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Abstract
In this paper, the label-free quantitative proteomics technology was adopted 

to analyze and identify the proteins contained in the foot of the razor clam Soles 
grandis and explore its nutritional components. Through the proteomics research 
on S. grandis, 1,276 proteins were identified. Among them, the number of 
annotated proteins in S. grandis was 1,110. The results showed that the protein 
with the highest abundance in S. grandis was myosin, and the types of proteins 
with relatively high abundances were related to movement and participated in the 
formation of the cytoskeleton and multiple physiological functions of cells. The 
subcellular localization analysis of the expression products of the corresponding 
functional genes revealed that the angiotensin-converting enzyme (ACE) was 
present in the cytoplasm; purine nucleoside phosphorylase 1 (PNP1), purine 
nucleoside phosphorylase 2 (PNP2) and purine nucleoside phosphorylase 3 
(PNP3) were all present in the cytoskeleton; sphingosine-1-phosphate lyase 
(SGPL) was distributed in the cytoplasm, mitochondria and cytoskeleton of cells; 
and indoleamine 2,3-dioxygenase 2 (IDO2) was distributed in the cytoskeleton 
of cell.
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Introduction
Proteomics captures the most direct functional outputs of genes, 

revealing a complexity that far exceeds genomic annotations [1]. 
Integrated analysis of transcriptomic and proteomic data provides 
critical insights into dynamic gene expression patterns at both RNA 
and protein levels. Proteomics, characterized by its large-scale data 
capacity, aims to comprehensively map the entire proteome of cells, 
tissues, and organisms, thereby providing the most robust dataset for 
characterizing biological systems [2]. This discipline encompasses 
nearly the full spectrum of protein expression within biological 
systems, enabling systematic identification of protein isoforms and 
functional characterization. Label-free quantitative proteomics, 
coupled with liquid chromatography-tandem mass spectrometry 
(LC-MS/MS), facilitates high-throughput protein identification by 
analyzing enzymatically digested peptides. Relative quantification 
of proteins is achieved through computational analysis of peptide 
signal intensities, circumventing the need for isotopic labeling. 
Compared to isotope-labeling techniques, label-free approaches offer 
distinct advantages, including reduced sample input requirements 
and enhanced suitability for analyzing complex protein mixtures 
[3]. Label-free proteomics was chosen over other methods because 
it determines protein abundance without the use of stable isotope 
labeling. It exhibits the highest proteome coverage and shows good 
reproducibility.

Recent advances in marine bivalve proteomics have predominantly 
focused on elucidating physiological adaptation mechanisms under 
various environmental challenges, including heavy metal stress [4], 
cryo-adaptation [5], thermal responsiveness [6], larval metamorphosis 
[7], biomineralization processes [8-10], and hypoxia tolerance [11]. 
In the context of marine animal meat quality assessment, proteomic 
approaches have been strategically employed to decode the molecular 
basis of myofibrillar protein formation, optimize textural properties, 
and establish quality evaluation systems [12]. 

The razor clam S. grandis (Mollusca: Bivalve), a commercially 
valuable aquaculture species, is widely distributed and favored for its 
high yield, superior taste, and exceptional meat yield [20-22]. As a 
premium protein source with high protein and low lipid content [23-
26], it also harbors essential small-molecule metabolites. So far, some 
researches have been carried out mainly in the artificial breeding of the 
razor clam [13-14], reproductive biology [15], molecular systematics 
[16] and genetic diversity [17]. Compared with other shellfish, there 
are relatively few studies on the nutrition and activity of razor clam 
[18-19]. Therefore, the analysis of the protein composition of the 
razor clam at the proteomic level will help to better develop and utilize 
this marine economic animal [27-28]. Here, we employed label-free 
quantitative proteomics and bioinformatics to analyze the foot muscle 
proteome of S. grandis, identifying key metabolic pathways, functional 
proteins, and associated genes. This study provides critical insights for 
exploiting marine bivalve protein resources.
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Materials and Methods
Materials

The living samples of S. grandis utilized in this article were 
purchased from the Quanzhou Farmers' Market in Fujian Province, 
China.

