess genotoxic effects 
by evaluating the blood of NTDE-exposed animals. ACES checked 
the number of immature red blood cells (reticulocytes, or RETs) that 
contained Micronuclei (MN). If NTDE had caused double-strand 
breaks or disrupted chromosome segregation during cell division, the 
scientists concluded that an increase in MN frequency would result. 
The problem, however, is that the MN endpoint is only a short-term 
indicator of genotoxicity. It assesses damage only over the last 3 days 
of exposure. Thus contrary to what ACES claimed, this study does 
not access “lifetime” effects of NTDE. Besides, given DNA repair, 
the number of MN-RETs does not measure cumulative exposure, 
even over the study’s 24-month time-frame, unless the animals had 
compromised responses to damage, such as deficient DNA repair 
capacity or detoxification systems---for which ACES provides no 
evidence. Given these problematic biological endpoints, ACES 
likely did not measure genotoxicity, but only DNA repair capacity 
or detoxification systems. ACES genotoxocity studies were too short, 
and they used the wrong endpoints. Instead ACES should have used 
assays to assess mutations, such as mutations in the hprtgene in 
peripheral blood cells, and accumulation of mutations, if it wanted 
information on the longer-lasting effects of NTDE exposures [42].

A second reason that ACES tests of NTDE for genotoxic effects 
likely produced false-negative results is that the ACES tests likely 
were not sensitive enough to detect most NTDE health effects. Most 
of the ACES assay and all of the genotoxicity studies failed to have 
any “positive controls” to support their ability to detect biologic 
effects [48]. Instead, as a positive control, ACES could have used 
samples from a group exposed to TDE. This would have given a better 
benchmark for the health effects of engineering changes associated 
with NTDE [49]. Even worse, to defend the ACES absence of positive 
controls in most of its studies and in all its genotoxicity studies, ACES 

used a nonscientific response. It said that adding positive controls 
“would have substantially increased the complexity and cost of the 
study and would have posed enormous logistical challenges” [42]. 
Obviously low-cost, non-complex studies are not the same thing as 
high-value or methodologically-defensible studies.

A third problem with the ACES tests of NTDE for genotoxic 
effects is that none of the genotoxicity researchers used lung cells. 
Instead one group used blood cells and another group used brain 
cells. They should also have used lung cells because they reveal the 
direct and early effects of NTDE; organs like the blood reveal indirect 
and later effects of NTDE. Because ACES used such short-term 
genotoxicity tests (e.g., three days), and because it is unclear precisely 
how DPM effects are mediated outside the lungs [50], arguably 
ACES should have assessed the early, direct effects of NTDE effects 
in lungs and airways [42]. Another reason for using lung cells is that 
researchers should not have trimmed the data by presupposing that 
NTDE genotoxic effects were systemic, thus detectable outside organs 
like the lung.

A fourth problem with the ACES tests of NTDE for genotoxic 
effects is that they likely produced false-negative results because of 
low-power studies. One of the two groups of genotoxicity researchers 
admitted as much, claiming they used only 5 animals, though “many 
more animals would have been needed to detect a difference in 
response among exposure groups” [42]. The same scientists also 
made another questionable move, stipulating effect size---standardly 
defined as difference in response, relative to controls----instead as the 
ratio of two standard deviations. Why the focus on detecting changes 
in standard deviations rather than in mean responses? They likewise 
based their power calculations on previous mouse data, not on the 
current rat data, arguably needed for sensitive studies. Similarly, 
ACES used the TBARS assay though it is neither a sensitive nor a 
specific assay for oxidative stress, and thus provides no information 
on the range of possible changes in lipid peroxidation caused by 
NTDE. Similarly, the assay used by Hallberg and colleagues in ACES 
measured only MDA, only one lipid peroxidation product---not full 
evaluation of both oxidative stress and its lipid peroxidation products. 
All these problems again suggest ACES data-trimming, likely leading 
to false-negative conclusions [42].

A fifth problem with ACES genotoxicity studies are their ignoring 
the fact that DPM is a Trojan-Horse pollutant. That is, DPM attracts 
other diesel-exhaust carcinogens, toxins, and metals such as arsenic, 
cadmium, formaldehyde, Polyaromatic Hydrocarbons (or PAHs), 
and zinc. They adhere to the ultrafine DPM, form fine DPM, enter 
the brain or lungs, and can travel to all bodily organs to cause chronic 
inflammation leading to many diseases, including Alzheimer’s, 
autism, birth defects, cancer, Parkinson’s, and even death [10,51-68]. 
PAHs, especially those that adhere to DPM, typically are genotoxic 
[69-71], and they comprise the major fraction of DPM components 
[72]. Moreover because ACES admitted that NTDE removes only 
80 percent of TDE hydrocarbons [42], and NTDE PAHs remain a 
potential source of genotoxicity, it is puzzling that ACES genotoxicity 
studies failed to assess damage from PAHs [49].

