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Abstract
Age-Related Macular Degeneration (AMD) is the leading cause of severe 

irreversible central vision loss and blindness in individuals of over 65 years 
of age in the developed countries. There are two types of AMD, the ‘‘dry’’ 
and ‘‘wet’’ forms. Both genetic and non-genetic (environmental) factors are 
considered for the onset of AMD. The etiology and pathogenesis of AMD are 
not well understood and remain a major challenge to understand. This review 
discusses recent advancement in genetics and genomics, and the molecular 
pathways involved in AMD pathogenesis.
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[5,8-17] including PCV [18-20]. The genetic variants in complement 
factor H at chromosome loci 1q32 and additional complement-related 
genes firmly established a link between the complement cascade and 
AMD biology, which have been implicated in mediating drusen 
formation [21]. CFH Y402H is a major AMD susceptibility variant in 
Caucasians and has been shown that heterozygote alleles conferred a 
4.6-fold where-as homozygote alleles have a 7.4-fold increased risk, 
as compared with the homozygous non-risk genotype [14]. On the 
other hand, chromosome loci 10q26 is more complex due to the 
strong linkage disequilibrium (LD) across this region comprising 
of three genes: pleckstrin homology domain containing family A 
member 1 (PLEKHA1), age-related maculopathy susceptibility 2 
(ARMS2) and high-temperature requirement A serine peptidase 1 
(HTRA1) [8,14-17]. Because of strong LD, statistical genetic analysis 
alone is incapable of distinguishing the effect of an individual gene 
in this locus and has yielded widely conflicting results [15,17,22-
28]. As a result, the functional involvement of HTRA1, ARMS2 
or PLEKHA1 in AMD remains uncertain, despite strong genetic 
evidence. So far, rs10490924, indel polymorphisms of ARMS2, and 
rs11200638 of HTRA1 promoter region are most significantly AMD 
associated haplotypes at this locus [29]. The HTRA1 gene encodes 
an evolutionarily conserved multifunctional serine protease that is 
ubiquitously expressed in mammalian tissues but ARMS2 is only 
expressed in certain primates with unknown function. The subcellular 
localization of ARMS2 is controversial and studies suggesting that 
it present in mitochondria, extracellular matrix, or as a non coding 
RNA [16,17,27]. An increased level of HTRA1 is suggested to play 
a potential role in the pathogenesis of AMD [15,23-25]. Therefore, 
we studied the functional involvement of HTRA1 by transgenically 
expressing human HTRA1 in mouse RPE and showed that increased 
HTRA1 induced characteristic features of PCV, including branching 
networks of choroidal vessels (BVN) and polypoidal lesions 
(polyps). Ultrastructural study revealed degeneration of both the 
elastic lamina and tunica media of choroidal vessels, as well as the 
degradation of the elastic lamina of Bruch’s membrane in hHTRA1+ 
mice. Another group also reported the degradation of EL in BM 
when over expressing mouse HTRA1 in RPE [30]. The phenotypes 
of hHTRA1+ mouse we generated share remarkable similarities to the 

Introduction
Age-related macular degeneration (AMD) is the leading cause of 

irreversible blindness worldwide. At present, 8·7% of the worldwide 
population has AMD and by 2010 around 196 million expected to 
have AMD which is further increasing to 288 million in 2040 [1]. 
There are two types of AMD, the ‘‘dry’’ and ‘‘wet’’ forms. Wet AMD 
includes classic and occult choroidal neovascularization (CNV) and 
polypoidal choroidal vasculopathy (PCV). The chronic form “Dry 
AMD” typically develops first and is characterized by the deposition 
of acellular, polymorphous debris between the retinal pigment 
epithelium (RPE) and Bruch’s membrane (BM) called “drusen”. 
The excessive “drusen” deposition may lead to damage of the RPE, 
degeneration of collagen or elastin in BM, the outer retina and the 
choroid vasculature, This may lead to wet form of AMD where 
abnormal vessels grow within the sub-RPE space or grow out in to 
the retina by rupturing the RPE, this form occurs at the late stage. 
Therefore, dry AMD is considered a precursor for the wet AMD. 
Caucasian AMD patients predominantly exhibit late stage geographic 
atrophy of dry “AMD” while Asian AMD patients frequently have 
CNV or PCV forms of “wet AMD” with few or no drusen. Wet AMD 
represents only 10 to 15% of the overall prevalence of AMD but is 
responsible for more than 80% of cases of legal blindness [2]. Overall, 
AMD is a progressive, polygenic and multi factorial disease with a 
poorly understood etiology. Numerous studies have suggested the 
involvement of advanced age, race, heredity, and a history of smoking 
and alcohol drinking, oxidative stress, inflammation and immune 
response [3,4], which makes AMD pathology extremely complex.