Sample Preparation

Add lysis buffer (7 M urea, 2% SDS, 0.1% PMSF, 65mM DTT) 
to the foot tissue samples, sonicate to lyse the cells, and centrifuge 
to collect the supernatant. Protein concentration was measured using 
the BCA assay. Take 50μg of protein and dilute it to 50μL, then add 
1μL of 1 M DTT and incubate at 55 °C for 1 hour. Add 5μL of 1 M 
iodoacetamide (IAA) and incubate in the dark at room temperature 
for 1 hour. Precipitate proteins by adding 300μL of pre-chilled acetone 
for 2 hours. The resulting pellet was digested overnight with Trypsin 
(Promega,USA).

Protein Digestion

The protein concentration of the supernatant was measured using 
a protein quantification kit. A total of 50μg of extracted protein was 
suspended in 50μL of solution, followed by the addition of 1μL of 1 M 
dithiothreitol (DTT) for reduction at 55°C for 1 hour. Subsequently, 
5μL of 20mM iodoacetamide (IAA) was added for alkylation in the 
dark at 37°C for 1 hour. Proteins were precipitated overnight at -20°C 
using 300μL of pre-chilled acetone. The precipitated proteins were 
washed twice with cold acetone and then resuspended in 50mM 
ammonium bicarbonate. Finally, the proteins were digested with 
sequencing-grade modified trypsin (Promega, Madison, WI) at a 
substrate-to-enzyme ratio of 50:1 (w/w) for 16 hours at 37°C.

High pH Reverse Phase Separation

All peptide mixtures from the samples were redissolved in buffer. 
After redissolution, the mixtures were separated using an Ultimate 
3000 system (Thermo Fisher Scientific, MA, USA) coupled with a 
reversed-phase column (XBridge C18 column, 4.6 mm × 250 mm, 
5μm; Waters Corporation, MA, USA) under high-pH conditions. A 
linear gradient elution was applied over 40 minutes, increasing from 
5% to 45% acetonitrile (ACN). Ammonium hydroxide was added to 
adjust the solution to pH 10.0. The column was equilibrated at a flow 
rate of 1mL/min and a column temperature of 30 °C for 15 minutes. 
A total of 6 fractions were collected. Each fraction was dried using a 
vacuum concentrator and stored for subsequent analysis.

DDA: Nano-HPLC-MS/MS Analysis

The separated peptides were analyzed using a TripleTOF 5600 
tandem mass spectrometer (SCIEX, Framingham, MA, USA). Data 
acquisition was performed under high-sensitivity mode with an 
accumulation time of 250 ms per scan and a mass range of 350-1,500 
m/z for primary scans. Based on the primary scan data, ions in the 
first-stage mass spectra were sorted by intensity, and those exceeding 
150 counts per second (cps) were selected for fragmentation and 
secondary mass spectrometry (MS/MS) analysis. The criteria for 
secondary scan selection were as follows: (1) m/z range: 350-1,250; 
(2) Charge number: 2-5; (3) Dynamic exclusion: Each precursor 
ion was excluded from repeated fragmentation within half of its 
peak duration. After acquiring primary mass spectra, secondary MS 
scans were performed with an accumulation time of 50 ms per scan.