A sixth scientific deficiency of ACEs genotoxicity studies, 
again likely leading to false-negative results, is that they considered 
neither all the relevant literature on genotoxicity caused by TDE and 
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NTDE, nor all the relevant tests. Given earlier ACES genotoxicity 
problems, such as wrong endpoints, low power, and absence of 
positive controls, ACES could have redone some of the research 
supporting genotoxicity, instead of merely doing new studies of 
questionable methodology. Top journals, assessing genotoxicity in 
TDE and NTDE, illustrate reliable methods that ACES could have 
copied. Yet ACES did assessment neither of specific genes known to 
be harmed by diesel exhaust, nor of cumulative mutations. Instead 
ACES researchers used the comet assay that, as ACES conducted it, 
was able to detect only a few types of known DNA damage. ACES 
no-genotoxicity claims thus are based on false-negative results from 
inadequately-sensitive tests [4,41,49,73-75].

Regarding this sixth deficiency, why did the ACES authors 
largely ignore what they admitted, namely, that the scientific 
literature clearly shows DPM PAHs induce micronucleus formation 
and genotoxic damage [49]? Why did they ignore animal studies, 
cell-culture experiments, and cell-free systems that all suggest that 
diesel exposure initiates oxidative DNA damage by generating 
reactive oxygen species and inflammatory responses [36,76]? ACES 
authors ignored abundant evidence of TDE genotoxicity by making 
a qualitative, unsubstantiated, nonempirical judgment that newer 
NTDE engine designs had reduced the deadliest TDE components-
--DPM and PAHs---“to almost ambient levels” unlikely to cause 
harm, including genotoxicity [77]. Yet if one assumes NTDE PM and 
PAH are at “almost ambient levels,” one has no testable hypothesis 
about NTDE harm because “almost ambient levels of a pollutant” are 
typically not carcinogenic or genotoxic. Because ACES begged the 
question at issue, there was little reason to conduct ACES studies.

Unfortunately, the preceding ACES inconsistencies in claiming 
both that NTDE has essentially no DPM and PAHs---versus NTDE 
has 10-20 percent of the DPM and PAHs in TDE---are typical of 
ACES. Inconsistencies, from which anything follows, characterize 
ACES. For instance, although it was reasonable to use the ANOVA for 
the comet, 8-OHdG, and TBARS data, ACES researchers used these 
tests/data inconsistently and never fully described their statistical 
approaches and why they used them. Readers cannot evaluate ACES’ 
statistical methods for post-hoc pair wise comparisons in all the 
assays, because ACES did not identify them. ACES also applied the 
methods inconsistently across the assays. They used the Bonferroni 
correction only for the comet data, but not for the 8-OHdG and 
TBARS data, even though the same general ANOVA approach was 
used for all of these variables. ACES authors also did not explain why 
they assumed it was necessary for the overall ANOVA (but not for the 
8-OHdG or TBARS) data to be significant before making post-hoc 
comparisons for the comet data [42].

What Caused the ACES Scientific Errors Regarding 
Carcinogenicity and Genotoxocity of NTDE?

Given replicated scientific studies tying DPM exposure to 
genotoxic effects such as micronucleus formation, and to lung 
cancer via epigenetic mechanisms such as DNA methylation, how 
can ACES claim that exposure to DPM, the deadliest component 
of TDE and NTDE, causes neither genotoxic, nor cancerous, nor 
pre-cancerous effects? There seem to be several reasons. First, 
ACES used the wrong tests. It did not check for classic epigenetic 
precursors and mechanisms associated with DPM exposure, such as 

DNA methylation of specific genes and changes in the expression of 
micro-RNAs. As noted, it did not do the best and the most direct 
tests for lung cancer, cancer precursors, and genotoxicity. Instead 
ACES used short-term, insensitive, low-powered studies, based on 
the gratuitous assumption that NTDE pollutants were at “almost 
ambient [air] levels,” [49]. Yet ACES itself admitted NTDE removed 
only 80 percent of TDI hydrocarbons, including PAHs [42], and only 
90 percent of DPM. Thus no-safe-dose pollutants like DPM, present 
at 10-20 percent of their heaviest levels, arguably are not at “almost 
ambient [air] levels” [77].

Second, as already noted, in assuming NTDE DPM and PAHs 
were at “almost ambient [air] levels”, ACES was begging the question, 
relying on unsubstantiated value judgments. 

Third, ACES denied NTDE-induced lung cancer and 
genotoxicity by trimming the data through arbitrary interpretation 
of test results. Even when ACES discovered lung-cancer precursors 
such an inflammation, oxidative stress, or lesions, it dismissed them 
as atypical, claiming they were “mild” or found “predominantly at 
the highest exposure level”. ACES used the words “mild” 49 times, 
and “highest” exposures 24 times, to dismiss results. Yet either 
there are precancerous effects, or not. There is no “mild” cancer 
precursor that is not a cancer precursor, any more than there is a 
“mild” pregnancy that is not a pregnancy. ACES also trimmed the 
data by contradicting itself, claiming NTDE caused no cancerous/
precancerous effects, yet repeatedly admitting that subjects had 
serious, low-dosebronchiolization lesions [48]---well-established 
lung-cancer precursors [78-81]. Similarly, sometimes the same ACES 
researchers contradicted themselves----denying finding respiratory 
cancer [82], and then denying finding both respiratory cancer and 
precancerous lesions [82].

