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Abstract

Methyl parathion is an Organo Phosphate (OP) insecticide which is being 
used in agriculture to protect the crops from insects. It causes many health 
problems in humans, related to acetyl cholinesterase inhibition. Methyl parathion 
is classified as Category Ia (extremely toxic) by the World Health Organization 
(WHO) and as Toxicity Category I (most toxic) insecticide by the United States 
Environmental Protection Agency (U.S. EPA). Organ Phosphorus Hydrolyses 
(OPH) (E.C.3.1.8.1) was discovered in soil micro-organisms and hydrolyzes 
methyl parathion into p-nitro phenol (PNP) and Di Methyl Thio Phosphate 
(DMTP). Hydrolyzed product PNP can be detected by electrochemical and 
optical methods. This review is a compilation of the work reported on OPH based 
enzymatic and microbial biosensor for detection of methyl parathion pesticide.

contractions. Following exposure by any route, other systemic effects 
may begin within a few minutes, or be delayed for up to 12 hours. 
These may include pallor, nausea, vomiting, diarrhea, abdominal 
cramps, headache, dizziness, eye pain, blurred vision, constriction or 
dilation of the pupils, tears, salivation, sweating and confusion [7,12]. 
In severe cases, poisoning will affect the central nervous system, 
producing in-coordination, slurred speech, loss of reflexes, weakness, 
fatigue, and eventual paralysis of the body extremities and respiratory 
muscles. Death may be caused by respiratory failure or cardiac arrest 
[7,12,13]. 

Methyl parathion was initially registered in 1954 in the United 
States for application as insecticide [14] but its uses was restricted 
in 1978 as a result of detrimental effects to humans [13,14]. 
Environmental Protection Agency (EPA) has now classified methyl 
parathion as a restricted-use pesticide and has given approval 

Introduction
Methyl parathion is an organophosphate insecticide, nematicide, 

and acaricide/miticide used to control boll weevils and many insect 
pests of agricultural crops [1-6]. Methyl parathion is produced by 
the reaction of O,O-dimethyl phosphorochloridothionate and the 
sodium salt of 4-nitrophenol in acetone solvent [7-8]. Bayer has 
developed this pesticide and has long been the ‘parent’ company 
with its well-known brand ‘Folidol’. However, there have also been a 
number of other manufacturers globally. The main manufacturers of 
Methyl parathion are All India Medical Co (India), Bayer India, Bayer 
Mexico, Cheminova (Denmark), Rallis India, Sundat (Singapore) and 
Velpol Company (Mexico) [5,9]. The IUPAC chemical name of MP 
is O,O-dimethyl O-4-nitrophenyl phosphorothioate. Its chemical 
structure is shown below:

Methyl parathion kills pests by acting as a stomach poison and 
act as potent irreversible acetyl cholinesterase inhibitor. It was used 
to control a variety of insects and mites, including thrips, weevils, 
aphids and leafhoppers, in a very wide range of crops including 
cereals, fruit, nuts, vines, vegetables, ornamentals, cotton, and field 
crops [5,7,10]. Central Insecticide Board and Registration Committee 
(CIBRC) in India recommended it in two different forms either in 2% 
DP or 50% EC for controlling the insect pests from the cotton, paddy, 
wheat, pulses such as green gram and black gram and oilseeds such as 
ground nut and mustard crops. 

Methyl parathion binds into the acyl pocket at the active site 
of acetyl cholinesterase enzyme. The binding of a phosphate group 
to the serine amino acid at the active site of acetyl cholinesterase 
changes the configuration of the enzyme molecule, stabilizing it and 
preventing it from functioning and inactivating permanently [11]. 
When inhaled by human being, the first adverse effects are a bloody 
or runny nose, coughing, chest discomfort and difficulty in breathing. 
Skin contact may cause localized sweating and involuntary muscle 
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Figure 1: Structural presentation of methyl parathion hydrolysis with OPH.

Figure 2: Principle of biosensors.
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for outdoor use only [10]. It was classified by the World Health 
Organization (WHO) as a Category Ia (extremely toxic) and by the 
United States EPA (U.S. EPA) as a Toxicity Category I (most toxic) 
insecticide [10]. Although banned in developed countries, it is still 
being used in India as a restricted insecticide. As per CIBRC in India, 
formulations of MP, 50% EC and 2% DP are banned for use on 
fruits and vegetables (S.O.680 (E) dated 17thJuly, 2001), and its use 
is restricted to only those crops where honeybees are not acting as 
pollinators. (S.O.658 (E) dated 04th Sep., 1992) [15]. 

Biodegradation of methyl parathion 
Organ Phosphorus Hydrolase (OPH) (E.C.3.1.8.1) was first 

discovered in soil micro-organisms Pseudomonas diminuta MG and 
Flavobacterium sp. and hydrolyzes methyl parathion into P-Nitro 
Phenol (PNP) and Di Methyl Thio Phosphate (DMTP) [16-21]. 
This hydrolytic reaction is the first steps of degradation of methyl 
parathion by soil microorganism which was extensively studied. OPH 
was first found in Pseudomonas diminuta, and then in Flavobacterium 
sp., both are soil microbes [22]. OPH also has been found in a variety 
of organisms such as squid, protozoa, mammals, yeast, fungi and 
soil bacteria [22,23]. OPH is also known as phosphotriesterase, 
parathion hydrolase, paraoxonase, DFPase, somanase, sarinase, 
phosphorothiolase and parathion aryl esterase [24-27]. The gene 
encoding OPH, opd (organophosphate degradation), has been 
expressed in various systems including Escherichia coli, Drosophila 
melanogaster, Streptomyces lividans and insect cells [23,24,28]. OPH 
has been studied extensively over the years [24,29-31] and several 
genetically engineered variants have been produced in an effort to 
improve its catalytic ability [31-33]. 