Database Search, Data Analysis and Protein Function 
Annotation

The raw mass spectrometry data were merged, analyzed, and 
searched against a database, utilizing either UniProt or a custom 
database specific to the research group [30]. During the database 
search, the results were compared against a contaminant database 
to assess potential sample contamination. This step is essential in 
proteomic studies of marine organisms due to the complex marine 
environment, where samples are highly susceptible to microbial 
contamination. Database search parameters: Fixed modification: 
Carbamidomethylation (Cysteine, C), Variable modification: 
Oxidation (Methionine), False discovery rate (FDR): Set to 1% at 
both the precursor ion and peptide levels. Two large databases, GO 
and KEGG, were searched to annotate and classify the functions of 
proteins. The SignalP-5.0 web service (available at https://services.
healthtech.dtu.dk/service.php?SignalP-5.0) was used to predict signal 
peptide sequences in a subset of the identified proteins. Additionally, 
the amino acid sequences of homologous proteins from closely related 
species of S. grandis were retrieved from the NCBI database. These 
sequences were used to perform a local BLAST analysis to identify 
proteins in S. grandis that share conserved domains. The Conserved 
Domain Database (CDD) on the NCBI website was then utilized 
to verify whether the exported protein sequences from S. grandis 
contained the expected structural domains. Proteins lacking the 
corresponding domains were excluded from further analysis.

Data Analysis

The purpose of database searching is to provide functional 
annotations for as many proteins as possible in the sample, enabling 
qualitative analysis of the proteome. To ensure the reliability of the 
results, a false discovery rate (FDR) threshold of less than 1% was 
applied as a filtering criterion. Additionally, unique peptides defined 
as peptides identified exclusively from a single protein sequence or 
a group of identical sequences were required to meet the condition 
of having ≥1 unique peptide per protein. Only peptides and proteins 
that met these stringent criteria were used for subsequent analysis. 
This approach ensures high confidence in protein identification and 
functional annotation.

Protein data were blasted to the eukaryotic orthologous groups 
(KOG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) databases. KOG is a database of orthologs 
of eukaryotes. The GO database describes protein function in terms 
of molecular function, biological pathways and cell components, 
reflecting relevant biological information. Protein GO enrichment 
analysis and KEGG metabolic pathway analysis were performed 
to identify the difference in GO enrichment between giant and 
constricted Solenoids in the three categories, and the difference in 
metabolic level was analyzed from the data.

Results
Sample Protein Concentration

The protein concentration and total protein were determined 
by BCA protein quantitative kit. The results showed that the protein 
concentration was 16.60 μg/μL and the total protein was 3.32mg.

25μg protein was taken from the sample to observe the SDS-
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PAGE band pattern, as shown in Figure 1. The concentration and total 
amount of protein met the requirements of subsequent experiments, 
and the SDS separation bands were clear and abundant, indicating the 
existence of high protein abundance.

Protein Composition and Quantification

The peptides were analyzed by mass spectrometer, the raw 
data were derived, and the transcriptome sequencing and assembly 
database established by MASCOT search showed that there were 
17,264 peptides, 11,168 unique peptides and 1,276 proteins in the 
protein secondary spectrum of S. grandis. The reliability of the results 
was guaranteed under the condition of peptide FDR≤1%. In addition, 
the statistical results of unique peptide segments were shown in 
Figure 2.

The statistics of the number of peptide segments are shown in 
Figure 3. The horizontal coordinate is the number of peptide segments, 
and the vertical coordinate is the number of proteins corresponding 
to the number of peptide segments.

The statistical results of the length distribution of all peptide 

segments are shown in Figure 4. The horizontal coordinate in the 
figure is the length of peptide segment, the number marked on 
the horizontal coordinate is its amino acid unit, and the vertical 
coordinate represents the number of peptide segments. According 
to the statistical results of peptide length distribution, the shortest 
peptide segment contained 3 amino acid residues, and the longest 
peptide segment contained 30 amino acid residues. 

When the amino acid residues of peptide segment were 3 and 4, 
the number of peptide segments was the highest, and the proportion 
of peptide segments was more uniform in other amino acid residues 
(Figure 4).

The area of the peptide coverage analysis represents the abundance 
of the corresponding protein, and higher peptide coverage indicates 
that the abundance of these proteins is likely to be relatively high 
in the species. According to the results shown in Figure 5, protein 
proportions with different coverage can be seen, different color blocks 
represent different sequence coverage ranges, and the numbers and 
percentages after color blocks represent the number of proteins and 
their proportion. The results of the razor clam proteome showed 
that the protein coverage was 30.67% when the peptide coverage was 
0-10%. Then, when the peptide coverage was 10-20%, the coverage 
was 22.82% (Figure 5).

