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an individualized “epigenetic identity card” as a basis for a true 
personalized medicine. Collectively, identification of epigenetic 
signatures of any cell provides valuable information about its state 
(identity, developmental potential, health…) and should lead to novel 
biomarkers for diagnostic purposes, to predict the need of epigenetic 
interventions by chemopreventive or chemotherapeutic approaches 
depending on the stage of the disease, to monitor the efficiency of such 
interventions and potentially measure their adverse health effects. 
One example of such a marker corresponds to the progressive DNA 
hypermethylation-mediated glutathione S-transferase pi (GSTP1) 
gene silencing associated with prostate cancer progression [12-14].

A better understanding of epigenetic mechanisms in health and 
disease will also allow the identification of novel epigenetic alterations 
specifically associated to certain disease states and thus representing 
potential new therapeutic targets. Indeed, up to date, most epigenetic 
drugs are targeting DNA methylation by blocking or inhibiting 
the activity of DNMTs or histone post-translational modifications, 
mainly lysine acetylation, by targeting HDAC activities [4,9,10,15]. 
In comparison, a rather limited number of molecules have been 
reported to target the activity of histone acetyl transferases (HATs) 
or additional histone modifiers such as isoenzymes of the histone 
methyltransferase (HMT) and histone demethylase (HDM) families, 
which are involved in the regulation of the status of methylation of 
lysine and arginine residues [4,6,16]. Furthermore, most HDAC 
modulators act as pan-non-sirtuin-HDAC inhibitors or are selective 
against some structurally related HDAC isoenzymes and only very few 
potent in vivo sirtuin modulators are reported. Nevertheless, the use 
of new in silico predictive tools and improved drug discovery pipelines 
should lead in a near future to the development of new molecular 
scaffolds displaying more selective inhibitory activity profiles against 
HDAC activities (class- or isoenzyme-specific inhibitors), histone 
methylation modifiers, and probably against “writers” and “erasers” 
of other histone post-translational modifications. Furthermore, based 
on the identification of active DNA demethylation pathways involving 
the removal of 5-methylcytosine via the sequential modification of 
cytosine bases that have been converted by ten-elven (TET) enzyme-
mediated oxidation [17], we can assume that a tightly controlled 
activation of these pathways may represent an efficient alternative to 
DNMT inhibitors to achieve therapeutic DNA demethylation. These 
new agents would represent valuable tools for mechanistic studies as 
well as future anti-cancer therapy, which might be more beneficial to 
patients by targeting more the pathways that are specifically altered in 
certain cancer subtypes.

A next important point relates to the multiple epigenetic cofactors 
for which the availability is tightly linked to the redox and metabolic 
status of the cell and consequently to nutrition [18,19]. Here, we are 
just starting to apprehend how metabolic reprogramming is affecting 
our epigenome and those of cancer cells. Further investigations 
should allow the identification of potentially new “druggable” targets 

Text Description
For long years genetic mutations were considered as the only 

driver of the accumulation of successive transformational events 
associated with carcinogenesis. Nowadays, a large body of evidence 
clearly established that, besides genetic lesions, massive deregulation 
of the epigenetic machinery including DNA methylation, histone 
modifications and non-coding RNAs contributes to all major cancer 
hallmarks. These aberrations disturb the physiological regulation 
of gene expression and protein functions involved in the control of 
essential processes including cell cycle and metabolism, DNA repair, 
cell growth, differentiation and apoptosis leading to a disruption of 
cellular homeostasis and subsequent cancer development [1-6].

Since epigenetic alterations are potentially reversible and 
involved in the earliest steps of malignant transformation, they are 
considered as promising targets for anti-cancer interventions using 
epigenetically active compounds [1-4,7,8]. Conversely, over the past 
years, many agents have been reported; however, only four molecules 
[i.e. two DNA methyltransferase (DNMT) inhibitors and two 
histone deacetylase (HDAC) inhibitors obtained clinical approval 
as epigenetic anti-neoplastic drugs and a relatively small number 
are in advanced clinical trials [4,8-10]. Although we are convinced 
that targeting epigenetic mechanisms is of considerable interest 
for effective chemopreventive and chemotherapeutic purposes, 
inevitably, a number of challenges remain prior to any epigenetic 
intervention against cancer.

A first challenge consists in the detailed characterization of 
genome-wide epigenetic signatures in healthy cells as well as a better 
understanding of their dynamic evolution due to environmental 
exposure including dietary behavior and lifestyle. Moreover, 
carcinogenic alterations of these signatures largely remain to be 
investigated. Data sets obtained by genome-wide high throughput 
analyses of the DNA methylation landscape associated to histone 
modification profiles and non-coding RNA expression patters 
will be investigated by rapidly developing bioinformatics tools 
[11]. Massive data sets will then further be integrated by multi- 
and inter-disciplinary approaches in order to ultimately generate 
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to prevent or treat cancer but also to inform us about the potential 
beneficial impact of nutritional interventions for healthy ageing and 
on age-related diseases.

Beside “erasers” and “writers” of epigenetic code, epigenetic 
“readers” represent an important family of proteins, which translate 
the epigenetic code into biological functions. These regulators 
“understand” different methylation and oxidation states cytosines 
[20,21] as well as of histone marks [22]. Targeting these epigenetic 
effectors or modulating specific protein-protein interactions 
within chromatin remodeling complexes will certainly unravel new 
mechanistic insights into chromatin regulation and indicate new 
opportunities for anti-cancer interventions.

Finally, both frightening but most likely also of considerable 
potential, are the first insights into trans- or intergenerational 
epigenetic effects [23]. Indeed, it becomes clearer that alterations 
of the epigenetic makeup of our ancestors could potentially leave a 
trace in our own epigenome and could affect health and disease of 
future generations. Authors clearly state that “different nutritional 
cues during infancy and childhood can have adverse effects during 
adult life, and exposure to pollutants, alcohol, and tobacco can 
affect fetal programming”. Even though highly controversial, future 
investigations will clarify to what extend epigenetic changes could 
contribute to “developmental origins of health and disease”.

In conclusion, epigenetics is currently one of the most rapidly 
growing areas of biological research; it has changed our view of the 
“transmission and manipulation” of DNA-encoded information 
and it could now even lead to change social behaviors.  Without any 
doubt, major breakthroughs in cancer management will emerge from 
this exciting field.
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