Below is the structural presentation of methyl parathion 
hydrolysis with OPH into P-Nitro Phenol (PNP) and Di Methyl Thio 
Phosphate (DMPT) (Figure 1). 

PNP is an optically detectable product which can be detected by 
electrochemical and colorimetric methods. Thus, this hydrolytic step 
has been extensively exploited to develop the biosensor for detection 
of methyl parathion. 

Biosensors for detection of methyl parathion using 
biodegradation step

A biosensor is a self-contained integrated device which is capable 
of providing specific quantitative or semi-quantitative analytical 
information using a biological recognition element which is in direct 
contact with a transducer element. Biosensors consists of three basic 
components: (i) a biological component to interact with analyses 
which generate some physico-chemical signal, (ii) a transducer to 
convert the generated signal in to output signal (mostly electrical) 
and (iii) a signal processing system to process the output signal into 
the appropriate form that can be displayed on device (Figure 2) [5-
6,34-36]. 

Biological materials play a very significant role in biosensor 
field as one of the main components which provide selectivity 
and specificity of the system for interest of analyze. The principle 
of detection is the specific binding of the analyze of interest to the 
complementary biological material immobilized on a suitable support 
matrix. The specific interaction results in a change in one or more 
physico-chemical properties like change in pH, electron transfer, 
mass changes, heat transfer, uptake or release of gases or specific 

S.No. Microbial cells/ Enzyme Type of detector Detection range Ref.

Based on hydrolysis of methyl parathion by immobilized microbial cells

1 Escherichia coli cells OPH intracellularly Potentiometric Not reported [44]

2 Escherichia coli cells expressing OPH on cell surface Potentiometric 0.06-0.91 mM [45]

3 Moraxella sp. express INPNC-OPH on the cell surface Amperometric Upto 175 μM [46]

4 Pseudomonas putida JS444, express OPH on the cell surface Amperometric Upto 2 μM [47]

5 Pseudomonas putida JS444 expressing OPH on cell surface Dissolve oxygen electrode 0.2-50 μM [48]

6 Escherichia coli strain surface displayed mutant OPH (S5) Amperometric 0.08-30 μM [49]

7 E. coli was having high periplasmic expression of OPH Cyclic voltammetric 2-80 μM [50]

8 Flavobacterium sp. Optical 4-80 μM [51]

9 Sphingomonas sp. Optical 4-80 μM [52]

10 Sphingomonas sp. Optical 4-80 μM [53]

11 Sphingomonas sp. Optical 0.1-1ppm [54]

Based on hydrolysis of methyl parathion by immobilized OPH enzyme

12 OPH Enzyme Electrochemical impedance spectra
Linear Voltammetry

5.0-200 ng/mL and
200-1000 ng/mL [55]

13 OPH Enzyme Potentiometric 0.1-0.43 mM [56]

14 OPH Enzyme Amperometric Up to 140 μM [57]

15 OPH Enzyme Amperometric 1-10 μM [58]

16 OPH Enzyme Amperometric Up to 40 µM [59]

17 OPH Enzyme Amperometric
Cyclic voltammetry Up to 2 µM [60]

18 OPH Enzyme Chrono amperometric 4.6-46 µM [61]

Table 1: Biosensors for detection of methyl parathion.
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ions, which can be detected and produce an electronic signal, which 
is proportional to the concentration of a specific analyze or group of 
analyses. Now days, biosensor plays an important role as alternative 
detection method replacing the traditional analytical methods 
such as spectrophotometer, gas–liquid chromatography, thin-layer 
chromatography, high-performance liquid chromatography, capillary 
electrophoresis and mass spectrometry etc [37-41]. Biosensor 
facilitate onsite detection of large number of sample with no or low 
preparation, less time requirement and no requirement of expensive 
apparatus and trained personnel which are generally limitation in 
traditional analytical methods.

On the basis of bio component, if enzyme is used as bio component, 
it is known as enzymatic biosensor and if microbial cells are used, it is 
called microbial biosensor. Both bio components (enzyme/microbial 
cells) have certain limitations and advantages. Purified enzymes have 
very high specificity for their substrates or inhibitors, their application 
in biosensor construction may be limited by the tedious, time-
consuming and costly enzyme purification steps and requirement 
of cofactor/coenzyme to generate the measurable product. Microbes 
provide an ideal alternative to these bottle-necks [35,42,43]. The 
enzymes and co-factors that co-exist in the microbes give the ability 
to consume and hence detect large number of analyses. Microbial 
cells can be easily manipulated and adapted to consume and degrade 
new substrates under certain cultivating condition. Additionally, 
the progress in molecular biology/recombinant DNA technology 
has opened endless possibilities of tailoring the microorganisms to 
improve the activity of an existing enzyme or express foreign enzyme/
protein in host cell. All of the above makes microbial cells an excellent 
biosensing element for developing biosensor. The use of microbial 
cells has been demonstrated as an alternative biological catalyst 
without compromising on cost of purifying enzymes [35,42,43]. 

OPH enzyme and the microbial cells having OPH have been 
extensively utilized for developing biosensor to detect methyl 
parathion pesticide (Table 1). Enlist the publications where different 
microbial cells expressing OPH and purified OPH enzyme have been 
immobilized on a suitable matrix and further used as biosensor.

Conclusion
This review focuses on biodegradation of methyl parathion using 

OPH enzyme which is present in soil microorganism. It lists many 
reports where microbe carrying OPH and purified OPH were used for 
hydrolysis of methyl parathion which further applied in biosensors 
for detection of methyl parathion pesticide.
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