Figure 1: SDS-PAGE gel electrophoretic diagram of proteins of S. grandis (a). 

Figure 2: The results of peptide identification of S. grandis.

Figure 3: The results of peptide number distribution of S. grandis.

Figure 4: The results of peptide length distribution of S. grandis.
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Protein Function Annotation

All identified proteins were annotated by BLASTP against 
commonly used protein databases (Pfam, GO, KEGG, and KOG) to 
obtain their functional information. The results showed that 1,110 
(86.99%) proteins in S. grandis were functionally annotated, with the 
highest number of annotations (987 proteins) mapped to the KOG 
database.

The identified proteins were annotated using KEGG, and gene 
expression information was integrated as a comprehensive interaction 
network for in vivo metabolic analysis. The results from the proteomic 
data of S. grandis revealed that 689 proteins were mapped to the KEGG 
database, participating in 303 metabolic pathways. These annotated 
pathways were classified into six major categories: Molecular Processes, 
Environmental Information Processing, Genetic Information 
Processing, Human Diseases, Metabolism, and Organismal Systems. 
Pathways enriched in Organismal Systems were the most abundant, 
followed by those associated with Human Diseases. In the organic 
system pathway, the endocrine system, immune system and 
environmental adaptation were involved in the most proteins, 120,95 
and 86, respectively. The number of proteins involved in the nervous 
system, digestive system and circulatory system was also higher (78,62 
and 56, respectively). The number of proteins involved in sensory 
system, aging system, secretion system, development and regeneration 
were relatively small, which were 36, 30, 29, 20 and 8, respectively. 
There were 97, 68 and 58 proteins involved in carbohydrate, amino 
acid and energy metabolism, respectively. However, the number of 
proteins involved in other amino acid metabolism, lipid metabolism, 
nucleotide metabolism, coenzyme factor and vitamin metabolism, 

degradation and metabolism of exogenous substances, metabolism 
of terpenoids and polyketones, polysaccharide biosynthesis and 
metabolism, and biosynthesis of other secondary metabolites were 
relatively small, which were 25, 24, 20, 18, 9, 7, 5 and 3, respectively. 
No protein is enriched into the network of drug development. The 
statistics of the results are shown in Figure 6.

GO annotation was carried out on 1,276 proteins in S. grandis. 

Table 1: Protein abundance sort of S. grandis and Si. Constricta.
S. grandis Si. constricta

Protein ID Symbol Annotation Protein ID Symbol Annotation
Unigene0000212 MYH16 Myosin Unigene0001481 act-4 Actin
Unigene0029558 PMY Myosin Unigene0008779 MYH16 Myosin
Unigene0070942 cher Filamin Unigene0005600 PMY Myosin
Unigene0028110 act-4 Actin Unigene0001276 FLNC Filamin
Unigene0042379 ACTA2 Actin Unigene0007077 TRO Tropomyosin
Unigene0066687 Smp_194770 Arginine kinase Unigene0045759 cher Filamin
Unigene0015486 Flnc Filamin Unigene0024274 gxcB Transgelin
Unigene0067504 FBPA Fructose-bisphosphate aldolase Unigene0028708 unc-22 Twichin
Unigene0067365 GAPDH Glyceraldehyde phosphate dehydrogenase Unigene0020903 Smp_194770 Arginine kinase
Unigene0000629 act-2 Actin Unigene0037878 Rlc-a Myosin

Figure 5: The sequence coverage of S. grandis peptide segment.

Figure 6: The KEGG enrichment pathway map of S. grandis.
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Figure 7: The GO enrichment pathway map of S. grandis.