AMD Genetics
Over the years, the involvement of genetics in the development 

of AMD has been very well studied and established. Genome-Wide 
Association Studies (GWAS) have revealed more than 30 risk loci ( e.g. 
1q25-31, 9p13, 9p24, 10q26, 15q21, and 17q25) and have implicated 
several candidate genes—CFH, C3, C2-CFB, CFI, HTRA1/ ARMS2, 
CETP, TIMP3, LIPC, VEGFA, COL10A1, TNFRSF10A, and APOE 
with AMD [5-7]. Among them, chromosome loci 1q32 and 10q26 are 
major candidate regions associated with the susceptibility of AMD 
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well established clinical features of human PCV (e.g. BVN, polyps, 
late geographic hyper fluorescence, pigment epithelium detachment, 
and hyper fluorescent plaque) [31-33]. The hHTRA1+ mouse is the 
first PCV model and no other animal models exist with these features. 
The strengths and limitations of available AMD animal models are 
comprehensively reviewed by Pennesi ME [34]. HTRA1 is clearly 
important in maintaining the vasculature by inhibiting the signaling 
of TGFb family members [35,36]. Loss-of-function mutations in 
HTRA1 were linked to familial ischemic cerebral small-vessel disease 
[37,38]. In the eye, knockout of HTRA1 leads to reduced blood 
vessels in mouse retina [39].  However, several studies demonstrated 
that AMD associated variants at 10q26 locus are not correlated with 
the expression level of HTRA1 in AMD-affected eyes [26, 27,40-
42]. Recently, it is shown that AMD linked synonymous SNPs 
within exon 1 of HTRA1 makes it conformationally defective. This 
conformationally defective HTRA1 is more susceptible to proteolysis 
and has a reduced binding capacity to IGF-1, which supports cellular 
division and growth therefore may compromise photoreceptors 
and choriocapillaris survival [43]. Currently, all three possibilities 
(up-regulation, down-regulation or no change) in HTRA1 levels 
with AMD-associated variants are being investigated. HTRA1 is the 
leading candidate for the 10q26 genetic risk. However, more studies 
are necessary to establish a firm link. 

Inflammation and AMD
In recent years, numerous clinical-genetic studies documented 

the crucial role of inflammation and immune-mediated processes 
(e.g. complement activation) in the pathogenesis of AMD. The 
ectopic levels of complement components C3a and C5a, C5 and 
C5b-9 terminal complement complex [44-46], complement factor 
H (CFH) [13, 47], membrane cofactor protein (MCP) [48], and 
C-reactive protein (CRP) [49] are observed in AMD patients and 
clearly indicating that complement activation is crucial in AMD 
pathogenesis. In fact, the hallmark of AMD, “drusen”, contains large 
amount of components involved in the complement pathway [44,50-
57]. In addition, it’s been shown that Membrane Attacking Complex 
(MAC) formation is increased in the photoreceptors that may trigger 
the apoptotic processes inducing retinal degeneration [50-53,57-
58]. The deposition of esterified/unesterified cholesterol (7kCh) and 
glycation/lipoxidation end products (AGEs/ALEs) has been identified 
in the retina, BM and in RPE/choroid of human AMD donor eyes 
[59-61], suggesting that lipid metabolism pathways also have a crucial 
role in AMD pathogenesis via inflammation. The accumulation 
of macrophages in the AMD tissues suggest an important role for 
macrophages in AMD pathogenesis [62-65], which is well supported 
in AMD animal model studies [66-70]. However, macrophage 
populations are heterogeneous and can be both protective and 
destructive to local tissues. Based on macrophage functions, surface 
markers, and cytokine/chemokine profiles they are characterized 
as classically activated macrophages (M1), which are generally 
pro-inflammatory. On the other hand, alternatively, activated 
macrophages (M2), facilitate tissue repair and neovascularization. 
Both types of macrophages have been characterized in only a limited 
number of AMD tissues samples [62,63]. The precise roles and impacts 
of macrophages in AMD are unclear and debated in the AMD field. 
It is important that more histochemical studies shall be performed 
to elucidate those factors that alter macrophage polarity and mediate 

angiogenesis. These factors may have the potential of aiding in new 
anti-inflammatory therapies for AMD. Recent studies suggest NLRP3 
inflammasome may play a critical role in AMD [71]. NLRP3 is an 
intracellular pattern-recognition receptor, which responds to a wide 
variety of danger signals. The exact mechanism by which NLRP3 
inflammasomes become activated has remained unclear. During the 
past decade, the major breakthrough is the development of anti-VEGF 
therapy for wet AMD. VEGF-A induces proliferation, sprouting and 
tube formation of endothelial cells and plays a major role in CNV. In 
addition to VEGF, aberrant levels of interleukins IL-6, IL-8 and IL-10 
are also found in - CNV patients.