Fourth, because of HEI/ACES editors’ and reviewers’ 
misrepresentation of ACES results, they contradicted ACES 
scientists. For instance, when ACES researchers admitted their studies 
were underpowered, with only 5 subjects, thus unlikely to detect 
genotoxicity, HEI/reviewers editors/reviewers disagreed. They put 
a positive “spin” on the research, denied it was underpowered, and 
then claimed there was no evidence of genotoxicity [42]. Likewise, 
though ACES researchers denied finding any lung cancer [82], ACES 
editors said they found neither cancer nor non-cancer outcomes such 
as “substantial toxic effects”; instead the editors claimed NTDE effects 
all were mild, and “limited to the respiratory tract” [83].

Fifth, HEI and some ACES scientists may have used flawed 
methods because HEI funders had financial conflicts of interests and 
sought to show NTDE was noncarcinogenic and nongenotoxic. HEI, 
the nonprofit research organization that oversaw, edited, and funded 
ACES, admits in the ACES foreword that half of ACES current 
funding comes from US-EPA and half from the “worldwide motor-
vehicle” industry [84].

Answering an Objection
In response to the preceding scientific criticisms of ACES’ 

methods, how might ACES scientists defend themselves against their 
ignoring most of the classic epigenetic research and methods showing 
TDE carcinogenicity and genotoxicity? As already mentioned, ACES 
scientists assume, before doing their studies, that DPM and PAHs, 
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the deadliest components in NTDE are at “almost ambient [air] 
levels”. By making this assumption, they assume (rather than test 
whether) earlier TDE research is likely irrelevant to their NTDE 
studies [49]. For instance, ACES pathologists cite diesel-industry 
authors McClellan and Hesterberg, then claim “NTDE compared 
with TDE is…quite different….Studies of the health impact of TDE 
exposures most likely do not reflect either the hazards or the risks 
from NTDE” [48].

Second, as already mentioned, even ACES admits that NTDE 
removes only 90 percent of TDE, including DPM, and only 20 percent 
of the hydrocarbons---including genotoxic PAHs [42]. NTDE thus 
has10-20 percent of the deadliest TDE emissions, well known to have 
no safe dose. At any non-zero dose, these components are well known 
to increase carcinogenic, neurological, reproductive, cardiovascular, 
respiratory and other harm [13,14,67,68,85]. Yet only 10 percent of 
TDE pollution---less than NTDE pollution---from tens of millions 
of US diesel engines that now release hundreds of billions of pounds/
year of DPM yearly, would still be massive. NTDE would still include 
at least tens of billions of pounds/year of no-safe-dose DPM [84,86]. 
Even ACES admits that NTDE merely reduces TDE pollution, so 
that NTDE still exposes people to 200,000 to 800,000 DPM particles 
per cubic centimeter [42]. Yet each of these particles can be inhaled 
directly into the brain and lungs, and then passed to the blood and 
all organs---to cause inflammation, oxidative stress, multiple cancer 
precursors, cancers, and many diseases [68]. 

Third, NTDE is very dirty, even compared to TDE because both 
are far above allowed-US-regulatory risk levels. The lung-cancer risk 
from the DPM in TDE, confirmed by more than 30 different studies, 
is about 159 times greater than EPA’s acceptable cancer risk from 
pollution. (This is apart from the fact that DPM also increases the risk 
of Alzheimer’s, autism, Parkinson’s, stroke, and other neurological 
harms). If universal NTDE vehicles reduced 90 percent of these 
risks, the NTDE harm would still be about 16 times higher than that 
allowed for any US pollutants. NTDE would cause harm about on the 
order of dioxin risk, one of worst known pollutants [87-89].

Fourth, the ACES objection that NTDE is clean and 
noncarcinogenic also errs in part because NTDE creates more ultrafine 
PM than was present in the original TDE, and fine-ultrafine PM is the 
most hazardous component in DPM. This is mainly because it has 
much smaller particles and higher particle-number concentrations 
than pre-2007, non-NTDE engines. As a result, NTDE includes a 
higher percentage of more dangerous particles than does TDE [90-
92]. NTDE also has DPM that is more dangerous because it is 50-90 
percent metals, which are known neurotoxins [93-98].

Conclusion
ACES’ denials of the lung-carcinogenicity and genotoxocity of 

NTDE are based in part on begging the question and on doing studies 
likely to yield false negatives. ACES errs through using short-term, 
low-powered, insensitive, analyses without either positive controls or 
any studies of lung tissue. Given little scientific justification for most 
ACES methods, there is little scientific justification for its conclusions 
that NTDE or “clean diesel” is neither carcinogenic nor mutagenic.
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