Figure 8: The KOG enrichment pathway map of S. grandis.
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The results showed that 987 proteins were involved in 57 branches 
of 3 major categories, including 26 items (terms) in the category of 
biological processes, 19 items in the category of cell composition, and 
12 items in the category of molecular functions. In GO functional 
annotation, proteins are mainly involved in biological processes such 

as cellular processes, single tissue processes and metabolic 
processes. The protein is mainly enriched in the cell. It has the 
functions of binding, catalytic activity, and molecular structure 
activity, as shown in Figure 7.

The proteins of S. grandis were annotated using the KOG 
database, classified, and statistically analyzed to identify proteins 
with conserved functions shared with ancestral orthologs. The 
results revealed that 1,354 proteins in S. grandis were assigned to 25 
KOG functional categories. Among these, the largest category was 
"Signal transduction mechanisms" with 188 proteins, followed by 
"Post-translational modification, protein turnover, and chaperones" 
with 170 proteins, and "General function prediction only" with 154 
proteins. Proteins involved in "Energy production and conversion" 
and "Carbohydrate transport and metabolism" numbered 103 and 56, 
respectively. Notably, proteins associated with "Defense mechanisms" 
were relatively scarce, with only 15 identified. Details are shown in 
Figure 8.

Analyses of Different Proteins Between S. Grandis and 
Sinonovacula Constricta

The peak area in protein mass spectrometry can, to some extent, 
reflect protein abundance, where a higher protein abundance 
corresponds to a larger peak area in the mass spectrum. Proteins were 
ranked based on their peak areas, and the top 10 are summarized 
in Table 1. Among these, actin and myosin were the most abundant 
protein types in both S. grandis and the Chinese razor clams Si. 
constricta [31]. Specifically, myosin was the most abundant protein 
in S. grandis, whereas actin exhibited the highest abundance in Si. 
constricta. Both species contained arginine kinase in their foot tissues. 
Additionally, S. grandis also expressed fructose-bisphosphate aldolase 
and glyceraldehyde-3-phosphate dehydrogenase.

Subcellular Localization of Functional Gene Expression 
Products

Subcellular localization analysis of the corresponding products of 
nine functional genes was performed using WoLFPSORT to determine 
the specific intracellular locations of the proteins or their expression 
products. The results are shown in Table 2. Angiotensin-converting 
enzyme (ACE) of the razor clam was found in the cytoplasm; purine 

nucleoside phosphorylase 1 (PNP1), purine nucleoside phosphorylase 
2 (PNP2), and purine nucleoside phosphorylase 3 (PNP3) were all 
localized to the cytoskeleton; sphingosine-1-phosphate lyase (SGPL) 
was distributed in the cytoplasm, mitochondria, and cytoskeleton; 
and indoleamine 2,3-dioxygenase 2 (IDO2) was localized to the 
cytoskeleton.

Discussion
The material used in this study was the foot muscle tissue of S. 

grandis, with actin and myosin identified as the most abundant 
proteins in the proteomic data. The primary locomotion of S. 
grandis is mediated by its foot muscles, and the high-expression 
proteins identified through proteomics are closely related to its 
motor functions. The interaction between actin and myosin is 
fundamental to muscle contraction [32-34]. In all cells, actin 
filaments and non-muscle myosin interact in a similar manner, 
facilitating cellular movement. The myosin heads on myosin filaments 
contact surrounding actin filaments, and through ATP hydrolysis, 
the actin filaments in the foot are pulled, generating macroscopic 
muscle movement [35-36]. Actin proteins derived from seafood 
by-products have been found to have beneficial activities in health 
promotion, disease prevention, and therapeutic interventions [37]. 
These proteins have a broad spectrum of applications, ranging from 
health pharmacology to food supplements and pharmaceuticals [38]. 
The processing and utilization of proteins and protein hydrolysates 
from fish by-products and underutilized fish species are also being 
explored for their bioactive properties and peptide sequences [39,40]. 
Additionally, the development of seafood processing by-products into 
high-quality products is ongoing [41]. Myosin proteins from seafood 
processing have health benefits [37,38,42,43,44]. These proteins can 
be transformed into more marketable and functional forms through 
extraction or hydrolysis [37]. They are derived from fish by-products 
and processing wastes [37,42]. Hydrolysates from fish proteins have 
been linked to effects against cardiovascular diseases, cancer, diabetes, 
and aging [44].