Autophagy and AMD
Recently, autophagy has caught the attention of AMD 

researchers. Autophagy plays a critical role in removing misfolded 
or aggregated proteins, clearing damaged organelles, such as 
mitochondria, endoplasmic reticulum and peroxisomes [72]. It 
also eliminates intracellular pathogens to keep post-mitotic cells 
healthy and functional [73]. The autophagy processes are highly 
active in the RPE layer because RPE cells are subject to oxidative 
stress, high oxygen tension, lifelong light illumination, and are 
involve in daily phagocytosis of photoreceptor outer segments. As 
we read in the previous section, the physiological balance between 
various interlinked pathways (eg vascular growth factor pathways, 
lipid pathways and oxidative stress pathways) has been perturbed in 
AMD which may impair the autophagy process. Some exosome and 
autophagy markers have been detected in drusen [74]. Inflammation 
and local hypoxia are the hallmarks of autophagy and are present in 
the aging choriocapillaris, RPE cells, and neural retina [75]. It is well 
known that oxidative stress leads to mitochondrial DNA damage, 
increases ROS generation and reduces the metabolic capacity. 
The increased mitochondrial stress and dysfunctional autophagy 
in the RPE cells of AMD patients also support the involvement of 
autophagy in the pathology of AMD [76,77]. The association between 
the variant of CST3, (encoding cystatin C), an inhibitor of lysosomal 
cysteine proteases, and AMD has been established. Also, increased 
serum levels of cystatin C found in AMD patients are correlated 
with the risk of development of advanced AMD [78,79].  In addition, 
in-vitro studies on lysosome function on RPE cells also provided 
insights on the disruption of lysosomal functions and possible 
role of lysosomes in the development of AMD [79-82]. Vascular 
dysfunctions also result in oxidative stress, that is, overproduction 
of ROS, which induces further changes in the retinal and choroidal 
vasculature. Such changes can also be evoked by hypoxia, since it 
stimulates synthesis and release of hypoxia-inducible factor-1 (HIF-
1) and vascular endothelial growth factor (VEGF) that contribute to 
neovascularization (NV). Recent reports suggest that dysfunctional 
autophagy activates inflammasomes probably through the 
dysregulation of mitochondrial homeostasis [83,84]. To date, there is 
no consensus as to whether autophagy inhibitors or activators would 
be beneficial in AMD therapy.

Treatment
There is no cure for AMD. Nevertheless, AMD treatment may 

prevent severe vision loss or slow the progression of the disease 
considerably, for example, anti-angiogenic drugs (anti-VEGF) 
and photodynamic therapy with verteporfin (PDT-V) are very 
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effective for wet AMD. However, the anti-VEGF therapy is not very 
effective in treating PCV compared with classic CNV (or type 2 
neovascularization). Monoclonal antibodies Ranibizumab (Lucentis) 
and Bevacizumab (Avastin) are used to treat “wet form” of AMD 
by targeting all isoforms of VEGF-A. Currently, bevacizumab is the 
most widely used anti-VEGF agent throughout the world due to its 
significantly lower cost and similar efficacy compare to Lucentis. 
Another new promising drug is Aflibercept (known as VEGF-Trap) 
is a human recombinant fusion protein which consists of extracellular 
domains of VEGF receptor 1 and 2 (VEGFR-1 and -2) fused with 
the Fc portion of IgG1. It binds to VEGF-A, VEGF-B, and placental 
growth factor (PlGF). It has a higher affinity for VEGF compared 
to other anti-VEGFs, including bevacizumab and ranibizumab. For 
more detail we recommend reading the recent review from Hanout 
et al. 2013 [85]. Indeed, currently very little is available to prevent 
the progression to more serious stages for “dry” AMD’s patients. 
Colloquially, quitting smoking and a healthy diet of dark green leafy 
vegetables and fruits supplemented by zinc and anti-oxidant vitamins 
(Vitamins E, C, and beta carotene) are recommended.

Conclusion
AMD is a genetically well-characterized disease with a high 

complexity. Despite several important findings in the last decade, we 
still do not have a clear picture of biological pathways that are actual 
culprits for AMD. Based on recent findings, the dysfunction and/or 
degenerative damages photoreceptors, RPE and BM of the macula, are 
initiated by “attacks” from drusen, aging, genetic and environmental 
risk factors. These primary factors create a para-inflammatory 
environment which may provoke the infiltration of macrophages, 
lymphocytes, neutrophils and various cytokines to the degenerated 
tissue sites in AMD patients and cause further damage and lead to 

“wet AMD” (Figure1). We have witnessed remarkable progress in 
identifying genetic risk factors for AMD. However, investigations of 
the underlying disease mechanisms by causal alleles are needed.  It 
is also important to elucidate factors and/or signaling pathways that 
regulate inflammation, oxidative stress, and autophagy of this disease 
in order to develop effective preventive and treatment therapies.
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