The high-abundance proteins in S. grandis include fructose-
bisphosphate aldolase, a conserved enzyme in the glycolytic pathway 
that exhibits stress-responsive properties under adverse conditions. 
In marine organisms, this enzyme can trigger acquired immune 
responses and has been utilized as a broad-spectrum vaccine to combat 
pathogens in aquaculture, thereby improving aquatic product quality 
[45]. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), another 
key enzyme in glycolysis, is ubiquitously expressed in eukaryotes and 
demonstrates stable expression across tissues. Its gene is frequently 
employed as a reference gene for fluorescence-based quantitative 
assays. Both enzymes play crucial roles in the vital biological activities 
of S. grandis [46].

Among the nine functional gene products identified in S. 
grandis, ACE is ubiquitously localized in the cytoplasm and may 
correlate with the presence of antihypertensive lectin-inhibitory 
peptides commonly found in marine bivalves [47-49]. Taurine in 
S. grandis is widely distributed in the cytoplasm, mitochondria, 
and cytoskeleton. Consistent with other aquatic invertebrates, 
bivalves typically exhibit high taurine content under physiological 
conditions. Taurine plays a critical role in infant neural development, 
enhancing neurotransmission and visual function [50-51], while also 

Table 2: Protein composition, subcellular localization and annotation of 
S. grandis.

Product ID Subcellular 
localization Description E value

SgACE cytoplasm angiotensin-converting enzyme 0
SgPNP1 cytoskeleton Purine nucleoside phosphorylase 4E-119
SgPNP2 cytoskeleton Xanthine dehydrogenase 0
SgPNP3 cytoskeleton Xanthine dehydrogenase 1E-89
SgSGPL1 cytoplasm gamma glutamyhransferase 1E-156
SgSGPL2 mitochondria gamma glutamyhransferase 0
SgSGPL3 cytoskeleton cysteine sulfinic acid decarboxylase 0
SgSGPL4 cytoskeleton cysteine sulfinic acid decarboxylase 0
SgIDO2 cytoskeleton L-amino-acid oxidase 1E-112
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demonstrating therapeutic effects against iron-deficiency anemia by 
facilitating intestinal iron absorption and modulating gut microbiota 
composition [52]. These properties underscore its widespread 
application as a food additive. Tryptophan is predominantly 
localized within the cytoskeletal framework. This essential amino 
acid exerts antioxidant activity and alleviates stress responses in 
animals. Tryptophan and its metabolites enhance immune function 
by regulating immunoglobulin production and lymphocyte 
proliferation. Additionally, it modulates growth performance through 
appetite regulation and intestinal motility optimization. Tryptophan 
further influences protein synthesis mechanisms; binding to nuclear 
tryptophan receptors promotes hepatic nucleoprotein synthesis, 
thereby accelerating anabolic processes [53-56].

Conclusion
This study employed label-free quantitative proteomics to 

systematically characterize the proteome of S. grandis, integrating 
qualitative and quantitative analyses to identify high-abundance 
proteins and annotate their biological functions. Proteomic datasets 
were cross-referenced with public databases for comprehensive 
functional prediction. Notably, immune-responsive proteins were 
underrepresented in the identified proteome, with the majority 
corresponding to constitutively expressed housekeeping proteins 
involved in fundamental physiological maintenance. Key differentially 
expressed proteins, including ACE and their enriched functional 
pathways not only elucidate the proteomic landscape underlying 
cellular activities in S. grandis but also provide mechanistic insights 
into its nutritional biochemistry.
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